
Beyond Tracking:

Selecting Memory and Refining Poses for Deep Visual Odometry

Fei Xue1,3, Xin Wang1,3, Shunkai Li1,3, Qiuyuan Wang1,3, Junqiu Wang2, and Hongbin Zha1,3

1Key Laboratory of Machine Perception (MOE), School of EECS, Peking University
2Beijing Changcheng Aviation Measurement and Control Institute, AVIC

3PKU-SenseTime Machine Vision Joint Lab
{feixue, xinwang cis, lishunkai, wangqiuyuan}@pku.edu.cn

jerywangjq@foxmail.com, zha@cis.pku.edu.cn

Abstract

Most previous learning-based visual odometry (VO)

methods take VO as a pure tracking problem. In contrast,

we present a VO framework by incorporating two additional

components called Memory and Refining. The Memory

component preserves global information by employing an

adaptive and efficient selection strategy. The Refining com-

ponent ameliorates previous results with the contexts stored

in the Memory by adopting a spatial-temporal attention

mechanism for feature distilling. Experiments on the KITTI

and TUM-RGBD benchmark datasets demonstrate that our

method outperforms state-of-the-art learning-based meth-

ods by a large margin and produces competitive results

against classic monocular VO approaches. Especially, our

model achieves outstanding performance in challenging

scenarios such as texture-less regions and abrupt motions,

where classic VO algorithms tend to fail.

1. Introduction

Visual Odometry (VO) and Visual Simultaneous Local-

ization And Mapping (V-SLAM) estimate camera poses

from image sequences by exploiting the consistency be-

tween consecutive frames. As an essential task in au-

tonomous driving and robotics, VO has been studied for

decades and many outstanding algorithms have been devel-

oped [7, 8, 10, 20, 30]. Recently, as Convolutional Neural

Networks (CNNs) and Recurrent Neural Networks (RNNs)

achieve impressive performance in many computer vision

tasks [4,6,12,34], a number of end-to-end models have been

proposed for VO estimation. These methods either learn

depth and ego-motion jointly with CNNs [16,19,36,37,39],

or leverage RNNs to introduce temporal information [14,

0

2

t-1

t

,

, −

Figure 1. Overview of our framework. Compared with existing

learning-based methods which formulate VO task as a pure track-

ing problem, we introduce two useful components called Memory

and Refining. The Memory module preserves longer time informa-

tion by adopting an adaptive context selection strategy. The Refin-

ing module ameliorates previous outputs by employing a spatial-

temporal feature reorganization mechanism.

22, 31–33]. Due to the high dimensionality of depth maps,

the number of frames is commonly limited to no more than

5. Although temporal information is aggregated through re-

current units, RNNs are incapable of remembering previous

observations for long time [27], leading to the limited usage

of historical information. Besides, the above methods pay

little attention to the significance of incoming observations

for refining previous results, which is crucial for VO tasks.

Direct estimation of camera motions from image snip-

pets is prone to large errors due to the geometric uncertainty

caused by small baselines (especially for handheld devices).

Consequently, error accumulation is getting increasingly se-

vere over time, as global poses are integrated from frame-

wise poses. In classic VO/SLAM systems [20], a local map

18575

is established according to the co-visibility graph over up

to hundreds of frames, on which bundle adjustment is ex-

ecuted to jointly optimize all corresponding poses. There-

fore, both previous and new observations are incorporated

for optimization, and accumulated errors are thus alleviated.

Inspired by classic VO/SLAM systems [7, 20], we in-

troduce an effective component, called Memory, which ex-

plicitly preserves the accumulated information adaptively.

Owing to the high sample frequency, contents between con-

secutive frames are much overlapped. Rather than keep-

ing accumulated information per time step with brute force,

an intuitive and efficient strategy is utilized to reduce the

redundancy. As errors of previous poses will propagate

over time to current estimation, refining previous results be-

comes necessary. The Memory contains more global infor-

mation, which can be leveraged naturally to refine previous

results. Therefore, a Refining component is introduced. The

Refining module takes the global pose estimation as a regis-

tration problem by aligning each view with the Memory. A

spatial-temporal attention mechanism is applied to the con-

texts stored in the Memory for feature selection.

The overview of our framework is illustrated in Fig. 1.

