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Abstract

This paper presents a new deep-learning based method

to simultaneously calibrate the intrinsic parameters of fish-

eye lens and rectify the distorted images. Assuming that

the distorted lines generated by fisheye projection should be

straight after rectification, we propose a novel deep neu-

ral network to impose explicit geometry constraints onto

processes of the fisheye lens calibration and the distorted

image rectification. In addition, considering the nonlinear-

ity of distortion distribution in fisheye images, the proposed

network fully exploits multi-scale perception to equalize

the rectification effects on the whole image. To train and

evaluate the proposed model, we also create a new large-

scale dataset labeled with corresponding distortion param-

eters and well-annotated distorted lines. Compared with the

state-of-the-art methods, our model achieves the best pub-

lished rectification quality and the most accurate estimation

of distortion parameters on a large set of synthetic and real

fisheye images.

1. Introduction

Fisheye cameras have been widely used in many com-

puter vision tasks [31, 34, 9, 16, 2] because of their large

field of view (FOV), however, the images taken by fisheye

cameras always suffer from severe geometric distortion si-

multaneously. When processing the geometric toward vi-

sion systems equipped with fisheye lens, calibrating the in-

trinsic parameters is usually the first step we should do to

rectify the distorted images.

1.1. Motivation and Objective

Early work viewed the calibration of fisheye cameras

as an optimization problem by fitting the relationship be-

tween 2D/3D calibration patterns from images with differ-

ent viewpoints [19, 14, 30, 28]. But these methods usually

demand pre-prepared calibration patterns and extra manual

operations, and even often involve heavy off-line estima-

tions, which seriously limit their usage scenarios in real ap-

plications. To overcome these limitations and toward an au-
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Figure 1. Learning to calibrate straight lines for fisheye image rec-

tification. 1st-Row: original fisheye images overlaid by detected

distorted lines which should be straight after calibration; 2
nd-

Row: rectified straight lines; 3rd-Row: rectified image.

tomatic self-calibration solution, subsequent investigations

were proposed to detect geometric objects (e.g., conics and

lines) from a single image and further exploit their corre-

spondences in 3D world [13, 36, 4, 22, 12, 1]. These ap-

proaches have reported promising performances on fisheye

camera calibrations only when specified geometric objects

in fisheye images can be accurately detected. Nevertheless,

it is worth noticing that the involved detection of geometric

objects in fisheye images itself is another challenging prob-

lem in computer vision. Recently, alternative approaches

have been proposed based on deep convolutional neural net-

works (CNNs) [27, 35]. Avoiding the difficult to directly

detect the geometric objects, these methods tried to learn

more discriminative visual features with CNNs to rectify the

distorted image. Although aforementioned methods have

reported the state-of-the-art performances on fisheye image

rectifications, as well as avert the difficulties of detecting

geometric objects, the geometry characteristics in fisheye

calibration task are not fully exploited using CNNs.

Regardless of the difficulties to detect geometric objects

in fisheye images, one should observe that the explicit scene

geometries are still the strong constrains to rectify distorted

images. It is of great interest to investigate how to apply the

fundamental geometric property under the pinhole camera
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model, i.e., the projection of straight line from space to the

camera should be a line [13], to fisheye image calibration

networks. As shown in Fig. 1, we propose a a novel net-

works which further exploit this explicit scene geometries,

aiming at solving the challenges of fisheye camera calibra-

tion and image rectification by a deep neural network simul-

taneously.

1.2. Overview of Our Method

The above-mentioned challenges motivate following two

issues: (1) how to design a powful CNNs to explicitly de-

pict the scene geometry in fisheye images. (2) how to train

a deep network effectively and efficiently using geometric

information. To address these problems, we propose to first

train a neural network to detect distorted lines that should

be straight after being rectified in fisheye images , and then

feed these detected distorted lines into another deep sub-

network to recover the distortion parameters of fisheye cam-

era. As shown in Fig. 2, our network includes three main

modules as follows:

• Module for detecting distorted straight lines. This

module is designed to extract distorted lines in the

given input fisheye image, which are supposed to be

straight in an expected rectified image. Some exam-

ples of detected distorted lines are displayed in the first

row of Fig. 1.

