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Abstract

Blind motion deblurring is an important problem that

receives enduring attention in last decade. Based on the

observation that a good intermediate estimate of latent im-

age for estimating motion-blur kernel is not necessarily the

one closest to latent image, edge selection has proven it-

self a very powerful technique for achieving state-of-the-

art performance in blind deblurring. This paper presented

an interpretation of edge selection/reweighting in terms

of variational Bayes inference, and therefore developed a

novel variational expectation maximization (VEM) algo-

rithm with built-in adaptive edge selection for blind deblur-

ring. Together with a restart strategy for avoiding undesired

local convergence, the proposed VEM method not only has

a solid mathematical foundation but also noticeably outper-

formed the state-of-the-art methods on benchmark datasets.

1. Introduction

Motion blurring is a often-often type of image degrada-

tions. When there is a relative motion between the camera

and the scene during exposure time, the resulting image will

look blurry, known as motion blurring in digital photogra-

phy. For example, one common cause of motion blurring

is camera shake during exposure time. The so-called blind

motion deblurring is then about recovering a clear image

with sharp details from an input motion-blurred image.

This paper focuses on uniform motion blurring, i.e., the

motion is nearly constant over the image. Uniform motion

blurring happens when camera translates along image plane

and the scene depth has small variations. Such blurring is

often seen when taking a picture on targeted static object us-

ing mobile phone with 4X zoom or more. Uniform motion

blurring can be modeled as a convolution process:

g = k ⊗ f + n, (1)

where the operator ⊗ denotes the discrete convolution oper-

ator, g denotes the given blurred image, f denotes the latent

clear image, k denotes the unknown blur kernel determined

by the motion, and n denotes noise.

Uniform motion deblurring is then about estimating the

pair (k, f) from (1), which is an ill-posed problem with

many solutions fitting(1) well. For instance, the trivial solu-

tion (δ, g) where δ denotes Delta function. To resolve such

ambiguities, one has to impose certain priors on both kernel

and latent image to constrain the space of feasible solutions.

Such prior can be invoked either in the form of regularized

variational models or in Bayesian framework, and they of-

ten come to the same solution. For example, an Maximum

a posteriori (MAP) estimator is to find the maximum of

p(f, k|g) ∝ p(g|f, k)p(f)p(k),

where p(g|f, k) is likelihood function, and p(f), p(k) are

statistical priors of f and p. After applying a negative log,

such an MAP estimator is equivalent to minimize the fol-

lowing regularized variational model:

min
f,k

Φ(g − f ⊗ k) + Ψ1(f) + Ψ2(k). (2)

where Φ(·) is fidelity term, and Ψ1(·),Ψ2(·) regularize

clear image and kernel. For example, one empirical statis-

tics of natural images models image gradients as the sam-

ples drawn from i.i.d. Laplacian distribution. Then, an

MAP estimator from such statistical prior is the same as

the total variation, Ψ1(f) = ‖∇f‖1, based regularization.

1.1. Discussions

The MAP estimator or the solution from variational

model (2) usually takes an iterative procedure that alterna-

tively updates f (or ∇f ) and k. The main challenge in such

an iterative procedure is how to prevent the sequence con-

verges to suboptimal undesired local minimum or degener-

ate trivial solution (k ≈ δ). There have been an enduring

research effort along this line, and many recent works are

based on the following observation: the intermediate esti-

mation of f (or ∇f ) is for helping more accurate estimation

of the kernel k, not the one as close to the truth. Once the
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estimation of the kernel is finalized, one then estimate an

image that is closest to the truth. Thus, the prior from nat-

ural image statistics is not necessarily the optimal choice of

the image prior used in estimating intermediate results.

One approach is modifying the MAP estimator such that

the intermediate estimates of latent image are tuned for bet-

ter estimating blur kernel. Some methods modify the regu-

lar sparsity-prompting norm in regularization methods, e.g.

normalized ℓ1-norm based regularization [19] and approx-

imated ℓ0-norm regularization [43]. Other methods intro-

duce some heuristic procedure to modify the intermedi-

ate results such that the resulted one can lead the estima-

tion of kernel toward the right direction. Many strategies

have been proposed, including saliency edge/region selec-

tion [41, 14, 29] and edge filtering that removes weak de-

tails and enhancing salient edges [8].

