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Abstract

Weakly supervised object detection aims at reducing the

amount of supervision required to train detection models.

Such models are traditionally learned from images/videos

labelled only with the object class and not the object bound-

ing box. In our work, we try to leverage not only the object

class labels but also the action labels associated with the

data. We show that the action depicted in the image/video

can provide strong cues about the location of the associated

object. We learn a spatial prior for the object dependent

on the action (e.g. “ball” is closer to “leg of the person”

in “kicking ball”), and incorporate this prior to simultane-

ously train a joint object detection and action classification

model. We conducted experiments on both video datasets

and image datasets to evaluate the performance of our

weakly supervised object detection model. Our approach

outperformed the current state-of-the-art (SOTA) method by

more than 6% in mAP on the Charades video dataset.

1. Introduction

Deep learning techniques and development of large

datasets have been vital to the success of image and video

classification models. One of the main challenges in extend-

ing this success to object detection is the difficulty in col-

lecting fully labelled object detection datasets. Unlike clas-

sification labels, detection labels (object bounding boxes)

are more tedious to annotate. This is even more challenging

in the video domain due to the added complexity of anno-

tating along the temporal dimension.

On the other hand, there are a large number of video and

image datasets [36, 18, 3, 4, 6] labelled with human actions

which are centered around objects. Action labels provide

strong cues about the location of the corresponding objects

in a scene (Fig. 1) and could act as weak supervision for

object detection. In light of this, we investigate the idea of

learning object detectors from data labelled only with action

classes as shown in Fig. 2.

All images/videos associated with an action contain the

object mentioned in the action (e.g.“cup” in the action

“drink from cup”). Yuan et al. [50] leveraged this prop-

Spatial correlation between subject and object

Object appearance consistency

hold vacuum fix vacuum

Object is strong cue for action

Figure 1: Our framework is built upon three observations we draw:

(1) there is spatial dependence between the subject and the inter-

acted object; (2) the object appearance is consistent across dif-

ferent training samples and across different actions involving the

same object; (3) the most informative object about the action is the

one mentioned in the action.

erty to learn object detection from videos of corresponding

actions. However, the actions (“drink from” in above exam-

ple) themselves are not utilized in this work. On the other

hand, the spatial location, appearance and movement of ob-

jects in a scene are dependent on the action performed with

the object. The key contribution of our work is to leverage

this intuition to build better object detection models.

Specifically, we have three observations (see Fig. 1):

(1) There is spatial dependence between the position of a

person and the object mentioned in the action, e.g.in action

“hold cup”, the location of cup is tightly correlated with the

location of the hand. This could provide a strong prior for

the object; (2) The object appearance is consistent across

images and videos of action classes which involve the ob-

ject; (3) Detecting the object should help in predicting the

action and vice-versa.

The above observations can be used to address one of the

main challenges of weakly supervised detection: the pres-

ence of a large search space for object bounding boxes dur-

ing training. Each training image/video has many candidate

object bounding boxes (object proposals). In our weakly su-
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Figure 2: Setting of the action-driven weakly supervised object

detection task. Training samples include videos or images with

action class labels (left). The inference is conducted on single

frame/image for object localization and classification (right).

pervised setting, the only label we have is that, one of these

candidates should correspond to the object mentioned in the

action. The training algorithm is required to automatically

identify the correct object bounding box from this large set

of candidates. In our approach, we narrow down this search

by incorporating the three observations in our model. In

particular, we (1) explicitly learn the spatial prior of objects

w.r.t. the human in different actions; (2) train a generic ob-

ject classifier for modeling object appearances across dif-

ferent actions; (3) jointly learn the action classifier and as-

sociated object classifier.

We conducted comprehensive experiments over two

video datasets: Charades [36], EPIC KITCHENS [6] and

an image dataset: HICO-DET [4]. Our method outperforms

the previous methods [2, 50, 40] by a large margin on all

datasets. Specifically, we have achieved a 6% mAP boost

on Charades compared to current state-of-the-art weakly su-

pervised models for videos. Visualization results and abla-

tion experiments show the effectiveness of each module in

our approach.

2. Related Work
In this section, we briefly overview some related research

topics and how we are motivated by these works.

Supervised Object detection. Object detection is a

very active research topic in the computer vision field.

