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Abstract

Deep neural networks often require copious amount of

labeled-data to train their scads of parameters. Training

larger and deeper networks is hard without appropriate reg-

ularization, particularly while using a small dataset. Lat-

erally, collecting well-annotated data is expensive, time-

consuming and often infeasible. A popular way to regu-

larize these networks is to simply train the network with

more data from an alternate representative dataset. This

can lead to adverse effects if the statistics of the represen-

tative dataset are dissimilar to our target. This predica-

ment is due to the problem of domain shift. Data from a

shifted domain might not produce bespoke features when

a feature extractor from the representative domain is used.

In this paper, we propose a new technique (d-SNE) of do-

main adaptation that cleverly uses stochastic neighborhood

embedding techniques and a novel modified-Hausdorff dis-

tance. The proposed technique is learnable end-to-end and

is therefore, ideally suited to train neural networks. Exten-

sive experiments demonstrate that d-SNE outperforms the

current states-of-the-art and is robust to the variances in

different datasets, even in the one-shot and semi-supervised

learning settings. d-SNE also demonstrates the ability to

generalize to multiple domains concurrently.

1. Introduction

The use of pre-trained models and transfer-learning

have become commonplace in today’s deep learning-centric

computer vision. Consider a pre-trained model MDs

trained using a large dataset Ds = {(xs
i , y

s
i )}

Ns

i=1
, where

xs
i is the ith sample of the sth domain and Ns is the number

of samples in the sth domain. Suppose that a typical user has

a smaller dataset Dt = {(xt
j , y

t
j)}

Nt

j=1
, with N t << Ns, on

which they want to train their model. Also consider that the

label spaces are the same, i.e., {ys, yt} ∈ [0, 1, . . . c − 1].

∗Equal contribution. This work was done during Xiang’s internship at
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Figure 1: Domain adaptation in the true data space: Expec-

tation vs. Reality.

The user should be able to repurpose the model MDs to

work with dataset Dt. Unless the user is extremely lucky as

shown in the top case of figure 1, such a deployment will not

work. This is due to domain-shift. Features become mean-

ingless and their spaces get transformed, therefore classifier

boundaries have to be redrawn. The class of such problems

where the knowledge from another domain is recycled to

work to a new target domain is called domain adaptation.

If the solution can perform equally-well in both domains, it

is called as domain generalization.

Typical choices of dataset for source are large-scale

datasets such as ImageNet [3]. Donahue et al. popular-

ized the idea of repurposing networks trained on this dataset

to be used as generic feature extractors [5]. They hypoth-

esized and successfully demonstrated that in many cases,

when there is limited labeled data available in the target do-

main, as long as it contains only natural images, the feature

extractors learnt from ImageNet are general enough to pro-

duce discriminative features. Follow-up studies have anal-

ysed the transferability of neural networks and the gener-

ality of datasets in-detail [33, 29]. In all these cases, the
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label-space is considered independently for both domains

and the classifier layer of the networks are sanitized. Do-

main adaptation improves the performance of an existing

model MDs for Dt by adapting the knowledge of the model

learned from Ds to Dt with the assumption that the label

spaces are same, and therefore not needing to sanitize the

classifier layers [19, 31]. There are two different philoso-

phies in which domain adaptation is typically attacked: (i)

Domain Transformation: To build a transformation from

target data to source domain and reuse the source feature

extractor and classifier (xt → xs). Consider the GAN-

based methods [1, 21]. These work on the input-level and

transform samples from the target domain to mimic distri-

butions of source domains. (ii) Latent-Space Transforma-

tion: To build a transformation of features extracted from

source and features extracted from target into each other or

into a common latent space. Since these are working on

the conditional feature spaces, these methods are typically

supervised.

Figure 2 illustrates the major branches and types of do-

main adaptation. d-SNE falls under the latent-space trans-

formation philosophy, where we create a joint-latent em-

bedding space that is agnostic and invariant to domain-shift.