The encoder encodes paired images into high-level fea-

tures. The Tracking module accepts sequential features as

input, fuses current observation into accumulated informa-

tion using convolution LSTMs [25] for preserving spatial

connections, and produces relative poses. Hidden states of

the Tracking RNN are adaptively preserved in the Memory

slots. The Refining module ameliorates previous results us-

ing another convolutional LSTM, enabling refined results

passing through recurrent units to improve the following

outputs. Our contributions can be summarized as follows:

• We propose a novel end-to-end VO framework consist-

ing of the Tracking, Memory and Refining components;

• An adaptive and efficient strategy is adopted for the

Memory component to preserve accumulated informa-

tion;

• A spatial-temporal attention mechanism is employed

for the Refining component to distill valuable features.

Our method outperforms state-of-the-art learning-based

methods and produces competitive results against classic al-

gorithms. Additionally, it works well in challenging condi-

tions where classic algorithms tend to fail due to insuffi-

cient textures or abrupt motions. The rest of this paper is

organized as follows. In Sec. 2, related works on monoc-

ular odometry are discussed. In Sec. 3, our architecture is

described in detail. The performance of the proposed ap-

proach is compared with current state-of-the-art methods in

Sec. 4. We conclude the paper in Sec. 5.

2. Related Works

Visual odometry has been studied for decades, and many

excellent approaches have been proposed. Traditionally,

VO is tackled by minimizing geometric reprojection

errors [10, 18, 20] or photometric errors [7, 8, 30]. These

methods mostly work in regular environments, but will

fail in challenging scenarios such as textureless scenes or

abrupt motions. After the advent of CNNs and RNNs, the

VO task has been explored with deep learning techniques.

A number of approaches have been proposed to deal with

the challenges in classic monocular VO/SLAM systems

such as feature detection [1], depth initialization [28, 34],

scale correction [35], depth representation [2] and data

association [3, 17]. Despite their promising performance,

they utilize the classic framework as backend, and thus

cannot been deployed in an end-to-end fashion. In this

paper, we mainly focus on learning-based end-to-end

monocular VO works.

Unsupervised methods Mimicking the conventional struc-

ture from motion, SfmLearner [39] learns the single view

depth and ego-motion from monocular image snippets us-

ing photometric errors as supervisory signals. Following the

same scenario, Vid2Depth [19] adopts a differential ICP (It-

erative Closest Point) loss executed on estimated 3D point

clouds to enforce the consistency of predicted depth maps of

two consecutive frames. GeoNet [36] estimates the depth,

optical flow and ego-motion jointly from monocular views.

To cope with the scale ambiguity of motions recovered from

monocular image sequences, Depth-VO-Feat [37] and Un-

DeepVO [16] extend the work of SfmLearner to accept

stereo image pairs as input and recover the absolute scale

with the known baseline.

Although these unsupervised methods break the limi-

tation of requiring massive labeled data for training, only

a limited number of consecutive frames can be processed

in a sequence due to the fragility of photometric losses,

leading to high geometric uncertainty and severe error

accumulation.

Supervised methods DeMoN [29] jointly estimates the

depth and camera poses in an end-to-end fashion by for-

mulating structure from motion as a supervised learning

problem. DeepTAM [38] extends DTAM [21] via two in-

dividual subnetworks indicating tracking and mapping for

the pose and depth estimation respectively. Both DeMoN

and DeepTAM achieve promising results, yet require highly

labeled data (depth, optical flow and camera pose) for train-

ing. MapNet [12] presents an allocentric spatial memory

for localization, but only discrete directions and positions

can be obtained in synthetic environments.

VO can be formulated as a sequential learning prob-

lem via RNNs. DeepVO [31] harnesses the LSTM [13] to

28576

introduce historical knowledge for current relative motion

prediction. Based on DeepVO, ESP-VO [32] infers poses

and uncertainties in a unified framework. GFS-VO [33]

considers the discriminability of features to different mo-

tion patterns and estimates the rotation and translation sep-

arately with a dual-branch LSTM. In addition, the ConvL-

STM unit [25] is adopted to retain the spatial connections

of features. There are some other works focusing on reduc-

ing localization errors by imposing constraints of relative

poses [4, 14, 22].

Geometric uncertainty can be partially reduced by aggre-

gating more temporal information using RNNs or LSTMs.