Another approach is replacing MAP estimator by Varia-

tional Bayes (VB) methods [24, 10, 23, 22, 39, 1]. Differ-

ent from the MAP estimator, VB methods pursue posteriori

mean estimates for the kernel k such that the kernel is most

likely with respect to the distribution of possible clear im-

ages. In addition, as summarized in [39, 18], VB based

method will lead to an iterative re-weighting scheme that

have the effect of promoting sparsity in image gradient do-

main. Wipf and Zhang [39] showed that when using Gaus-

sian Scale Mixture (GSM) as the prior on image gradients,

the VB based framework can be reformulated as an uncon-

ventional MAP framework with a join regularization term

that depends on kernel, image gradients and noise level.

Both VB methods and edge selection based MAP esti-

mators have their advantages and disadvantages. VB meth-

ods have their merits in several aspects, including rigorous

mathematical interpretation, simpler implementation and

better stability. However, their experimental performance

is not state-of-the-art. Oppositely, edge selection/weighting

based MAP methods depends on some heuristic strategy for

edge selection/weighting, and some of them are among the

top performers. Edge selection based methods tends to per-

form very well on the images with large blurring degree, but

not so on the images with small blurring degree.

1.2. Our Contributions

Motivated by impressive performance gain of edge se-

lection/reweighting for blind image deblurring, this paper

aims at developing a mathematical foundation of edge se-

lection/reweighting in the context of blind deblurring, from

the viewpoint of VB inference. Thereafter a new edge

re-weighting based deblurring method is presented in the

framework of the VEM method.

The understanding of edge selection/reweighting in blind

deblurring is based on the VEM method that alternatively

estimates sharp image gradients and blur kernels. In the

framework of the VEM method, instead of viewing the la-

tent variable as the image gradient field of the latent im-

age as existing VB methods, we interpret the latent vari-

able as the image gradient that optimized for better estima-

tion of blur kernel. The key idea of implementing such a

latent variable is modeling the latent variable as a set of

independent random variables whose standard deviations

are regularized by the prior motivated from edge selec-

tion/reweighting. The outcome of such an approach leads to

a new VEM method with built-in adaptive edge selection.

It is observed that the proposed VEM method sometimes

suffers from the convergence to sub-optimal local minima,

which indeed is also the issue of most VB methods. In the

context of blind deblurring, a restart strategy is proposed for

the VEM algorithm for effectively circumventing subopti-

mal local convergence, especially when the blurring degree

is large. Together with the restarting strategy, the proposed

VEM method for blind motion deblurring comes with a

solid mathematical foundation, good stability to varying im-

age contents, and superior deblurring performance. Exten-

sive experiments on both synthesized dataset and real im-

ages showed that the proposed method outperformed most

existing methods by a noticeable margin.

2. Related Work

There is abundant literature on blind deblurring using ei-

ther only one image (e.g. [41, 8, 32, 10, 19, 23, 34, 43, 47,

25, 28, 30, 12, 45, 9, 11]) or using multiple images (e.g.

[4, 31, 7, 46]). We only focus on single image blind motion

deblurring that are very relevant to the proposed method.

Regularization methods. In the framework of MAP esti-

mation, many types of regularizations have been developed

in the past for blind motion deblurring. For example, Cai

et al. [3, 5] proposed to regularize clear images by mini-

mizing the ℓ1-norm of its wavelet/framelet transform. In

order to deal with the issue of the bias toward degenerate

solution when only using ℓ1-norm relating regularization,

Krishnan et al. [19] proposed to replace it by the normal-

ized ℓ1-norm, i.e. ‖ · ‖1/‖ · ‖2 on image gradients. In [43],

a new sparsity-prompting function is proposed which ap-

proximates ℓ0-norm of image gradients. For text images,

Pan et al. [28] proposed to regularize the deblurring process

by minimizing ℓ0-norm of both intensity and image gradi-

ents. Instead of using image gradients, Sun et al. [34] in-

troduced a set of image patch prior specifically tailored for

image edges and corners for blind deblurring. Michaeli and

Irani [25] proposed a different prior on image patches that

exploits the recurrence of image patches in multiple scales.