There has been significant progress in the recent years with

the advances of deep learning. R-CNN [14] is the first

work that introduces CNN features to object detection. A

sequence of later works are developed based on R-CNN.

Fast R-CNN [13] accelerates R-CNN by introducing an ROI

pooling layer and improve the performance by applying

proposal classification and bounding box regression jointly.

Faster R-CNN [32] further improves the speed and accuracy

by replacing the proposal generation stage with a learnable

network: region proposal network and the whole framework

is trained in an end-to-end fashion. Mask R-CNN [20] pro-

posed to add a segmentation branch and achieved the state-

of-the-art (SoTA) performance. All the methods require full

object bounding box annotations and mask R-CNN requires

dense segmentation labels.

Weakly supervised object detection. The fully super-

vised object detection methods rely heavily on large scale

bounding box annotations, which is inefficient and labor

consuming. To alleviate this issue, there have been vari-

ous weakly-supervised works [5, 38, 2, 25, 23, 31, 35, 47,

29, 41, 37, 55, 51, 39, 54, 53, 9, 34, 43, 52] that lever-

age the more efficient image-level object class annotations.

Weakly supervised deep detection networks (WSDDN) [2]

proposed an end-to-end architecture to perform region se-

lection and classification simultaneously. It is achieved by

separately performing classification and detection headers

and the supervision comes from a combination classifica-

tion score. ContextLocNet [25] further improves WSDDN

by taking contextual region into consideration. Beyond the

image domain, another line of research works [27, 45] try to

leverage the temporal information in videos to facilitate the

weakly supervised object detection. Kwak et al. [27] pro-

posed to discover the object appearance presentation across

videos and then track the object in temporal space for super-

vision. Wang et al. [45] perform unsupervised tracking on

videos and then cluster similar deep features to form visual

representation.

Yuan et al. [50] proposed a much more efficient action-

driven weakly supervised object detection setting which

aims to learn the object appearance representation given

only videos with clip-level action class labels. They pro-

posed to first extract spatial features from object propos-

als. The features are then updated using long short-term

memory (LSTM) [21] applied on neighboring frames. The

frame-level object classification loss is computed on the up-

dated features. We implemented the same setting as in [50]:

pipeline trained on videos/images with only action labels

and test on images. Unlike TD-LSTM [50] that only lever-

ages object class information, we propose to jointly exploit

both action and object class labels. Considering all actions

are interactions between person and objects, we incorporate

human pose estimation into the framework.

Activity recognition There are a variety of works in the

field of action recognition [44, 28, 16, 1, 11, 10, 12]. Maji et

al. [28] train action specific poselets that are then classified

using SVMs. The contextual cues are captured by explic-

itly detecting objects and exploiting action labels of other

people in the image. R*CNN [16] proposed to implicitly

model the main objects. The features from both person re-

gion and object proposal regions are extracted and a fusion

of classification scores from these two types of features is

used for action classification loss. R*CNN showed that the

most informative object in the scene is the object mentioned

in action class. We are inspired by the similar idea to jointly

consider the action and object lables.

Human-object interaction There are mainly two tasks

in the human-object interaction (HOI) topic: HOI recogi-
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Figure 3: The diagram of our framework. There are three streams in the proposed framework: object spatial prior module (colored in

blue), object classification stream (colored in yellow) and action classification module (colored in green). We incorporate human keypoint

detection into the framework and jointly leverage action and object labels.

nition and HOI detection. HOI recognition aims at recog-

nizing the interaction between subject and object. There

have been a surge of works [7, 19, 49, 33] on HOI recog-

nition since 2009. HOI detection task aims at localizing

subject and object and also recognizing HOI class. Chao

et al. [4] proposed a three-stream network for this task,

one stream each for person detection, object detection and

person-object pair wise classification respectively. Gkioxari

et al. [15] model the interaction with shared weights be-

tween human centric branch and interaction branch. Kalo-

geiton et al. [24] proposed to jointly learn the object and ac-

tion (e.g. dog running). All works have shown that jointly

learning the object, person localization and HOI/action clas-

sification benefits the performance.

3. Approach

The main challenge of weakly supervised detection is the

lack of bounding box information during training and the

availability of only image/video level labels. This problem

is typically handled in a Multiple Instance Learning (MIL)

setting [2, 5], where the training method implicitly chooses

the best bounding box from a set of candidate proposals in

the image/video to explain the overall image/video label.