• Module for recovering the distortion parameters.

Fed with detected distorted lines and the original fish-

eye image, this module attempts to recover the dis-

tortion parameters of the fisheye lens. In particular,

multi-scale perceptron is desined to eliminate the non-

linearity of distortion distribution in fish-eye images by

combining both the local and global learning.

• Rectification module. This differentiable rectifica-

tion module serves as a connector between distortion

parameters and geometric constraint. As shown the

second row in Fig. 1, the line map without distortion

which are rectified from the distorted lines in the first

row are displayed.

These three modules are trained by minimizing the loss

function composed of three terms: a multi-scale constraint

of global and local perception on distortion parameters, as

well as a curvature constraint on detected distorted lines.

Since all of the calibration and rectification steps are mod-

eled with one deep neural network, it is naturally to train

it in an end-to-end manner. To get a better performance of

proposed network, well-annotations of distorted lines and

distortion parameters are required for every fisheye image

during the training phase. Thus, we create a new synthetic

dataset for the fisheye lens calibration by converting the

wireframe dataset [17] to distorted Wireframe collections

(D-Wireframe) and the 3D model repository [29] to fish-

eye SUNCG collections (Fish-SUNCG). In detail, the D-

wireframe collections is created by distorting the perspec-

tive images with randomly generated distortion parameters,

and the Fish-SUNCG collections is built by rendering the

formation of real fisheye lens in 3D virtual scenarios.

1.3. Related Work

In the past decades, many researches have been devot-

ing themselves to fisheye calibration and distortion correc-

tion studies. Earlier works attempted to estimate the dis-

tortion parameters by correlating the detected 2D/3D fea-

tures in specific calibration field [19, 14, 30, 28, 3, 5, 32].

However, it is costly to build such calibration fields of

large-scale and high-precision as well as it usually turns to

be laborious and time-consuming to manually label every

calibration pattern. By contrast, self-calibration methods

which rely on structural information detected in distorted

images [13, 36, 5, 22, 12, 1, 25] require less manual work

and are more efficient. Devernay et al. [13] proposed that

the straight line segments in the real world should maintain

their line property even after the projection of fisheye lens.

Along this axis, Bukhari et al. [12] recently proposed to use

an extended Hough Transform of lines to correct radial dis-

tortions. With similar assumption, the ‘plumb-lines’ have

used to rectify fisheye distortions [36, 22, 1] . However,

their correction effects are limited by the accuracy of geo-

metric object detecting results. Our work in this paper also

follows the same assumption as suggested in [13], while we

propose a deep convolutional neural network to handle the

aforementioned problems and generate a more accurate re-

sult of distorted lines extraction in fisheye images.

To mitigate the difficulty of detecting geometric objects

in distorted images, the deep learning methods were pro-

posed [27, 35] which imposed the representational features

learned by CNNs to the processes of fisheye calibration and

image rectification. Among them, the FishEyeRecNet [35]

proposed an end-to-end CNNs which introduce scene pars-

ing semantic into the rectification of fisheye images. It has

reported promising results, but it is still not clear which kind

of high-level geometric information learned from their net-

works are important for fisheye image rectification. More-

over, The works [36, 22, 1] explicit geometry like ‘plumb-

lines’ are very efficient for distortion corrections, but how

to encode them with CNNs in an effective way is still an

open problem.

Another topic closely related to our work is distorted

lines extraction in fisheye images. Various arc detection

methods and optimizing strategies have been utilized in the

calibrating process [11, 7, 12, 1, 36], but they are not robust

to detect arcs especially in the environments with noises or

texture absence. Although recent deep learning based meth-

ods [33, 21, 8, 18, 26] show a promising performance on

edge detection, none of them is well qualified to deal with

ditorted lines in fisheye images.