Edge processing relating techniques. Based on the idea

of processing intermediate estimations of clear image in or-

der to better guide the estimation of blur kernel, Cho and

Lee [8] presented a fast deblurring algorithm by iteratively

estimating the blur kernel using the images which are the
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modified version of intermediate recovered images. The

modification is done by first running shock filter on the re-

covered images and then only keep the edges are selected

such that its histograms are orientation isotropic. Xu and

Jia [41] proposed another edge selection strategy based on

the observation that those edges whose span are smaller

than the support of the kernel will lead the kernel estima-

tion to the wrong direction. Based on a new metric on edge

saliency, a map of salient edges are constructed in [41] to

facilitate the estimation of blur kernel. In [29], a different

definition of salient structure is proposed. Instead of using

salient edges, Hu et al. [14] proposed to select image re-

gions for kernel estimation. In [12], Gong et al. proposed

an adaptive edge selection algorithm by introducing a bi-

nary gradient activation vector with sparse cardinality con-

strain in their optimization problem.

Variational Bayesian Frameworks. It is shown in Levin et

al. [22] that many naive MAP approaches may fail because

they mostly favor trivial solutions. The VB method that

maximizing marginalized distributions has been proposed

to replace MAP estimator to address this issue; see e.g.

[10, 22, 23, 39, 1]. Fergus et al. [10] modeled images gra-

dients using i.i.d. mixture of zero-mean Gaussians and used

Miskin and MacKay’s algorithm to iteratively update the es-

timations of image and kernel. Levin et al. [23] also mod-

eled image derivatives using a mixture of zero-mean Gaus-

sians. Different from Fergus et al. [10], they introduced a

set of i.i.d. hidden variables to indicate the mixture com-

ponent from which each image gradient arises, and adopted

a VEM framework which makes use of the mean field ap-

proximation. Babacan et al. [1] presented a VB method

using super-Gaussian image priors. Wipf and Zhang [39]

analyzed both VB method and MAP method. They showed

that the underlying cost functions used by VB framework

with GSM prior can be reformulated as an unconventional

MAP cost function with a joint regularization term depend-

ing on kernel, image gradient and the noise level, and the

concavity of the regularization on image gradients is adap-

tively changing during the iterative optimization process.

Deep learning methods. In recent years, many deep learn-

ing based approaches have been proposed for blind motion

deblurring. See e.g. [20, 26, 44, 35, 42, 27, 6, 40, 33].

3. Main Body

3.1. Preliminaries on Variational EM

Consider a probabilistic model involving observed vari-

able y and latent variable z, parameterized by θ ∈ Θ. The

Maximum Marginal Likelihood estimator of θ is given by

θ∗ = argmaxθ∈Θ p(y; θ) = argmaxθ∈Θ

∫

p(y, z; θ)dz.

Let q be any probability distribution on z such that

q(z) > 0. Then by Jensen’s inequality, we have the follow-

ing lower bound of the marginal log-likelihood log p(y; θ)

log p(y; θ) ≥

∫

q(z) log
p(y, z; θ)

q(z)
dz.

Define F (q, θ) =
∫

q(z) log p(y,z;θ)
q(z) dz. Instead of di-

rectly maximizing the marginal log-likelihood, the expec-

tation maximization (EM) algorithm maximizes the lower

bound F (q, θ):

(q∗, θ∗) = argmaxq,θ∈Θ F (q, θ).

Compared with the standard EM, variational EM (VEM)

method solves the optimization problem above by con-

straining q inside some family of distributions Q. This opti-

mization problem is solved by alternatively maximizing the

function F (q, θ) between q(z) ∈ Q and θ ∈ Θ. For the t-th
iteration,

1. E-step. Update q(z) using θt−1:

qt = argmaxq∈Q Eq(z)[log
p(z,y;θt−1)

q(z) ]

= argminq∈Q KL(q(z)||p(z|y; θt−1)).
(3)