However, in practice the number of candidate object pro-

posals can be quite large, making the problem challenging.

In our work, we address this issue by imposing additional

constraints on the choice of the best object bounding box

based on the location prior of the object w.r.t. the human

and the importance of the chosen object proposal for ac-

tion classification. In practice, we model each of these as

three different streams in our model which finally contribute

to a single action classification loss and an object classifi-

cation loss. Note that in our work we assume that a pre-

trained person detection model and human keypoint detec-

tion model are available to extract the signals needed for

capturing human-object dependence.

3.1. Framework

Formally, for a training sample (video clip or image), the

action label a is provided. The action a belongs to a pre-

defined set of actions a ∈ A, which is of size na: ||A|| =
na. We assume that all human actions are interactive and

there is one object involved in each action. For example, the

object cup appears in the action holding a cup. The object

class associated with action a is denoted by oa and there are

no object classes in total: oa ∈ O, ||O|| = no.

A pre-trained human detector [20] and pose estimation

network [46] are used to extract human bounding box h

and keypoint locations k(p), p ∈ P where P represents the

set of human keypoints. For training samples with mul-

tiple people, we pick the detection result with the highest

detection confidence. The object proposals R are extracted.

We remove proposals with high overlap (IoU > θh) with

human region h and we keep the top nr with highest confi-

dence.

Our model has three streams which are explained in de-

tail in the next sections. An overview of our models is

shown in Fig. 3. The first stream models the spatial

prior of the object w.r.t. to human keypoints in each ac-

tion. The prior is used to construct an object classifica-

tion stream which weights the object classification losses

of different proposals in an image/video. The weights and

features from the object proposals, along with features of

human bounding box, are used to construct an action classi-

fication loss. The combined loss from action classification

and object classification is minimized during training.
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3.2. Object spatial prior

The object spatial prior is modeled in two stages: (1)

given an action class a and keypoint detection results P , we

estimate an anchor location based on a weighted combina-

tion of the keypoint locations; (2) given the action class and

the anchor position, the position of the object is modeled as

a normal distribution w.r.t. the anchor point. This is based

on our observation that for a given action, certain human

keypoints provide strong location priors for the object loca-

tions(“hand” for drinking from a cup, “foot” for kicking a

ball etc.).
The anchor location kanchor is calculated as a weighted

sum of all keypoint locations. The keypoint weight is mod-
eled with a probability vector wa

key(p), p ∈ P for the action

class a.

kanchor =
∑

p∈P

w
a
key(p)k(p) (1)

where k(p) is the detected position of the keypoint p in the
training image/video. Given the action class a, the weight
of object location w.r.t. the anchor location is modeled with
a learned normal distribution: N(µa,σa) µa ∈ ❘2, σa ∈

❘
(2×2). µa represents the mean location of the object w.r.t.

the anchor and σa represents the variance. This distribution
is used to calculate the object location probabilities of dif-
ferent locations. Specifically, the probability of an object
being at the location of a proposal r ∈ R for an action class
a is

w
a
r = N(µa,σa)(kprop(r)− kanchor) (2)

where kprop(r) is the center of the proposal r. Note that

the distributions wkey, N(µa,σa) are learned automatically

during training.

3.3. Object classification

For each proposal r ∈ R in a training sample, we
compute an object classification score for each object o:
sO(r; o). Here sO corresponds to an ROI-pooling layer
followed by a Multi Layer Perceptron (MLP) which clas-
sifies the input region into no object classes. Apart from
only leveraging image-level object labels for classification
[2, 25], the spatial location weights from previous section
are also used to guide the selection of the object proposal.
Formally, the binary cross-entropy (BCE) loss is calculated
on each proposal region, against the image-level object
class ground truth. The BCE losses are weighted by the lo-
cation probabilities of different proposals and the weighted
sum is used to compute object classification loss:

Lobj = −
1

nr

∑

r∈R

w
a
r · Lo(r),

Lo(r)=
1

no

∑

o∈O

yolog(P (o|r))+(1−yo)log(1−P (o|r)),

P (o|r) =
exp(sO(r; o))

∑

o∈O exp(sO(r; o))
, (3)

where yo is the binary object classification label for the ob-

ject o. Note that yo is non-zero only for the object men-

tioned in the action corresponding to the image/video.