Unfortunately, RNNs or LSTMs are limited for remember-

ing long historical knowledge [27]. Here, we extend the

field of view by adaptively preserving hidden states of re-

current units as memories. Therefore, previous valuable in-

formation can be inherited longer than being kept in only

the single current hidden state. Besides, all these methods

ignore the importance of new observations for refining pre-

vious poses, which is essential for VO tasks. By incorporat-

ing the Refining module, previous poses can be updated by

aligning filtered features with the Memory. Therefore, error

accumulation is further mitigated.

3. Approach

The encoder extracts high-level features from consecu-

tive RGB images in Sec. 3.1. The Tracking module accepts

sequential features as input, aggregates temporal informa-

tion, and produces relative poses in Sec. 3.2. Hidden states

of the Tracking RNN are adaptively selected to construct

the Memory (Sec. 3.3) for further Refining previous results

in Sec. 3.4. We design the loss function considering both

relative and absolute pose errors in Sec. 3.5.

3.1. Encoder

We harness CNNs to encode images into high-level fea-

tures. Optical flow has been proved useful for estimat-

ing frame-to-frame ego-motion by lots of current works

[22,31–33,38]. We design the encoder based on the Flownet

[6] which predicts optical flow between two images. The

encoder retains the first 9 convolutional layers of Flownet

encoding a pair of images, concatenated along RGB chan-

nels, into a 1024-channel 2D feature-map. The process can

be described as:

Xt = F(It−1, It) . (1)

Xt ∈ R
C×H×W denotes the encoded feature-map at time

t by function F from two consecutive images It−1 and It.

H , W and C represent the height, width and channel of

obtained feature maps.

Encoder

ConvLSTM

SE3 layer

, , − , − , −
Figure 2. The Tracking module of our framework is implemented

on a convolutional LSTM [25]. Relative camera poses are pro-

duced by the SE (3) layer [5] from the outputs of recurrent units.

Temporal information is preserved in the hidden states.

3.2. Tracking

The Tracking module fuses current observations into ac-

cumulated information and calculates relative camera mo-

tions between two consecutive views as shown in Fig. 2.

Sequence modeling We adopt the prevent LSTM [13]

to model the image sequence. In this case, the feature flow

passing through recurrent units carries rich accumulated in-

formation of previous inputs to infer the current output.

Note that the standard LSTM unit used by DeepVO [31]

and ESP-VO [32] requires 1D vector as input in which the

spatial structure of features is ignored. The ConvLSTM

unit [25], an extension of LSTM with convolution under-

neath, is adopted in the Tracking RNN for preserving the

spatial formulation of visual cues and expanding the ca-

pacity of recurrent units for remembering more knowledge.

The recurrent process can be controlled by

Ot, Ht = U(Xt, Ht−1) . (2)

Ot denotes the output at time t. Ht and Ht−1 are the hidden

states at current and the last time step.

Relative pose estimation Relative motions can be di-

rectly recovered from paired images. Unfortunately, direct

estimation is prone to error accumulation due to the geo-

metric uncertainty brought by short baselines. The problem

can be mitigated by introducing more historical informa-

tion. Inheriting accumulated knowledge, the output of re-

current unit at each time step is naturally used for pose es-

timation. The SE (3) [5] layer generates the 6-DoF motion

Pt,t−1 from the output at time t.

Theoretically, the global pose of each view can be re-

covered by integrating predicted relative poses as Pt =∏t

i=1 Pi,i−1P0 (P0 denotes the origin pose of the world co-

ordinate) just as DeepVO [31] and ESP-VO [32]. The ac-

cumulated error, however, will get increasingly severe, and

38577

1
′

2
′

2
′ ′ ′

1 2

(a)

−1

1 2

…

′

′

(b)

Figure 3. (a) The Refining module aligns current observation with

the contexts stored in the Memory module for absolute pose es-

timation. (b) Both contexts and the current observation are re-

organized utilizing the last output as guidance.

thus degrades the performance of the entire system. Due

to the lack of explicit geometric representation of the 3D

environments, neural networks, however, are incapable of

building a global map to assist tracking. Fortunately, the

temporal information is recorded in the hidden states of re-

current units. Although the information is short-time, these

hidden states at different time points can be gathered and re-

organized as parts of an implicit map (discussed in Sec. 3.3).