2. M-step. Update θ using qt:

θt = argmaxθ∈Θ Eqt(z)[log p(z, y; θ)], (4)

where Θ denotes the feasible set of parameters, and

KL(q||p) denotes the KL-divergence between q and p. See

[2] for more details on EM or VEM

3.2. Problem Formulation in VEM

Estimating kernel in the domain of image gradients is

usually more preferred, i.e. the kernel is estimated by

∇g = k ⊗∇f +∇n, (5)

where ∇ = ( ∂
∂x ,

∂
∂y )

⊤. As argued in [28, 41, 8], not all

gradients in ∇g are helpful to kernel estimation. For exam-

ple, it is shown in [41] that the gradients corresponding to

image edges with small span could have negative impact on

kernel estimation. Also, as proved in [18, 12], it is possible

to get good kernel estimation even if only part of the image

gradients are used in the kernel estimation. In other words,

an approximation ∇z of the true image gradients ∇f could

possibly do better when used for estimating the kernel k.

Let ∇z denote an image gradient field related to ∇f but

is better tailored for the estimation of the kernel k. In this

paper, we model ∇z as latent random variables drawn from

Gaussian distribution with zero mean and invertible diago-

nal covariance matrix i.e.,

p(∇z) =

N
∏

i=1

N ((∇z)i|0, σ
2
i ),
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where σi ≥ τ for a constant τ . Certain prior need to be im-

posed on the covariance matrix Σ for constraining the space

of distribution on ∇z. As observed in [18, 12], image gra-

dients suitable for kernel estimation usually have large mag-

nitude. Such a prior can be encoded as in the s.t.d. of the

variable ∇z, since the random variable with zero mean and

large s.t.d. is more likely to have the instance with large

magnitude, if it has large s.t.d.. Also, only a small percent-

age of such image gradients should be sufficient for esti-

mating k. Such observations motivates us to propose a car-

dinality prior on {σi}i:

#{i : σi > τ} ≤ M (M ≪ N)

where # denotes the set cardinality and M is a constant

(= N
10 in our implementation).

In the context of VEM, we can reformulate the kernel

estimation of blind deblurring as follows.

• Observed variable: ∇g ∈ RN .

• Latent variable: ∇z ∈ RN , that follows

p(∇z) =
N
∏

i=1

N ((∇z)i|0, σ
2
i ). (6)

And as usual, p(∇g|∇z, k) = N (∇g|k ⊗ ∇z, σ̃2I),
where σ̃ is the noise level.

• Parameters: θ := [k, θZ ] ∈ Θ, where k denotes blur

kernel and θZ := {σi}
N
i=1 are the parameters of the

distribution of ∇z. The feasible set Θ of the parameter

is defined as

Θ := {(k, θZ) :
∑

j

k[j] = 1, k[j] ≥ 0;

σi ≥ τ,#{i : σi > τ} ≤ M}. (7)

• Variational approximation. We adopt the similar ap-

proximation as used by Levin et al. [23] such that Q is

the set of Gaussian distributions with diagonal covari-

ance matrix. However, different from [23], we restrict

the covariance matrix to λI with predefined constant λ:

Q := {N (µ, λI) : µ ∈ RN}. (8)

Such a set is more computationally efficient yet does

not decrease performance.

See Fig. 1 for an illustration of the difference between

the latent variable ∇z from [23] and that from ours. The

variable ∇z from ours are sparser than that from [23] and

focus more on edges with large magnitude.

3.3. E-step

Provided an estimate θ(t), the goal of E-step is to refine

the estimation on q by solving

argminq∈Q KL(q(∇z)||p(∇z|∇g; θ(t))). (9)

(a) blurred image g (b) clear image f (c) z from (12)

(d) | ∂
∂x

f | (e) | ∂
∂y

f | (f) Truth k

(g) | ∂
∂x

z| from [23] (h) | ∂
∂y

z| from [23] (i) estimated k

(j) | ∂
∂x

z| from ours (k) | ∂
∂y

z| from ours (l) estimated k.

Figure 1: Illustration of latent variable ∇z = [ ∂
∂xz,

∂
∂y z].

(a–b): input blurred image g and ground truth f ; (c): z esti-

mated using (12) of our algorithm; (d)–(f): Image gradient

of ground truth image f and ground truth kernel k; (g)–

(i): Latent variable ∇z from [23] and the resulting kernel in

the last loop; (j)–(l): Latent variable ∇z from the proposed

method and the resulting kernel in last loop. The kernel is

estimated using (15).