3.4. Action classification

For the task of action recognition, especially for interac-
tive actions as in our task, both the person and the object
appearances are vital cues. As indicated in [16], the spatial
location of the most informative object can be mined from
action recognition task. We incorporate a similar idea into
the action classification stream by fusing features from the
proposal regions and person region. Formally, for a training
instance with action label a, the appearance features of both
person region h and proposal regions R are extracted, and
then classified to na-dimension action classification scores:
sOA(r; a), r ∈ R and sHA (h; a). Here sHA , sOA correspond
to an ROI-pooling layer followed by a Multi Layer Percep-
tron (MLP). The weights and biases of the MLP are learned
during training. The final proposal score is computed as
an average of action classficiation scores weighted by the
spatial prior probabilities as in the previous section. This
ensures that only scores from the most relevant proposals
are given a higher weight. The sum of action classification
scores from object proposals and person regions is used to
compute the final BCE action classification loss. The loss
is computed as follows:

Lact=−
1

na

∑

a∈A

yalog(P (a))+(1−ya)log(1−P (a)),

P (a) =
exp

(

sHA (h; a) +
∑

r∈R wa
r s

O
A(r; a)

)

∑

a∈A
exp

(

sHA (h; a) +
∑

r∈R wa
r s

O
A(r; a)

) , (4)

where ya is the binary action classification label for the ac-

tion a.

3.5. Temporal pooling for videos

Our experiments are conducted on both video and image

datasets, thus the training samples can be video sequences

or static images with action labels. For models trained

with video clips, we adopt a few pre-processing steps and

also pool scores across the temporal dimension to improve

person detection and object proposal quality. Formally, n

frames are uniformly sampled from the training clip, fol-

lowed by person detection and object proposal generation

for the sampled frames. The object proposals as well as per-

son bounding boxes across the frames are then connected by

an optimization based linking method [17, 48] to form ob-

ject proposal tubelets and person tubelets respectively. We

observed that temporal linking of proposals avoids spurious

proposals and leads to more robust features from the pro-

posals. These are fed as inputs into the object classification

and action classification streams. Temporal pooling is used

to aggregate classification scores across the person and ob-

ject tubelets. The pooled scores are finally used for loss

computation as before.
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3.6. Loss terms

The combined loss is a weighted sum of both classifica-

tion loss terms.

L = αoLobj + αaLact (5)

The hyper-parameters αo and αa are weights to trade off

the relative importance of object classification and action

classification in the pipeline.

3.7. Inference
During testing, object proposals are firstly extracted on

the test sample. The trained object classifier (sO) is applied

on each proposal region to obtain the object classification

scores (P (o|r)). Then the non-maximal suppression (NMS)

is applied and the object proposals with higher classification

scores than the threshold are preserved as detection results.

4. Experiments

Our method is applicable to both video and image do-

mains. We require only human action label annotations for

training. Object bounding box annotations are used only

during evaluation. Code will be released in the Github

repository 1.

Video datasets: The Charades dataset [36] includes

9,848 videos of 157 action classes, among which, 66 are in-

teractive actions with objects. There are on average 6.8 ac-

tion labels for a video. The official Charades dataset doesn’t

provide object bounding box annotations and we use the

annotations released by [50]. In the released annotations,

1,812 test videos are down-sampled to 1 frame per second

(fps) and 17 object classes are labeled with bounding boxes

on these frames. There are 3.4 bounding box annotations

per frame on average. We follow the same practice as in

[50]: train on 7,986 videos (54,000 clips) and evaluate on

5,000 randomly selected test frames from 200 test videos.

The EPIC-KITCHENS [6] is an ego-centric video

dataset which is captured by head-mounted camera in dif-

ferent kitchen scenes. In the training data, the action class

is annotated for 28,473 trimmed video clips and the object

bounding boxes are labeled for 331 object classes. As the

object bounding box annotations are not provided for the

test splits, we divide the training data into training, vali-

dation and test parts. The top 15 frequent object classes

(which are present in 85 action classes) are selected for ex-

periments, resulting in 8,520 training, 1,000 validation and

200 test video clips. We randomly sample three times from

each training clip and generate 28,560 training samples. We

also randomly sample 1,200 test frames from the test clips.