1.4. Our Contributions

In this paper, we propose a novel end-to-end network

to calibrate fisheye lens and rectify distorted images si-
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Figure 2. Architecture of the overall system. The whole network architecture consists of three parts: line-guided parameter estimation

module (LPE), distorted line segments perception module (DLP), and a rectification layer. DLP could detect the map of curves which

should be straight line in rectified image, and take the ouput from DLP and RGB fisheye image into the LPE to estimate the global and

local fisheye distortion parameters. The distortion parameters are used in rectification layer to implement the curvature constraint.

multaneously with further exploit of geometric constraints.

Specifically, we make the following three contributions:

• We proposed an end-to-end CNNs to impose explicit

geometry constraints onto the process of fisheye lens

calibration and distorted image rectification, which

achieves the state-of-the-art performance.

• Multi-scale perception is designed to balance the non-

linear distribution of distortion effects in fish-eye im-

ages. And more robust distortion parameters obtained

from global and local learning, so as to achieve better

rectification effect.

• We construct a new large-scale fisheye dataset to train

networks and to evaluate the effectiveness and effi-

ciency of fisheye image rectification methods.

2. General Fisheye Camera Model

Given a normal pinhole camera with focal length f ,

the perspective projection model can be written as r =
f tan θ, where r indicates the projection distance between

the principal point and the points in the image, and θ is

the angle between the incident ray and the camera’s optical

axis. While, fisheye lens violates this perspective projec-

tion model [23, 6], and has been often approximated by a

general polynomial projection model [19], i.e.,

r(θ) =
∑n

i=1
kiθ

2i−1, n = 1, 2, 3, 4, . . . (1)

Usually, this model can accurately approximate the image

formation of fisheye lenses when n reaches 5 [19].

Given a 3D scene point Pc := (xc, yc, zc)
T ∈ R

3 in

the camera coordinate system, it will be projected into the

image plane with pd := (xd, yd)
T ∈ R

2 refracted by the

fisheye lens and p := (x, y)T ∈ R
2 through perspective

lens without distortion. The correspondence between pd

and p can be expressed as, pd = r(θ)(cosϕ, sinϕ)T , with

ϕ = arctan ((yd − y)/(xd − x)) indicating the angle be-

tween the ray that connects the projected point and the cen-

ter of image and the x-axis of the image coordinate system.

Assuming that the pixel coordinate system is orthogonal,

we can get pixel coordinates (u, v) converted by image co-

ordinates pd as
(

u

v

)

=

(

mu 0
0 mv

)(

xd

yd

)

+

(

u0

v0

)

(2)

The principal point of fisheye image is represented as

(u0, v0), and mu , mv describe the number of pixels per unit

distance in horizontal and vertical direction respectively.

By using Eq. (2), the distortion effect of fisheye im-

ages can be rectified once we can get the parameters Kd =
(k1, k2, k3, k4, k5,mu,mv, u0, v0). Therefore, we are go-

ing to accurately estimate the parameters Kd for every given

fisheye image and simultaneously eliminate the distortion in

this paper.

3. Deep Calibration and Rectification Model

In this section, we mainly exploit the relationship be-

tween scene geometry of distorted lines and the correspond-

ing distortion parameters of fisheye images by CNNs, and

learn mapping functions from raw input fisheye image to

the the rectified image.

3.1. Network Architecture

As shown in Fig. 2, our network is mainly composed of

distorted lines perception module (DLP) which solves the

problem of distorted lines extraction, line-guided parameter

estimation module (LPE) which provides estimated distor-

tion parameters Kd, as well as rectification module which
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serves as connector between geometry and distortion pa-

rameters. For a RGB fisheye image I with size of H ×W ,

the distorted lines map h ∈ R
H×W could be acquired from

DLP, and then fed the distorted line map h and the original

fisheye image I together into LPE to learn the global and

local parameters through multi-scale perception. And the

rectification module could verify the accuracy of learned

parameters Kd by analyzing whether the lines in rectified

distorted lines map ĥ′ have be straight after being rectified

with Kd. Thereafter, we are able to learn the distortion pa-

rameters and rectified images without distortion in the end-

to-end manner.