Proposition 1. For θ(t) = [k(t),Σ(t)], the solution to the

optimization problem (9) is

q∗(∇z) = N (∇z|(∇z)∗, λI), (10)

where (∇z)∗ is the minimizer of the following problem:

min∇z‖∇g − k(t) ⊗∇z‖22 + σ̃2‖(Σ(t))−
1
2∇z‖22. (11)

Proof. See supplementary materials for the detailed proof.

In the derivation of E-step above, the variable (∇z)∗ is

estimated by assuming ∂z
∂x and ∂z

∂y are independent. Such an

assumption ignored the existing correlation between ∂z
∂x and

∂z
∂y . It is more stable to first estimate z and then calculate

∇z from it. Thus, we implement a modified version of E-
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step which first estimate z by:

z(t+1) = argminz[j]≥0

(

λ0||g − k(t) ⊗ z||22
+ ||∇g − k(t) ⊗∇z||22 + σ̃2||(Σ(t))−

1
2∇z||22

)

.
(12)

Then assign (∇z)∗ = ∇z(t+1) := [∂z
(t+1)

∂x , ∂z(t+1)

∂y ]⊤.

3.4. M-step

Given q(t+1), the M-step is to update the estimate of pa-

rameters θ = [k,Σ] by solving the optimization problem

θ(t+1) = argmaxθ∈ΘEq(t+1)(∇z)[log p(∇z,∇g; θ)], (13)

where q(t+1)(∇z) denote the output from the E-step above.

First, we need to calculate the expectation and simplify the

above problem. Let h(θ) = log p(∇z,∇g; θ). Then,

h(θ) = log p(∇g|∇z; θ) + log p(∇z; θ)
= logN (∇g|k ⊗∇z, σ̃2I) + logN (∇z|0,Σ)

= log[ 1
(2πσ̃2)N/2 exp(−

||∇g−k⊗∇z||2

2σ̃2 )]

+ log[ 1
(2π)N/2|Σ|1/2

exp(− 1
2 ||Σ

− 1
2∇z||2)]

= − 1
2σ̃2

[

||∇g − k ⊗∇z||2 + σ̃2||Σ− 1
2∇z||2]

−N log σ̃ −
∑

i log σi −N log(2π),

where N is the dimensionality of ∇z. Then, by direct cal-

culation, the optimization problem (13) is equivalent to

minθ∈Θ
1

2σ̃2

[

||∇g − k ⊗∇z(t+1)||22 + σ̃2||Σ− 1
2∇z(t+1)||22]

+
∑

i log σi +
λN
2σ̃2 ||k||22 +

λ
2

∑

i
1
σ2
i
,

(14)

where Θ is defined in (7).

The optimization problem above is solved independently

for k and Σ as follows. For k, by ignoring the irrelevant

terms, we have:

k∗ = argmink∈Θ ‖∇g−∇z(t+1)⊗ k‖22+λN ||k||22. (15)

For Σ, let Λ denote the index set of the M largest entries of

|(∇z)i|. Then, we have the following:

Proposition 2. The solution to the problem (14) w.r.t. Σ is

given by Σ∗ = diag((σ∗
1)

2, ..., (σ∗
N )2), where

σ∗
i =











(|(∇z(t+1))i|
2 + λ)

1
2 if (|(∇z(t+1))i|

2 + λ)
1
2 > τ

and i ∈ Λ,

τ otherwise.

(16)

Proof. See supplementary materials for the detailed proof.

3.5. Restarting technique for the VEM Method

Although it is well-known that VB based algorithms can

effectively avoid trivial solutions (k = δ) [23, 39], em-

pirically we found that local convergence to other subopti-

mal solutions may occur especially when blurring degree is

large. See Fig. 2 (d)–(g), the kernel estimation in the plain

version of the proposed VEM method seem to be trapped

in some local minima which is quite away from the truth

shown in Fig. 2 (c). In other words, the VEM method can

avoid trivial solution, but might be trapped in some local

minima away from the truth. Such a phenomena might be

caused by (1) the highly non-convex nature of the corre-

sponding optimization problem, and (2) the fact that the up-

date of the VEM method only guarantees that F (q, θ) is not

decreasing.