Image dataset The HICO-DET dataset [4] is designed

for human-object interaction (HOI) detection task. This

dataset includes 38,118 training images and 9,658 test im-

ages. The human bounding box, object bounding box and

1https://github.com/zhenheny/

Activity-Driven-Weakly-Supervised-Object-Detection

an HOI class label are annotated for both training and test

images. In total, there are 80 object classes (e.g. cup, dog,

etc.) and 600 HOI classes (e.g. hold cup, feed dog, etc.).

We filter out all samples with “no interaction” HOI labels,

interaction class with less than 20 training samples and all

“person” as object class samples. This results in 32,100

training samples of 510 interaction classes and 79 object

classes. We use the HOI labels as action class labels dur-

ing training and the object bounding box annotations are

used only for evaluation. Unlike Charades where the inter-

actions mostly happen between one subject and one object,

there are cases where multiple people interact with one ob-

ject (e.g. “boarding the airplane”) and one person interacts

with multiple objects (e.g. “herding cows”), which makes it

more challenging to learn the object appearance.

We report per-class average precision (AP) at

intersection-over-union (IoU) of 0.5 between detec-

tion and ground truth boxes, and also mean AP (mAP) as a

combined metric, following the tradition of [50]. We also

report CorLoc [8], a commonly-used weakly supervised

detection metric. CorLoc represents the percentage of

images where at least one instance of the target object class

is correctly detected (IoU>0.5) over all images that contain

at least one instance of the class.

4.1. Implementation details

We use VGG-16 and ResNet-101 pre-trained on Ima-

geNet dataset as our backbone feature extraction networks.

All conv layers in the network are followed with ReLU acti-

vation except for the top classification layer. Batch normal-

ization [22] is applied after all convolutional layers. In or-

der to compute the classification scores (sO, s
H
A , sOA), three

branches are built on top of the last convolutional block.

Each branch consists of ROI-pooling layer and 2-layer mul-

tiple layer perception (MLP) of intermediate dimension of

4096. The threshold for removing person proposal regions

is set as θh = 0.5. Selective search [42] is used to extract

object proposals for all our experiments.

The Adam optimizer [26] is applied with learning rate of

2 × 10−5 and batch size of 4. The loss weights are set as

αa = 1.0, αo = 2.0. The number of sampled frames in

a clip is set as n = 8 and the number of proposals is set

as nr = 700. The whole framework is implemented with

PyTorch [30]. We train on a single Nvidia Tesla M40 GPU.

The whole training converges in 20 hrs. More details of

implementation are presented in supplemental material.

4.2. Influence of modeling spatial location of object

Unlike many existing methods for weakly supervised ob-

ject detection, our framework explicityly models the spatial

locaition of the object w.r.t. to the detected person and en-

codes it into two different loss functions in Eq. 3, 4. We

explore the effect of modeling this spatial prior through dif-

ferent distributions and its contribution to each of the loss

terms.
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Table 1: Detection performance of different variants on Charades

Spatial prior Loss term mAP CorLoc

Center action+object 3.43 34.27
Grid action+object 4.32 36.94

Normal (µ) action+object 6.27 42.36
Normal (σ) action+object 4.86 38.05
Normal (µ+ σ) action 2.61 31.60
Normal (µ+ σ) object 5.86 39.24
Normal (µ+ σ) action+object 8.76 47.91

The different distributions include: (a) normal distribu-

tion, (b) a fixed grid of probability values, where we make

a discrete version of spatial prior module by pre-defining a

3×3 grid around the keypoint, and (c) a simple center prior

where we penalize object detections farther away from the

center of the object. Note that, we totally removed person

detection bounding box and pose estimation in the center

prior baseline. For this baseline, we use the frame center as

the anchor location L and learn the µa and σa.

We also experimented with learning distribution mean

only (µa), learning variance only (σa) and joint learning of

mean and variance (µa+σ) for the normal distribution. We

alos experimented with using only object classification or

action classification loss.

The quantitative results of VGG-16 as the backbone net-

work are presented in Tab. 1 for different ablation settings.