Every training data sample for our network contains: (1)

a fisheye image I , (2) the ground truth distortion parameters

K̂gt, (3) the ground truth of distorted lines map ĥ of image

I , (4) the ground truth of the corresponding rectified line

map ĥ′ and (5) the corresponding (rectified) line segments

L = {xi,x
′

i}
K

i=1
of image I , where the xi ∈ R

2 and x′

i ∈
R

2 are two endpoints of a line segment.

Distorted Line Perception Module. Followed by the re-

cent advances of edge and line segment detection [33, 17],

we use the Pyramid Residual Modules (RPM) and Stacked

Hourglass network [24] to learn the distorted line segments

map h ∈ R
H×W from the input images. In details, we

firstly use two RPMs to extract feature maps with size of
H
4
× W

4
× 256 from input image with size of H ×W × 3.

Then, we pass the feature map into 5 stacked hourglass

modules. The resulted features are then upscaled by us-

ing two deconvolution layers to get the feature with size of

H × W × 16. In the end, we use a convolutional layer

with 1 × 1 kernel size to predict the distorted lines map h.

Excepting for the prediction layer, the Batch-Normalization

and ReLU are used for each (de)convolution layer. The tar-

get of line segment map ĥ is defined pixelwised by

ĥ(p) =

{

d(l) if p is (nearly) on l ∈ L,
0 otherwise,

(3)

where the function d(li) is read as d(li) = ‖xi − x′

i‖2. The

resulted map h not only can indicate if a pixel p is passed

through a line segment, the predicted length of rectified line

segment also implicitly contains the information for the dis-

tortion parameters.

Line-guided Parameters Estimation Module. This

module aims at estimating the distortion parameters from

images. As mentioned above, the predicted distorted lines

map could characterize the distortion of fisheye images in

some extent. Based on this, regarding the distorted lines

map h output from DLP module as a geometric guidance

providing high-level structural information to LPE, we con-

catenate it with the input fisheye image together with size

of H × W × 4, as the input of LPE to estimate the mutli-

scale distortion parameters. As shown in Fig. 2, we adopt

the level 1 to 4 of the ResNet-50 [15] as backbone of LPE

module, and design a bifurcated structure with a global and

a local stream respectively to multi-scale perception, con-

sidering the nonlinearity of the distortion distribution in the

domain of fisheye images.

The global stream treats the entire feature map to esti-

mate the distortion parameters with 2 convolutional layers

and 3 fully connected (FC) layers. Before the first FC layer

of the global stream, we use the global average pooling op-

erator to extract the abstracted global information from im-

ages. The last FC layer output a 9-D vector representing the

distortion parameters denoted by Kg .

Because of the nonlinearity of the distortion distribution,

we explicitly use the cropped feature maps from the out-

put of the backbone to estimate the distortion parameters

locally. We divide this sideoutput into five smaller blocks

- the central region with size of 6 × 6 × 1024 and four

5 × 5 × 1024 feature maps of upper left, lower left, upper

right and lower right, and then send these five set of sub-

feature maps into two FC layers and a linear filter separately

to predict the local parameters, denoted by {Kk
loc}

5
k=1. The

parameter settings of these two FC layers are same as those

in global stream, meanwhile the weight of them are shared

across these five set of sub-feature maps. Since the param-

eters mu,mv and u0, v0 are related to the entire image, the

linear filter only reserve the first five distortion parameters

k1, . . . , k5 in the previous output. Each output Kk
loc is thus

a 5D vector.

In training phase, the predicted parameters Kk
loc is used

as a constraint to regularize the prediction of the global

stream. And the output of DLP is the averaged distortion

coefficients of global and local parameters, denoted as Kd.

Rectification Module. In this module, we take the pre-

dicted distortion parameters Kd of LPE module as input to

rectify the input fisheye image and the corresponding dis-

torted line segments map from the DLP module. Suppose

that the pixel coordinate in rectified and fisheye images are

p = (x, y) and pd = (xd, yd), their relationship can be read

pd = T (p,Kd) =

(

u0

v0

)

+
r(θ)p

‖p‖
2

(4)

With the Eq. (4), the distorted lines map and fisheye image

can be rectified by using bilinear interpolation.