We also focus on the tougher problem where N t << Ns,

or few-shot supervised domain adaptation. This imposes a

constraint that only a few labeled-target samples are avail-

able.

To create this embedding space, we use a strategy that

is very similar to the popular stochastic neighborhood em-

bedding technique (SNE) [12]. To modifiy SNE for do-

main adaptation, we use a novel modified-Hausdorff dis-

tance metric in a min−max formulation. d-SNE mini-

mizes the distance between the samples from Ds and Dt

so as to maximize the margin of inter-class distance for dis-

crimination and minimize the intra-class distance from both

domains to achieve domain-invariance. This discrimination

is learnt as a max-margin nearest-neighbor form to make the

network optimization easy. Our proposed idea is still learn-

able in an end-to-end fashion, therefore making it ideal for

training neural networks.

Extensive experimental results in different scenarios in-

dicate that our algorithm is robust and outperforms the state-

of-the-art algorithms with only a few labeled data sam-

ples. In several cases, d-SNE outperforms even unsuper-

vised methods that have access to all samples in the tar-

get domain. We generalize d-SNE such that it can work on

a semi-supervised setting that further pushes the states-of-

the-art. Furthermore, d-SNE also demonstrates good capa-

bilities in domain generalization without additional training

required, which is typically not the case in any state-of-the-

art.

The key contributions in this paper include the following:

1. Use of stochastic neighborhood embedding and large-

margin nearest neighborhood to learn a domain-

agnostic latent-space.

2. Use of a modified-Hausdorff distance and a novel

min−max formulation in this space to help few-shot

supervised learning.

3. Demonstration of domain generalization and achiev-

ing states-of-the-art results on common benchmark

datasets.

4. Extension to semi-supervised settings pushing the

states-of-the-art further.

The rest of this article is organized as follows: section 2

surveys related literature in all categories described in figure

2, section 3 dives deep into the proposed idea and provides

a theoretical exposition, section 4 presents validation of this

idea through experimental evidence and section 5 provides

concluding remarks.

2. Related Works

In this section we will survey recent related works in

each category of domain adaptation.

Domain transformation: In this category, methods learn a

generative model that can transform either the source to the

target domain (which is more common) or vice-versa. To

learn this generative model itself, no supervision is required.

Since unlabeled data is available in plenty, this model can

be learnt easily leveraging a plethora of unsupervised data.

They use this generative model to prepare a joint dataset in

either one of the domains and learn a feature extractor and

classifier in that common domain [14, 1, 13, 21].

With the advent of Generative Adversarial Networks

(GANs) [9] these transformations have become easier Liu

and Tuzel proposed a pair of GANs, each of which was re-

sponsible for synthesizing the images in the source and tar-

get domain, respectively [14]. With an innovative weight-

sharing constraint as a regularizer, the generative models

were used for generating a pair of images in two domains.

Rather than generating the images from random variables in

two domains, the generator in PixelDA, proposed by Bous-

malis et al. transformed the images from the source domain

and forced them to map into the distribution of the target

domain [1]. CyCADA, proposed by Hoffman et al. used

cycle-consistent loss and semantic loss along with the GAN

losses and bettered the state-of-the-art [13].

While all the previous methods transformed the source

domain data to target domain, Russo et al. proposed

SBADA-GAN, which also considered the transformation

from target to source domain [21]. They defined class con-

sistency loss, which learned to obtain the same label used

when mapping from source to target and back tp the source

domain. Since they generated images in both domains, they
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Figure 2: Various types of domain adaptation.

learnt two independent classifiers in each. This implied that

they were able to make a prediction using the linear combi-

nation or predictions from both domains.

Latent-space transformation: Latent-space transforma-

tions can be further divided into two major categories: do-

main adversarial learning (DAL) and domain multi-task

learning (DMTL).