First, we observe that a learnable grid-based or normal

distribution for the anchor location outperforms a simple

heuristic choice of the image center as the anchor. We also

see that the normal distribution, where both mean and vari-

ance are learned for each action-object pair leads to bet-

ter results compared to the other settings. This shows that

good modeling of the object spatial prior w.r.t. human in an

action provides strong cues for detection. We also notice

that jointly modelling both action and object classification

achieves the best result.

We also visualize the learned distribution of object lo-

cation probabilities from the prior module for a few sam-

ple videos/images in Fig. 4. The learned distribution often

has large probability weights around the object mentioned

in the action. For example, in the first two columns of the

visualization, it is much easier to localize the object with

the cues from the heatmap. However, we also note that this

distribution is less useful for actions where there is no con-

sistent physical interaction between the human and the ob-

ject. This is shown in the last column of the figure, for

actions like “watching television” and “flying kite”. Our

approach reports relatively low mAP performance on such

object classes (Tab. 2 and Tab. 3).

4.3. Comparison with existing methods

We compare our method with other weakly supervised

methods and their variants: (1) WSDDN [2]; (2) Context-

LocNet [25]; (3) PCL [40]; action-driven weakly super-

vised object detection method: (4) TD-LSTM [50] and (5)

R*CNN [16] which is designed for action recognition with

c135 lying on bed

c135 lying on bed c137 holding a vacuum

c137 holding a vacuum

c132 watching television

c132 watching television

cut cake

cut cake

ride bicycle

ride bicycle

fly kite

fly kite

(a) Heatmap on three Charades actions

(b) Heatmap on three HICO-DET actions

Figure 4: Visualization of learned object location probability w.r.t.

selected person keypoint. The heatmap represents the probabil-

ity of object location (brighter color represents larger probability

value) and the white circle represents the selected keypoint.

awareness of the main object. We used the main object

bounding box as the object detection result. R*CNN is pre-

trained on Pascal-action dataset and then finetuned on Cha-

rades or HICO-DET dataset. Note that existing methods (1),

(2), (3), (4) do not use person bounding box or keypoint de-

tection results in their model unlike our method. While (5)

uses person bounding box, it doesn’t use person keypoints.

The person detection and pose models used in our model

were trained only once and kept fixed during training. The

annotations required to train the person models are very in-

expensive in comparison to fully supervised models which

need bounding box annotation for every object class. The

resource demands of annotating person bounding boxes and

pose is amortized across all object classes. However, since

these models are not used in traditional weakly supervised

methods, we enable fair comparison by constructing vari-

ants of PCL and R*CNN: (6) R*CNN with spatial prior and

(7) PCL with spatial prior, where we replace the max pool-

ing in R*CNN and mean pooling in PCL with a weighted

sum where the weights are computed from spatial prior dis-

tribution as in our implementation (more details are pre-

sented in supplemental material).

Results from TD-LSTM [50] are shown only for Cha-

rades, since it is a video-specific model and code is not

available. Also, we report results from weakly-supervised

models whose code is available or whose results on Cha-

rades, HICO-DET or EPIC KITCHENS datasets is readily

available. Also, note that many methods such as [9, 47, 41]

are built on top of the vanilla WSDDN method by adding

signals such as segmentation, contextual information, in-
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Table 2: AP performance (%) on each object class and mAP (%) comparison with different weakly supervised methods on Charades.

Methods bed broom chair cup dish door laptop mirror pillow refri shelf sofa table tv towel vacuum window mAP(%)

WSDDN [2] 2.38 0.04 1.17 0.03 0.13 0.31 2.81 0.28 0.02 0.12 0.03 0.41 1.74 1.18 0.07 0.08 0.22 0.65

R*CNN [16] 2.17 0.44 2.03 0.31 0.08 0.77 2.64 0.32 1.24 2.36 0.82 1.41 0.65 0.72 0.07 0.65 0.17 0.99

ContextLocNet [25] 7.40 0.03 0.55 0.02 0.01 0.17 1.11 0.66 0.00 0.07 1.75 4.12 0.63 0.99 0.03 0.75 0.78 1.12