One often used technique for circumventing such issue

when solving a highly non-convex problem is to introduce

some restarting strategy to allow the iteration jump out of

the local maximum point. In this section, we propose a

restarting strategy on the estimation of the parameter Σ. Re-

call that the latent variable ∇z can be viewed as an approx-

imation to ∇f modified for better estimation of blur kernel.

Thus, the restart strategy proposed in this paper is to restart

the estimation of Σ using the available estimate on ∇f af-

ter a number of iterations. Let f∗ denote the estimate of f
using simple Tikhonov regularization method:

f∗ = argminf ||g − k∗ ⊗ f ||22 + λ1||∇f ||22. (17)

where k∗ is the most recent estimate on blur kernel and λ1

is a constant (= 1
400 in our implementation). Recall that

in the statistical model of ∇z, from Proposition 2 we see

that σi ≥ τ is large only if its corresponding gradient is

sufficiently large, and its value is mostly determined by the

magnitude of the gradient. Thus, we define the restart of the

diagonal Σ∗ as follows. Let Λ∗ denote the index set of M
largest entries of |∇f∗|. Then, σ∗

i is defined by

σ∗
i =

{

|(∇f∗)i| if |(∇f∗)i| > τ and i ∈ Λ∗,
τ otherwise.

(18)

Note that (17) uses a spatially uniform natural image prior,

so what the restarting process essentially does is to select

edges on natural latent image after every few VEM update,

instead of continuously select edges from those images get

form (12), which may only contain part of the edges as

shown in Fig. 1(c).

See Fig. 2 for an illustration of how the restart can be

more computationally efficient and guide the kernel esti-

mation toward correct direction. It can be seen that after

5 iterations in inner loop, the estimate on k is nearly un-

changed, i.e. k(5,j), k(10,j), k(20,j) are all similar. In con-

trast, if we use restarting after having k(5,j), the restarted

estimate k(1,j+1) shown Fig. 2 (h) is clearly much closer

to the truth. This indicates the effectiveness of restart. See

Fig. 3 (d)—(g) and (h) for an illustration of how during one

outer loop, the inner loops update the estimations of ∇z and

its covariance matrix Σ. It can be seen that the iterations

will yield a more sparse image gradient.
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(a) Input g (b) Output f (c) Output k (d) k(1,j)

(e) k(5,j) (f) k(10,j) (g) k(20,j) (h) k(1,j+1)

Figure 2: Illustration of how the restart helps the VEM al-

gorithm to avoid local convergence to suboptimal solution.

(a)–(c): blurred image g and the final output image f and

final output kernel k; (d)–(g): the intermediate estimates

of k in one inner loop of VEM; (h): the estimate of k af-

ter restarting the VEM only after 5 iterations in inner loop,

i.e. the restarted estimate right after k(5,j). In this example

j = 2. Input image is taken from the dataset in [17].

By including the restarting procedure on Σ in the VEM

based alternating iteration, we have a VEM based approach

with restart for estimating the motion-blur kernel. After suf-

ficient number of iterations, we have an accurate estimation

of the kernel, denoted by k∗. The recovery of clear image f
becomes the classic non-blind deconvolution, which solve

the linear problem: g = k∗ ⊗ f + n. There are several non-

blind deblurring methods optimized for deblurring image

using an estimated kernel; see e.g. [15, 16, 37]. For fair

comparison, we also adopt the deblurring algorithm pro-

posed in [37] which are used in several existing comparative

studies on blind motion deblurring. See Algorithm 1 for the

outline of the proposed method with restart.

4. Experiment

4.1. Important Implementation Details

In order to deal with large blurs, we adopt the common

practice to take a coarse-to-fine estimation scheme, which

assumes that the estimation of the kernel in the coarse scale

is a good initialization to the kernel in the fine scale. At the

coarsest scale, the kernel is initialized using 3× 3 Gaussian

kernel with σ = 3
4 and call Alg. 1 to estimate the kernel. Af-

ter that, the estimated kernel is up-sampled using bi-linear

interpolation and served as the initialization for the kernel

estimation in the finer scale. The set of images with coarse-

to-fine scales are generated as follows. Starting with the

input image, each image in the coarser scale is constructed

by resizing the image in the current scale by half. The num-

ber of scales is determined by how many down-sampling is

needed to resize the maximum kernel size down to 3× 3.