Domain adversarial learning: Perhaps the most popular

of DAL techniques is the Domain Adversarial Neural Net-

works (DANN) introduced by Ganin et al. [7]. This work

introduced a gradient reversal layer to flip the gradients

when the network was back-propagating. Using this gra-

dient flipping, they were able to learn both a discrimina-

tive and a domain-invariant feature space. The network was

optimized to simultaneously minimize the label error and

maximize the loss of the domain classifier. Tzeng et al.

generalized the architecture of adversarial domain adapta-

tion for unsupervised learning in their work, Adversarial

Discriminative Domain Adaptation (ADDA) [28]. ADDA

used two independent discriminators from source and tar-

get domain to map features in the shared feature space. A

label-relaxed version of domain adversarial learning was

proposed in [2].

Domain multi-task learning: In order to improve the dis-

criminative capabilities of feature representations, Tzeng et

al. introduced a shared feature extractor for both source

and target domain with three different losses in a multi-

task learning manner [27]. Ding et al. uses a knowledge

graph model to jointly optimize target labels with domain-

free features in a unified framework [4]. These losses also

acted as a strong regularizer. Rozantsev et al. argued that

the weights of the network learnt from different domain

should be related, yet different for each other [20]. To this

end, they added linear transformations between the weights

to regularize the networks to behave thusly. Associative Do-

main Adaptation is another technique in the DMTL regime

proposed by Haeusser et al. which enforced association be-

tween the source and target domains [10]. CCSA and FADA

furthered the contrastive loss techniques by creating a uni-

fied framework for supervised domain adaptation and gen-

eralization [16, 15]. A decision-boundary iterative refine-

ment training strategy (DIRT-T) was proposed by Shu et

al. which required an initialization using virtual adversarial

training [25]. They refined the model’s weights with a KL

divergence loss. Self-ensembling extended the mean teacher

model in the domain adaptation setting and introduced some

tricks such as confidence thresholding, data augmentation,

and class imbalance loss [6, 26]. Others learn a shared fea-

ture space from the images in the source and target domain

[30, 23] .

3. d-SNE

Consider the distance between a sample from the source

domain and one from a target domain in the latent-space,

d(xs
i , x

t
j) = ‖ΦDs(xs

i )− ΦDt(xt
j)‖

2

2
, (1)

where ΦDs(·) → R
d and ΦDt(·) → R

d are neural networks

that transform the samples to a common latent-space of d-

dimensions from the source and target domains, parameter-

ized by ws and wt respectively. In this latent-space,

pij =
exp(−d(xs

i , x
t
j))

∑

x∈Ds exp(−d(x, xt
j))

. (2)

is the probability that the target sample xt
j ∈ Dt has the

same label as the source sample xs
i ∈ Ds. Since we are

working under the supervised regime, we actually have the

label for both xs
i and xt

j , which are ysi and ytj , respectively.

If ysi = ytj , we want pij to be maximized. If otherwise, we

want pij to be minimized. Notice that in this framework,

the training samples in the source domain are chosen from

a probability distribution that favors nearby points over far-

away ones. In other words, the larger the distance between x

and xt
j , the smaller probability for selecting x as the neigh-

bor of xt
j for any sample x ∈ Ds.

Consider that ytj = k and that Ds
k = {∀xs

l |y
s
l = k}. The
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probability pj of making the correct prediction of xt
j is:

pj =

∑

x∈Ds
k
exp(−d(x, xt

j))
∑

x∈Ds exp(−d(x, xt
j))

=

Ns
k

∑

i=0

pij , (3)

where, Ns
k = |Ds

k|. Notice that given a target sample and

label (xt
j , y

t
j = k), the source domain Ds is split into two

parts as a same-class set Ds
k and a different-class set, Ds

6k.

The denominator in equation (3) can now

be decomposed as
∑

x∈Ds
k
exp(−d(x, xt

j)) +
∑

x∈Ds
6k
exp(−d(x, xt

j)). Given pj for one sample,

the objective function for the domain adaptation problem

can be derived as,

∑

xj∈Dt

1

pj
=
∑

xj∈Dt

(
∑

x∈Ds
6k
exp(−d(x, xj))

∑

x∈Ds
k
exp(−d(x, xj))

, for k = yj

)

.