TD-LSTM [50] 9.19 0.04 4.18 0.49 0.11 1.17 2.91 0.30 0.08 0.29 3.21 5.86 3.35 1.27 0.09 0.60 0.47 1.98

PCL [40] 4.62 1.07 2.21 1.26 1.08 2.49 3.61 5.13 1.34 4.46 3.29 5.61 3.84 3.26 1.17 1.43 2.27 2.83

R*CNN + prior 6.82 3.64 5.39 3.25 2.47 3.36 5.27 1.07 2.38 6.34 3.29 5.72 4.09 1.03 1.26 3.41 0.86 3.50

PCL + prior 10.57 5.63 8.24 3.52 3.71 5.63 6.86 4.96 5.23 11.39 4.88 10.46 6.32 3.53 4.06 4.89 3.07 6.05

Ours-vgg-16 (w/o prior) 6.71 2.32 5.48 2.49 1.04 3.60 4.02 3.42 4.39 7.76 3.15 7.43 3.26 1.62 0.89 2.24 1.23 3.60

Ours-vgg-16 14.92 10.23 13.08 7.65 5.21 6.44 8.65 4.79 9.14 18.07 7.29 17.21 8.46 2.37 5.46 7.23 2.64 8.76

Ours-ResNet-101 16.54 11.63 14.87 8.62 6.73 8.29 11.32 4.96 9.81 19.24 9.03 18.49 9.86 3.05 6.48 8.08 3.02 10.03

(a) Charades test frames

(b) HICO-DET test images

Figure 5: Qualitative detection results on (a) Charades test frames and (b) HICO-DET test images. Red bounding boxes denote our results

and green bounding boxes denote results of PCL [40]

stance refinement, etc. and these ideas are complementary

to the ones presented in this work, and can be added to our

model to achiever better results. The per-class AP and com-

bined mAP performances on the two datasets are presented

in Tab. 2 and Tab. 3 respectively. 10 object classes on

HICO-DET are randomly selected and presented.

On Charades dataset, our method achieves 6% mAP

boost compared to PCL [40]. Our method performs better

on object classes like broom, refrigerator, vacuum, etc.. The

spatial prior patterns of the interactions involving these ob-

ject classes are more predictable and thus the prior model-

ing benefits our approach more than on other object classes.

For object like tv, the spatial prior pattern of the interaction

(e.g.watch tv) is more diverse and thus difficult to model,

resulting only a small boost in mAP. The same performance

pattern also applies to HICO-DET dataset. On the object

class kite, our method slightly performs inferior to the base-

line method.

We observe that the spatial prior from our model is ef-

fective in localizing the object during training even when

combined with other models such as R*CNN [16] and PCL

[40]. R*CNN with spatial prior modeling outperforms TD-

LSTM, which is specifically designed for the action driven

weakly supervised object detection task.

We also report our model’s performance without the spa-

tial prior module (ours (w/o prior)). This variant of the

model doesn’t require any person bounding box and key-

point information, and is directly comparable to existing

weakly supervised methods. We note that even without

these signals, our model can outperform existing methods.

This can be attributed to the fact that our model jointly uses

both action and object labels during training. It identifies

the object bounding box which can both help action classi-

fication and object classification during training.

The qualitative comparison between our method and

PCL is presented in Fig. 5. Our approach localizes the ob-

ject more accurately. Multiple object classes and multiple

instances can be detected through our trained object classifi-

cation stream. The last column shows our failure cases. On

Charades, both PCL [40] and our method fails to detect the

windows and on HICO-DET, our method fails to localize

the kite. One possible reason is that actions like “watch out

of the window” do not have direct human-object interaction.

Our approach is also extended to ego-centric EPIC

KITCHENS datset. Since human keypoints are not visible

in this dataset, we applied “center” spatial prior modeling

used in Sec. 4.2. As the camera is fixed with respect to

the human, the anchor location is already implicitly mod-

eled by this center prior. We compare with R*CNN [16]

and PCL [40] on the 1,200 test frames. Egocentric videos

have a strong prior for object spatial locations and hence our

method is able to outperform other methods in Tab. 4.
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Table 3: AP performance (%) on selected object classes and mAP (%) comparison with other weakly supervised methods on HICO-DET.