The significance of the above rectification layer is to ex-

plicitly bridge the relation between distortion parameters

and geometry structures. The more accurate the estimated

distortion parameters, the distorted lines map will be recti-

fied better.

3.2. Loss Function and Training Scheme

In our network, we can end-to-end output the dis-

torted lines map h, estimated distortion parameters Kg and

Kk
loc, k = 1, . . . , 5 as well as the rectified line segment map

for every input image I . Inspired by the deeply supervised

net [20] and HED [33], we make supervision to the outputs

of each module.
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Loss of Distorted Lines Map Learning. Considering the

fact that distorted line segments are 0-measure geometric

primitives in 2D images, most of pixels for the target ĥ de-

fined in Eq. (3) will be 0. In other words, most of pixels

will not be passed through any distorted line segment. For

the sake of representation simplicity, the pixels not being

on any distorted line segment are collected to the negative

class Ω− and the rest of pixels are collected in the positive

class Ω+, with Ω+ = Ω − Ω−. Then, we weight these two

classes in the loss function as

Lline =
|Ω−|

|Ω|

∑

p∈Ω+

D(p) +
|Ω+|

|Ω|

∑

p∈Ω−

D(p), (5)

where D(p) is defined as D(p) = ‖h(p)− ĥ(p)‖22.

Loss of Distortion Parameter Estimation. In the LPE

module, we try to learn the distortion parameters with a

bifurcate structure, which results the parameters Kg and

{Kk
loc}

5
k=1. Ideally, we want the outputs of LPE module

close to the ground-truth distortion parameters. For the out-

put Kg , we define the loss as

Lg =
1

9

9
∑

i=1

wi(Kgt(i)−Kgt(i))
2, (6)

where the Kg(i) and Kgt(i) are the i-th component of pre-

dicted parameter Kg and the ground truth Kgt. The weight

wi is used to rescale the magnitude between different com-

ponents of distortion parameter. On the other side of the

bifurcate, the loss of parameters estimated by the sub fea-

ture maps are defined as

Lk
loc =

1

5

5
∑

i=1

wi(K
k
loc(i)−Kk

gt(i))
2, (7)

where the Kk
loc(i) is the i-th component of Kk

loc.

Global Curvature Constraint Loss. The Lg and Lloc en-

force the network fit the distortion parameters, however,

only optimizing them is not enough and prone to get stuck

in the local minimums. Meanwhile, the relation between the

parameters and the geometry of distorted line which should

be straight in rectified images provides a stronger constraint

to boost the optimizing. If the distorted line is not com-

pletely corrected to a straight line, the estimated distortion

parameters are not accurate enough, and vice versa. There-

fore, we calculate the pixel-errors between the rectified line

map by estimated parameters Kd output from LPE and the

ground truth of line map as the global curvature constraint

loss Lc:

Lc =
1

N

∑

pd∈Ω+

(F(pd,Kd)−F(pd,Kgt))
2, (8)

where F is the inverse function of T which described in

Eq. (4), and N is the number of pixels that belong to the

distorted line segment.
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Figure 3. Data samples from the distorted wireframe (top) and fish-

eye SUNCG collections (bottom) of our proposed dataset. Every

data sample is shown vertically for the original image and corre-

sponding fisheye image.

Training Scheme. The network training procedure con-

sists of two phases. In the first phase, we train the distorted

line perception module from scratch with the loss function

defined in Eq. (5). Once the DLP module is trained, we fix

their parameters and then learn the distortion parameters in

the second phase. The total loss we used here is defined as

L = λgLg + λloc

5
∑

k=1

Lk
loc + λcLc, (9)

which aims at fitting the parameters and simulating the dis-

tortion effect of fisheye during training. The λg , λloc and

λc used in Eq. (9) are weight parameters to balance the dif-

ferent terms.