(a) (Σ
1/2
x )(0,j) (b) (Σ

1/2
y )(0,j) (c) (Σ

1/2
x )(4,j) (d) (Σ

1/2
y )(4,j)

(e) | ∂z
(1,j)

∂x
| (f) | ∂z

(1,j)

∂y
| (g) | ∂z

(5,j)

∂x
| (h) | ∂z

(5,j)

∂y
|

Figure 3: Illustration of the updates of variable |∇z| and its

{σi}i in outer Iteration j = 2. (a)–(b): Σ1/2 used in first

iteration, (c)–(d): Σ1/2 used in last iteration (5-th iteration);

(e)–(h): the resulting estimate of ∇z using (12).

Algorithm 1 Outline of the VEM method

1: INPUT: blurred image g
2: OUTPUT: sharp image f∗, blur kernel k∗

3: %%% kernel estimation

4: Initialization: set initial kernel k(0,0).
5: for j = 1, 2, . . . ,m do

6: Restarting: define Σ(0,j) as described in Sec. 3.5.

7: for t = 1, 2, . . . , n do

8: E-step: define ∇z(t,j) by (12)

9: M-step: define k(t,j) by (15)

10: define Σ(t,j) by (16)

11: end for

12: Set k(0,j+1) := k(n,j).
13: end for

14: Set k∗ := k(n,m).

15: %%% non-blind deblurring using k∗

16: Estimate f∗ using the method in [37].

For the experiments on the tested datasets, the image gra-

dients are calculated using the difference operator [−1, 1]
and [−1, 1]⊤. The parameters are set uniformly as follows.

The number of inner iterations n = 5, and the number of

outer iterations m = 12. The constant M for cardinality

constraint is set to be N
10 for both horizontal and vertical gra-

dients, where N denotes the number of image pixels. For

other parameters, σ̃ = 10−
5
2 , τ = 10−3 and λ = 0.001/N .

The last step in Algorithm 1 calls the non-blind routine in

[37] with iteration number= 100. (12), (17) and (15) are

all quadratic programming problems. In our implementa-

tion, they are simply solved by first using Conjugate Gradi-

ent (CG) method as unconstrained problems, followed by a

projection to their feasible sets.
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Fergus Cho Xu-10 Krishinan Levin Sun Xu-13 Zhang Zhong Michaeli Pan Perron Nah Ours

[10] [8] [41] [19] [23] [34] [43] [46] [47] [25] [28] [30] [26]

man-made 14.10 16.11 19.56 15.67 18.02 19.30 17.87 16.93 17.32 17.32 17.33 17.53 15.63 19.99

natural 16.44 20.09 23.38 19.24 20.93 23.69 22.14 21.38 21.07 20.66 21.47 22.08 18.45 24.33

people 18.46 19.89 26.50 21.34 22.95 26.13 25.72 24.58 24.39 24.20 24.33 24.04 20.58 27.22

saturated 12.73 14.23 15.59 14.11 14.81 14.95 15.00 14.92 14.86 14.30 15.11 13.89 14.46 17.04

text 13.65 14.82 19.68 15.11 15.80 18.35 18.61 16.11 15.86 15.22 17.56 16.80 14.21 20.35

average 15.09 17.03 20.97 17.09 18.50 20.48 19.87 18.78 18.70 18.34 19.16 18.87 16.67 21.79

Table 1: Quantitative comparison on the synthetic uniform dataset in [21]. Performance is measured in average PSNR value.

Different row denotes different category of images. The last row is the average PSNR value over the whole dataset.