3.3. Remembering

The Memory module is a neural analogue of the local

map commonly used in classic VO/SLAM systems [20].

Considering the LSTM cannot remember information for

long time [27], we explicitly store hidden states of recur-

rent units at different time points to extend the time span.

A vanilla choice is to take each time step into account

via storing all hidden states over the whole sequence as

M = {m1,m2, ...,mN−1,mN}, where mi denotes the ith

hidden state in the sequence, and N is the size of the mem-

ory buffer. Since contents of two consecutive images are

much overlapped, it’s redundant to remember each hidden

state. Instead, only key states are selected. As the difference

between two frames coincides with the poses, we utilize the

motion distance as a metric to decide if current hidden state

should be stored.

Specifically, the current hidden state would not be put

into the Memory, unless the parallax between the current

and the latest view in the slot is large enough. Here, the

rotational and translational distances are utilized:

||Rotmi
−Rotmi−1

||2 ≥ θRot , (3)

||Transmi
− Transmi−1

||2 ≥ θTrans . (4)

This strategy guarantees both the co-visibility of different

views and the existence of global information. As both pre-

vious and new observations are gathered, the Memory can

be used to optimize previous poses.

0

0
′ ′

′

−1
…

…

(a)

× 1 × 1

′

−1

(b)

Figure 4. Extracting features from Memory using the last output as

guidance. We consider the correlation of both each context stored

in the Memory in (a) and every channel of the context in (b).

3.4. Refining

Once the Memory is constructed, the Refining module

estimates the absolute pose of each view by aligning corre-

sponding observation with the Memory, as shown in Fig. 3.

We adopt another recurrent branch using ConvLSTM, en-

abling previously refined outputs passing through recurrent

units to improve the next estimation, as:

OA
t , H

A
t = UA(XA

t , HA
t−1) . (5)

XA
t , OA

t and HA
t are the input, output and hidden state at

time t. HA
t−1 denotes the hidden state at time t−1. The UA

indicates the recurrent branch for the Absolute pose estima-

tion. All these variables are 3D tensors to be discussed in

the following sections.

Spatial-temporal attention Although all observations

are fused and distributed in N hidden states, each hidden

state stored in the Memory contributes discriminatively to

different views. In order to distinguish related information,

an attention mechanism is adopted. We utilize the last out-

put OA
t−1 as guidance, since motions between two consecu-

tive views in a sequence are very small.

In specific, we generate selected memories M
′

t for cur-

rent view t with the function G as:

M
′

t = G(OA
t−1,M) . (6)

The temporal attention aims to re-weight elements in

the Memory considering the contribution of each mi to the

pose estimation of specific views. Therefore, as shown in

Fig. 4(a), M
′

t can be defined as the linear averaging of all el-

ements in M as M
′

t =
∑N

i=1 αimi. The αi =
exp(wi)∑

N

k=1
exp(wi)

denotes the normalized weight. The wi = S(OA
t−1,mi)

is the weight computed according to the cosine similarity

function denoted as S.

As all elements in the Memory are formulated as 3D ten-

sors, spatial connections are retained. In this framework,

we focus on not only which element in the Memory plays a

48578

more important role but also where each element influences

the final results more significantly. We try to find corre-

sponding co-visible contents at the feature level. Hence, we

extend the attention mechanism from the temporal domain

to the spatial-temporal domain incorporating an additional

channel favored feature attention mechanism. Feature-map

of each channel is taken as a unit and re-weighted for each

view according to the last output. As shown in Fig. 4(b), the

process is described as:

M
′

t =

N∑

i=1

αiC(βi1mi1, βi2mi2, ..., βiCmiC) . (7)

The mij ∈ R
H×W denotes the jth channel of the ith el-

ement in the Memory. The βij is the normalized weight

defined on the correlation between the jth channel of Ot−1

and mi. C concatenates all reweighted feature maps along

the channel dimension. We calculate the cosine similarity

between two vectorized feature-maps to assign the correla-

tion weights.