(4)

Since we want to maximize the probability pj of making

the correct prediction of xj , we minimize the log-likelihood

of 1

pj
, which is equivalent to minimizing the ratio of intra-

class distances to inter-class distances in the latent space.

L = log

(
∑

x∈Ds
6k
exp(−d(x, xj))

∑

x∈Ds
k
exp(−d(x, xj))

, for k = yj

)

. (5)

Relaxation: Since we have sum of exponentials in the like-

lihood formulation, the ratio in equation (5) may have a

scaling issue. This leads to adverse effects in stochastic op-

timization techniques such as stochastic gradient descent.

Since our feature extractors ΦDs and ΦDt are neural net-

works, this is essential. Therefore, we relax this likelihood

with the use of a modified-Hausdorffian distance. Instead of

optimizing the global distance as in equation (5), we only

minimize the largest distance between the samples of the

same class and maximize the smallest distance between the

samples of different classes. The final loss is,

L̃ = sup
x∈Ds

k

{a|a ∈ d(x, xj)} − inf
x∈Ds

6k

{b|b ∈ d(x, xj)},

for k = yj . (6)

End-to-End Learning: Our feature extractors are two in-

dependent neural networks ΦDs and ΦDt . Pragmatically,

a single network can be shared between the two domains

(ΦDs = ΦDt ) if the input data from the source and tar-

get domains have the same dimensionality. d-SNE allows

the target points to select neighbors from the source do-

main, therefore, the supervision can be transferred from the

source domain to the target domain. Since we have labeled

data from both domains, standard cross-entropy losses can

be used as regularization on top of the domain adaptation

losses to train the networks. Since each domain gets its own

𝒟" Φ𝒟$

𝒟% Φ𝒟&

ℒ()
"

ℒ*

ℒ()
%

Φ𝒟$ (⋅)

Φ𝒟& (⋅)

Φ.𝒟& ℒ(
Φ. 𝒟& (⋅)

𝒟%/

Figure 3: The learning setup. The segment in the bottom in

lighter shade and dotted lines is the semi-supervised exten-

sion.

cross-entropy, we create a multi-task setup to learn these

networks in parallel. Our learning formulation is therefore

defined by,

argmin
ws,wd

L̃+ αLs
ce + βLt

ce (7)

Although we have one minimization form, we divide them

for each network, since the weight updates can be con-

ducted independently. Figure 3 illustrates our setup.

Semi-supervised Extension: As was already discussed in

the introduction section, having access to unlabeled data

helps boost performance. d-SNE can be extended easily

to accommodate unlabeled data. This extends our proposal

into a semi-supervised setting. This is illustrated in the bot-

tom row of figure 3. Suppose that the unlabeled data from

the target domain is represented as Dt
u. We train an unsuper-

vised network Φ̂Dt
u

, parameterized by ŵt to produce an em-

bedding for the unsupervised image in the latent space. Us-

ing a technique similar to the Mean-Teacher network tech-

nique proposed by Tarvainen et al., [26]. We use a consis-

tency loss Lc across Φ̂Dt
u

and ΦDt , by taking an L2 error

between the embeddings.

In particular, the source and target networks are first

trained as equation (7). The unlabeled data Dt
u from the tar-

get domain are then used to train the Mean-Teacher model,

where new network networks are initialized with the trained

target network Φ̂Dt → ΦDt . To generate inputs for both

networks, stochastic augmentations, such as flipping, crop-

ping, color jittering, are used to create two sibling samples.

Since these are two variants of the same sample and belong

to the same class, the consistency loss is an error of the

embedding. The weights of Φ̂Dt
u

network are updated by

back-propagating the consistency loss. Instead of sharing

weights, the weights of ΦDt are updated with an exponen-

tial moving average of the network weights of Φ̂Dt
u

.
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Figure 4: Samples from the datasets used.