Whyte et al. Hirsch et al. Shan et al. Krishnan et al. Cho and Lee Xu and Jia Yue et al. Gong et al. Ours

[38] [13] [32] [19] [8] [41] [45] [12]

Image 1 27.5475 26.7232 26.4253 26.8654 28.9093 29.4054 30.1340 30.3572 31.7060

Image 2 22.8696 22.5867 20.5950 21.7551 24.2727 25.4793 25.4749 25.5210 26.3540

Image 3 28.6112 26.4155 25.8819 26.6443 29.1973 29.3040 30.1777 31.6577 31.0048

Image 4 24.7065 23.5364 22.3954 22.8701 26.6064 26.7601 26.7661 27.4804 27.9150

Total Avg. 25.9337 24.8155 23.8244 24.5337 27.2464 27.7372 28.1158 28.7541 29.2249

Table 2: Quantitative comparison on Köhler dataset [17]. Performance is measured in average PSNR value.

4.2. Quantitative Evaluation

Synthetic dataset from Lai et al. [21]. In order to test our

method on different types of images with different sizes of

blurs, we adopt the recent benchmark dataset built by Lai

et al. [21], which contains 100 blurry images divided into

5 categories. They are synthesized by using 4 different ker-

nels with size ranging from 51 × 51 to 101 × 101, adding

1% Gaussian noise. Except the results from the deep learn-

ing method [26], the results of all other methods in Table 1

are obtained from [21]. We first downloaded the estimated

kernels published online by [21], and then ran the same non-

blind deblurring algorithm, Whyte et al. [37] with their code

published online, to get the deblurred images for compari-

son. The results of [26] is obtained by using the trained

model published by the authors.

See Table 1 for the comparison of the methods in terms

of average PSNR value. It can be seen that our methods out-

performed other methods in all categories, especially on the

category of ”people” and saturated”, which indeed possess

special characters of image edges. This shows the adaptive

edge selection in the proposed framework is more robust

than existing edge selection techniques e.g. [41, 8]. The

comparison on SSIM [36] and the demonstration of some

examples can be found in supplementary materials.

Köhler dataset [17]. We also tested the proposed method

on those images whose motion blurring is not exactly uni-

form. Köhler dataset [17] is used for testing, which con-

tains 48 real blurry images generated by convolving 4 latent

sharp images with 12 blur kernels whose sizes range from

41× 41 to 141× 141. This dataset is generated by record-

ing the samplings of the six dimensional camera motion.

See Table 2 for the comparison in terms of PSNR value.

The results of other methods are directly quoted [12, 45].

It can be seen that the proposed method overall noticeably

outperform the compared methods.

4.3. Experiments on Real Images

The proposed algorithm is also evaluated on real images

summarized by Lai et al. [21]. We compared ours to the

six representative methods with top performance, including

two edge selection related methods: Cho et al. [8], Xu and

Jia [41], two ℓ0-norm regularization methods: Xu et al. [43]

and Pan et al. [28], one VEM method: Levin et al. [23],

and one deep learning method: [26]. The introduction to

these methods can be found in Section 2. See Fig. 4 for

visual inspection of the results. It can be seen that the results

from the proposed method in general produce the results

with better visual quality. The illustration of more results

can be found in supplementary materials.

5. Conclusion

This paper revisited the powerful edge selec-

tion/reweighting technique used in blind motion deblurring

from the perspective of VB inference. By building a

mathematical foundation on edge selection, we develop

a VEM method with strong motivation from edge selec-

tion/reweighting for blind motion deblurring. Together

with a restart strategy, the proposed VEM method is

easy to implement, stable to varying content, and provide

state-of-the-art performance.
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(1.a) input (1.b) Cho-09 [8] (1.c) Xu-10 [41] (1.d) Xu-13 [43]

(1.e) Pan-14 [28] (1.f) Levin-11 [23] (1.g) DeepDeblur-17 [26] (1.h) Ours

(2.a) input (2.b) Cho-09 [8] (2.c) Xu-10 [41] (2.d) Xu-13 [43]

(2.e) Pan-14 [28] (2.f) Levin-11 [23] (2.g) DeepDeblur-17 [26] (2.h) Ours

(3.a) input (3.b) Cho-09 [8] (3.c) Xu-10 [41] (3.d) Xu-13 [43]

(3.e) Pan-14 [28] (3.f) Levin-11 [23] (3.g) DeepDeblur-17 [26] (3.h) Ours

Figure 4: Visual comparison of the results from different methods. Zoom-in for easier inspection
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