Methods apple bicycle bottle chair cellphone frisbee kite surfboard train umbrella mAP(%)

R*CNN [16] 1.13 3.26 1.57 2.35 1.47 1.02 0.32 2.70 2.86 3.04 2.15

WSDDN [2] 1.46 5.19 1.52 3.87 2.02 2.44 1.15 2.86 6.76 3.35 3.27

PCL [40] 1.27 5.82 2.31 2.84 3.06 3.11 1.16 2.60 7.93 3.47 3.62

PCL + prior 2.06 6.49 2.54 3.69 5.14 2.96 1.37 4.06 8.13 4.87 4.19

Ours-vgg-16 (w/o prior) 1.23 5.15 1.19 3.47 3.82 2.24 0.73 3.65 6.22 3.14 3.16

Ours-vgg-16 2.47 8.64 3.59 5.74 7.36 2.85 0.87 7.29 8.47 6.63 5.39

Table 4: mAP (%) comparison with other weakly supervised meth-

ods on EPIC KITCHENS

Methods mAP CorLoc

R*CNN [16] 2.54 32.68

PCL [40] 4.68 40.64

PCL + prior 6.82 46.69

Ours-vgg-16 9.75 52.53

4.4. Effect of supervision in training

Weakly supervised object detection aims to train object

detection models without any bounding box labels. How-

ever, in practice it is easy and efficient to annotate at least a

few bounding boxes in training images/videos. This is sim-

ilar to low-shot and semi-sueprvised settings. We believe

that it is important to test weakly supervised approaches in

such a practical setting as well.

To this end, we explore the effect of adding varying

amounts of ground truth object bounding box annotations

into our training data. We achieve this by augmenting the

losses described in Sec. 3, with an additional supervised

object detection loss for videos/images where bounding box

annotations are available. This loss is the same as the tradi-

tional object detection loss used in Fast-RCNN.

In practice, the IoU between object proposals and ground

truth object bounding boxes is calculated and proposals hav-

ing higher IoU than the threshold are considered positive

samples and rest as negative. The threshold IoU is set as

0.45 to guarantee a reasonable positive samples per image.

The negative and positive sample ratio is set as 5.

We compare with two baselines: (1) model without

weak supervision: model trained only with supervised de-

tection loss on images/videos with bounding box annota-

tions and without any weakly supervised data (Ours (w/

only strong supervision)), and (2) R*CNN [16] with addi-

tional object bounding box supervision as above (R*CNN

(w/ strong+weak supervision)).

We evaluate this setup on both Charades and HICO-DET

datasets. The quantitative results are presented in Fig. 6.

The x-axis (log scale) represents the percentage of training

samples with object bounding box annotations. For exam-

ple, the point x% represents that for a random x% of train-

ing data samples, the bounding box annotations are present.

The remaining training samples, only have action class la-

bel. Note that 0% is the weakly-supervised setting consid-

ered earlier, while 100% represents fully-supervised setting.

We observe that the mAP increases log-linearly as more su-

(a)  Charades (b) HICO-DET

Figure 6: Performance comparison between our method trained

with different supervision settings and R*CNN trained with both

strong and weak supervision on (a) Charades and (b) HICO-DET.

pervision is added to the training.

For Charades, when small amount of supervision is

added, we observe that our model which uses additional

weakly-supervised data outperforms the model without any

weak supervision. This clearly shows the potential of

our weakly-supervised approach to provide complemen-

tary value in a low-shot detection setting. With as low as

70% supervision, our approach already matches the per-

formance of fully-supervised method at 100% supervision.

This means that we could cut down the amount of super-

vision needed to train the model without sacrificing perfor-

mance. As expected, the gap between the two approaches

decrease with increase in supervision. Even with “100%”

bounding box annotations, our model still outperforms the

fully supervised method by 2 mAP points due to joint train-

ing with action and object classification loses.

We also observe that performance gap is smaller for im-

ages (HICO-DET). We believe weak supervision is more

effective in videos compared to images, where temporal

linking of proposals helps in avoiding spurious detections

during training.

5. Conclusion

We observe that object spatial location, appearance and

movement are tightly related to the action performed with

the object in images and videos. We propose a model that

leverages these observations to train object detection mod-

els from samples annotated only with action labels. Com-

prehensive experiments are conducted on both video and

image datasets. The comparison with SoTA methods shows

that out approach outperforms existing weakly supervised

approaches. Further our approach can also help reduce the

amount of supervision required for object detection models.
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