4. Synthetic Dataset for Calibration

There still remains a crucial problem for training the

proposed neural network which requires real distortion pa-

rameters as well as well-annotated distorted and rectified

line maps. However, to the best of our knowledge, there

is no such large scale dataset that satisfy all above re-

quirements. Thanks to the recently released wireframe

dataset [16] which has the labeling of straight lines and

the large-scale dataset of 3D scenes SUNCG [29] which

provides diverse semantic 3D scenes, we construct a new

dataset with well-annotated 2D/3D line segments L as well

as the corresponding distortion parameters Kgt for train-

ing. The two subsets of our dataset, the distorted wireframe

collection (D-Wireframe) from wireframe dataset and the

fisheye SUNCG collection (Fish-SUNCG) from 3D model

repository, are described below, as shown in Fig. 3.

Distorted Wireframe Collection (D-Wireframe). For

any image in the wireframes datase proposed by [16]

which contains 5462 normal perspective images marked

with straight line segments, we randomly generate four dif-

ferent sets of distortion parameters Ki to transform this per-

spective image into fisheye image with different distortion
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Figure 4. Generation schematic diagram of Fish-SUNCG. Equip

each camera with perspective lens and fisheye lens respectively.

effects by Eq. (1). Thus, the perspective image and the cor-

responding line segment annotations can be distorted to the

fisheye image with distorted line segments. In summary, we

generate this collection Dwf and split it into training set and

testing set with 20, 000 and 1848 samples respectively.

Fisheye SUNCG Collection (Fish-SUNCG). The D-

wireframe collection could provide benefits in terms of di-

versity and flexibility of fisheye distortion types for the net-

work training. However, artificially distorting the images

which taken by perspective cameras cannot fully character-

ize the fisheye distortion for real scenarios. We address this

problem by simulating the image formation for both per-

spective and fisheye cameras at the same observation posi-

tions from the 3D models of SUNCG [29] which contains

45K different virtual 3D scenes with manually created re-

alistic room and furniture layouts. In details, we use the

Blender [10] to render images by specifying the camera

pose and imaging formation models. The rendering proto-

col is illustrated in Fig. 4. For the line segments generating,

we remove the texture of 3D models to get the wireframe

model of 3D objects. After that, we manually remove the

edges of wireframe manually to get the line segments that

are on the boundary of objects. Since we are able to control

the image formation without metric errors, the data samples

can be used to train our network without loss of informa-

tion. In the end, we generate 6,000 image pairs from 1,000

scenes for training and 300 image pairs from 125 scenes for

testing. This collection is denoted as Dsun.

5. Experiments

5.1. Implementation Details

We follow our training scheme described in the Sec-

tion 3.2. We use the distorted fisheye images and the cor-

responding line segment map of distorted wireframe collect

Dwf for training the DLP module in the first step. After

that, we fix the weights of DLP module and train the rest of

our network by using the Dwf and Dsun together. The size

of input images for our network is set as 320× 320 for both

training and testing phases.

The weight parameters in Eq. (9) are set to as follow for

our experiments: λc = 50, λloc = λg = 1, and the balance

parameters are set to as follow: W = {w1 = 0.1, w2 =
0.1, w3 = 0.5, w4 = 1, w5 = 1, w6 = 0.1, w7 = 0.1, w8 =
0.1, w9 = 0.1}. The optimization method we used for the

training is the stochastic steepest descent method (SGD).

The initial learning rate is set to 0.01, and then decrease it

G
T

D
et

ec
te

d

Figure 5. Distorted lines detection results from DLP. First Row

is ground truth with manual labeling of accurate distorted lines

information. The Second Row is the our detection.

by a multiple of 0.1 after 100 epochs. The network will con-

verge after 300 epochs. And our network is implemented on

the PyTorch platform with a single Titan-X GPU device.