Absolute pose estimation The guidance is also executed

on the observations encoded as high-level features to dis-

till related visual cues, denoted as X
′

t . Both reorganized

memories and observations are stacked along channels and

passed through two convolutional layers with kernel size of

3 for fusion. The fused feature denoted as XA
t is the final in-

put to be fed into convolutional recurrent units. Then the SE

(3) layer calculates the absolute pose from the output OA
t .

Note that, through recurrent units, the hidden state prop-

agating refined results to next time point further improves

the following prediction.

3.5. Loss Function

Our model learns relative and absolute poses in the

Tracking and Refining modules separately. Therefore, con-

sisting of both relative and absolute pose errors, the loss

functions are defined as:

Llocal =
1

t

t∑

i=1

||p̂i−1,i − pi−1,i||2 + k||φ̂i−1,i − φi−1,i||2,

(8)

Lglobal =

t∑

i=1

1

i
(||p̂0,i − p0,i||2 + k||φ̂0,i − φ0,i||2), (9)

Ltotal = Llocal + Lglobal, (10)

where p̂i−1,i,pi−1,i, φ̂i−1,i, and φi−1,i respectively repre-

sent the predicted and ground-truth relative translations and

rotations in three directions; p̂0,i,p0,i, φ̂0,i, and φ0,i rep-

resent the predicted and ground-truth absolute translations

and rotations. Llocal,Lglobal and Ltotal denote the local,

global, and total losses respectively. t is the current frame

index in a sequence. k is a fixed parameter for balancing the

rotational and translational errors.

4. Experiments

We first discuss the implementation details of our frame-

work in Sec. 4.1. Next, we compare our method with state-

of-the-art approaches on the KITTI [9] and TUM-RGBD

[26] datasets in Sec. 4.2 and Sec. 4.3, respectively. Finally,

an ablation study is performed in Sec. 4.4.

4.1. Implementation

Training Our network takes monocular RGB image se-

quences as input. The image size can be arbitrary because

our model has no requirement of compressing features into

vectors as DeepVO [31] and ESP-VO [32]. We use 11 con-

secutive images to construct a sequence, yet our model can

accept dynamic lengths of inputs. The parameter k is set to

100 and 1 for the KITTI and TUM-RGBD dataset. The θRot

and θTrans are set to 0.005 (rad) and 0.6 (m) for the KITTI

dataset. While for the TUM-RGBD dataset, the values are

0.01 (rad) and 0.01 (m). The buffer size N is initialized

with the sequence length, yet the buffer can be used without

being fully occupied.

Network The encoder is pretrained on the FlyingChairs

dataset [6], while other parts of the network are initialized

with MSRA [11]. Our model is implemented by PyTorch

[23] on an NVIDIA 1080Ti GPU. Adam [15] with β1 =
0.9, β2 = 0.99 is used as the optimizer. The network is

trained with a batch size of 4, a weight decay of 4 × 10−4

for 150,000 iterations in total. The initial learning rate is set

to 10−4 and reduced by half every 60,000 iterations.

4.2. Results on the KITTI Dataset

The KITTI dataset [9], one of the most influential out-

door VO/SLAM benchmark datasets, is widely used in both

classic [10, 20] and learning-based works [16, 19, 31, 32,

36, 37, 39]. It consists of 22 sequences captured in urban

and highway environments at a relatively low sample fre-

quency (10 fps) at the speed up to 90km/h. Seq 00-10

provide raw data with ground-truth represented as 6-DoF

motion parameters considering the complicated urban envi-

ronments, while Seq 11-21 provide only raw data. In our

experiments, the left RGB images are resized to 1280 x 384

for training and testing. We adopt the same train/test split

as DeepVO [31] and GFS-VO [33] by using Seq 00, 02, 08,

09 for training and Seq 03, 04, 05, 06, 07, 10 for evaluation.

Baseline methods The learning-based baselines include

supervised approaches such as DeepVO [31], ESP-VO

[32], GFS-VO [33], and unsupervised approaches such

as SfmLearner [39], Depth-VO-Feat [37], GeoNet [36],

Vid2Depth [19] and UndeepVO [16]. Monocular VISO2

[10] (VISO2-M) and ORB-SLAM2 [20] are used as clas-

sic baselines. The error metrics, i.e., averaged Root Mean

Square Errors (RMSE) of the translational and rotational

errors, are adopted for all the test sequences of the lengths

ranging from 100, 200 to 800 meters.

58579