4. Experiments and Results

To demonstrate the efficiency of d-SNE, three sets of ex-

periments were conducted using three kinds of datasets: (i)

digits datasets [18]: four datasets are included as different

domains in the digits datasets. MNIST contains 28 × 28
grayscale images with 70,000 images overall. MNIST-M

is a synthetic dataset generated from MNIST by superim-

posing random backgrounds. USPS consists of 16 × 16
grayscale images, with 9,298 images overall. SVHN con-

tains RGB photographs of house numbers, with 99,280 im-

ages. (ii) office datasets [22]: three sets are included in the

office domains. These images are of the same objects but

are collected from different sources. Specifically, Office-31

A has 2,817 images, which is collected from the Amazon

website; 498 images in office-31 D are captured by DSLR

camera and 795 images in office-31 W are captured by web

camera. (iii) VisDA-C dataset [7]: two synthetic and real

image domains are included in VisDA-C dataset. 152,397

synthetic images are rendered using 3D CAD models as the

source domain while the target domain consists of real im-

ages. Figure 4 shows samples from the datasets used.

4.1. Digit Datasets

The first set of experiments adapts the domains of digit

datasets. In the first experiment, the domains considered

are MNIST and USPS. A total of 2, 000 samples in MNIST

are randomly selected for the source domain. A small num-

ber of samples per-class ranging from 1 to 7 were randomly

selected from the target domain for training. The inputs

|Dt
k|, ∀k 0 1 3 5 7

CCSA [16] 65.40 85.00 90.10 92.40 92.90
FADA [15] 65.40 89.10 91.90 93.40 94.40

d-SNE 73.01 92.90 93.55 95.13 96.13

Table 1: MNIST → USPS datasets. |Dt
k|, ∀k is essentially

number of samples per-class from the target domain. As can

be seen, d-SNE is clearly able to outperform the states-of-

the-art in all scenarios. As the cardinality of the samples

per-class increases, the performance across the algorithms

converge.

from the source and target domains have the same dimen-

sionalities, Φs
D = Φt

D. The states-of-the-art that we use as

benchmarks for this experiments are CCSA [16] and FADA

[15]. We use the same network architecture as them. Ta-

ble 1 shows the overall classification accuracies for adapta-

tion from MNIST to USPS datasets. As can be seen that the

proposed method outperforms both CCSA and FADA in all

the cases even in the one-shot learning case. For the non-

adaptation baseline (|Dt
k| = 0), it can be noticed that our

implementation achieved a higher accuracy than CCSA and

FADA. We attribute this to a better hyperparameter tuning.

For the other four cases, we were unable to out-tune their

parameters both with our and their own implementations.

Therefore, we consider their reported numbers as the best

for CCSA [16] and FADA [15].

In the second experiment, we used four datasets in-

cluding MNIST, USPS, MNIST-M, and SVHN to create

five domain adaptation experiments: MNIST → MNIST-M,

MNIST ↔ USPS, and MNIST ↔ SVHN. Several states-of-

the-art algorithms including, the ones from before use this

setup, therefore enabling us to do a lot of comparisons. It is

to be noted that some of the benchmarks are unsupervised,

wherein the algorithm uses all of the images in an unlabeled

fashion, while the supervised algorithms only use 10 images

per-class in the target domain. We use the same network ar-

chitecture as Wen et al., [32]. The overall classification ac-

curacies are shown in Table 2. Compared to the other super-

vised benchmarks, d-SNE outperforms the states-of-the-art

in all experiments. We observed that all supervised meth-

ods in general achieved lower accuracies than unsupervised

methods in domain pairs MNIST → MNIST-M and SVHN

→ MNIST. In experiments of MNIST↔ USPS, d-SNE can

achieve higher accuracies than even unsupervised methods.

MNIST and USPS datasets has relatively lower intra-class

variance compared to MNIST-M and SVHN, which we at-

tribute to these results. Even though the comparison to un-

supervised setting is unfair, we can clearly note that the

semi-supervised setting of d-SNE pushed our supervised

performance closer. The methods that outperform us are
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