5.2. Evaluation Metrics

Benefiting from the DLP module of our proposed ap-

proach, we are able to compare the effects of eliminating

distortion and the performance on recovering line geometry

by evaluating the rectified distorted lines map ĥ
′

from recti-

fication module and the ground truth image ĥ. What’s more,

the Precision and Recall are redefined to quantitatively eval-

uate the error between ĥ
′

and ĥ. Further, the reprojection

error (RPE) is proposed to evaluate the overall rectification

effects by measuring the pixels deviation between rectified

image and fish image. On the other hand, we also follow

the evaluation metrics used in previous works [27, 35] that

utilize the peak signal to noise ratio (PSNR) and structure

similarity index (SSIM) for evaluating the rectified images.

Precision v.s. Recall. The precision and recall rate of the

line segment map prediction is defined as

Precision = |P ∩G|/|P |, Recall = |P ∩G|/|G|, (10)

where the P is the set of edge pixels on the rectified line

segment map and G is the set of edge pixels in the ground

truth of line segment map without distortion.

PSNR and SSIM. These two metrics are widely used to

describe the degree of pixel blurring and structure distortion

respectively. We use them here for comparing the rectified

fisheye images. In general, the larger the value of PSNR

and SSIM, the better the rectification quality.

Reprejection Error (RPE). This metric is generally used

to quantify the distance between an estimate of a 2D/3D

point and its true projection. So we use the real distortion

parameters Kgt and the estimated ones Kd to rectify the

pixels of fisheye image, and get the projection F(Kgt) and

F(Kd) respectively, where the F is the function representa-

tion of Eq. (8). The mean square error (MSE) of the RPE in

the whole fisheye image is defined by 1

N

∑

pd∈Ω
(F(Kgt)−

F(kd))
2.
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Distorted Lines Bukhari [12] AlemnFlores[1] Rong [27] Ours

Figure 6. Rectify the distorted lines. First column is the detec-

tion results by DLP. Other columns is the rectification results by

different methods.

Figure 7. The precision-recall curves of different rectification

methods for the line map rectification [12, 1, 27].

5.3. Comparison with Stateoftheart Methods

Our network mainly includes distorted lines detection in

DLP and distortion parameters estimation in DPE, aiming

at performing better rectification effects.

For DLP, the highly accurate detection of distorted lines

output from this module is the premise of accurate distortion

parameters learning. As shown in Fig. 5, the detection re-

sults by our method from DLP show excellent performance

as well as close to the ground truth in visual effects. Instead

of directly evaluating the result of distorted line detection,

we jointly evaluate the performance of distorted lines detec-

tion and the accuracy of parameters estimation compared

with existing state-of-the-art methods [12, 1, 27], and the

details will be discussed in the following.

For DPE, the effective use of geometric constraints is

the key to guarantee the rectification effects. According to

previous analysis, the evaluation for the rectified line seg-

ment map can explicitly illustrate the geometric accuracy of

rectification. In other words, if the rectified distorted lines

map still exists curved geometry or has deviation from the

ground truth, it shows that the learned distortion parameters

are not accurate enough. In visual effect, we show the geo-

metric rectification of the distorted lines map which output

from the rectification module intuitively in Fig. 6 to ver-

ify our network actually has the ability of recovering the

straight line characteristics. The results show that the rec-

tified line map through our network is indeed straightened,

while those rectified by other methods are still distorted in

some extent and it proves the validity of the geometric con-

Table 1. Comparisons with the state-of-the-arts, using the PSNR,

SSIM and reprojection error (RPE) calculated on rectified results

obtained by different methods.

Methods Bukhar[12] AlemnFlores[1] Rong[27] Ours

PSNR 9.3391 10.23 12.92 27.61

SSIM 0.1782 0.2587 0.3154 0.8746

RPE 164.7 125.4 121.6 0.4761
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Figure 8. Qualitative rectification comparison on D-Wireframe

dataset and fish-SUNGCG dataset. From left to right, the input

fisheye images, the ground truth, results of three state-of-the-art

methods (Bukhari [12], AlemnFlores [1], Rong [27]), our results.

straint in our network. Further more, we report the preci-

sion and recall curves in Fig. 7 to show the comparison in

quantitative. Obviously, our method is far superior to other

methods [12, 1, 27] in terms of line geometric structure re-

covery, and achieves the best result (F-value =.819).

We also follow the evaluation metrics PSNR, SSIM as

well as reprojection errors (RPE) for qualitative evaluation

of all rectified fisheye images on our test set, as reported in

Tab. 1. From the evaluation results, it demonstrate that no

matter in image rectification or in structure maintenance,

our method is obviously superior to other methods and has

achieved the highest score on PSNR, SSIM as well as RPE.

It is worth mentioning that the reprojection error of the

whole image calculated by our method is within one pixel,

while other methods far behind us. Just for the reason that

the estimated fisheye distortion parameters are highly con-

sistent with the true parameters, our reprojection error can

be controlled in such small range, resulting in the best rec-

tification visual effect.

For the rectification effects in visual effect, we visualize

the rectification effects by our method and start-of-the-art

methods [12, 1, 27] on the test set of D-Wireframe and Fish-

SUNCG collections respectively, as shown in Fig. 8. For the

D-Wireframe, we selected special images of different types

of fisheye distortion, such as typical full-frame fisheye im-

age, full circle fisheye image and drum fisheye image, and

the results show that our method has excellent rectification

effect in visual effects, while other methods can not satisfy

the needs of correcting various distortion effects of fisheye

images. For the Fish-SUNCG, our network also achieves
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Figure 9. Qualitative rectification comparison on fisheye images taken by real fisheye cameras.

Input w/o CVC&MSP w/o CVC w/o MSP only RGB only Line Ours Ground Truth

Figure 10. Ablation experiments to verify effectiveness of the curvature constraint(CVC) and the local perception(LP) of fisheye image.

the best rectification performance and the rectified fisheye

image is more closer to ground truth.

Finally, we add an additional set of comparison experi-

ments to rectify the fisheye image in real world for the gen-

eralization performance of the proposed network, as shown

in Fig. 9. Although we do not have the internal camera pa-

rameters for taking these fisheye images, it demonstrate that

our method has excellent rectification performance even for

real fisheye images from the visual effect and prove that our

network has higher generalization ability.

5.4. Ablation Study

In this section, we mainly analyze the validity of our

network structures involving geometric learning, including

the fourth dimensional input of concatenating the input im-

age and detected distorted lines map in LPE, curvature con-

straint (CVC), as well as multi-scale perception (MSP) for

locally and globally estimating the distortion parameters.

As shown in Fig. 10, once there are lack of CVC or MSP,

the rectification effect of the network will become unstable,

meanwhile problems of over-rectified and under-rectified

will occur, and the network with RGB fisheye image and

one-dimensional line map input performs best in rectifica-

tion performance.

For qualitative evaluation, we evaluated the quality of

rectified images on PSNR, SSIM and RPE, as shown in

Tab. 2. It demonstrates the ability level differences of recti-

fication more intuitively, and proves that CVC, MSP, as well

as the four-dimensional input (RGB+Line) do play critical

roles in our network. According to our analysis, it is prob-

Table 2. Ablation study to evaluate the rectified image quality of

PSNR, SSIM and reprojection error (RPE).

Methods PSNR SSIM RPE

Loss

Strategy

w/o CVC&MSP 13.05 0.4222 78.32

w/o CVC 19.17 0.7074 4.326

w/o MSP 19.78 0.6999 3.175

Input

only RGB 21.35 0.7158 1.872

only Line 22.41 0.7369 1.568

Ours 27.61 0.8746 0.4761

ably that the network learned high-level structural informa-

tion from the distorted lines that boost the effects. In addi-

tion, the worst results in this experiment is still better than

state-of-the-art methods. It also proves the scientificity and

reasonability of our network.

6. Conclusion

In this paper, we proposed a network that utilize line con-

straints to calibrate the fisheye lenses and eliminate the dis-

tortion effects automatically from single image. To train the

network, we reuse the existing datasets that have rich 2D

and 3D geometric information to generate the a synthetic

dataset for fisheye calibration. The proposed method takes

the advantages of geometry aware deep features, curvature

constraints and multi-scale perception blocks to achieve the

best performance compared to the state-of-the-art methods,

both qualitatively and quantitatively.
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