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Abstract

We propose Scene Graph Auto-Encoder (SGAE) that in-

corporates the language inductive bias into the encoder-

decoder image captioning framework for more human-like

captions. Intuitively, we humans use the inductive bias to

compose collocations and contextual inference in discourse.

For example, when we see the relation “person on bike”,

it is natural to replace “on” with “ride” and infer “per-

son riding bike on a road” even the “road” is not evi-

dent. Therefore, exploiting such bias as a language prior

is expected to help the conventional encoder-decoder mod-

els less likely overfit to the dataset bias and focus on rea-

soning. Specifically, we use the scene graph — a directed

graph (G) where an object node is connected by adjective

nodes and relationship nodes — to represent the complex

structural layout of both image (I) and sentence (S). In the

textual domain, we use SGAE to learn a dictionary (D) that

helps to reconstruct sentences in the S → G → D → S
pipeline, where D encodes the desired language prior; in

the vision-language domain, we use the shared D to guide

the encoder-decoder in the I → G → D → S pipeline.

Thanks to the scene graph representation and shared dic-

tionary, the inductive bias is transferred across domains

in principle. We validate the effectiveness of SGAE on the

challenging MS-COCO image captioning benchmark, e.g.,

our SGAE-based single-model achieves a new state-of-the-

art 127.8 CIDEr-D on the Karpathy split, and a competitive

125.5 CIDEr-D (c40) on the official server even compared

to other ensemble models. Code has been made available

at: https://github.com/yangxuntu/SGAE.

1. Introduction

Modern image captioning models employ an end-to-end

encoder-decoder framework [10, 30, 29, 2, 27], i.e., the en-

coder encodes an image into vector representations and then

the decoder decodes them into a language sequence. Since

its invention inspired from neural machine translation [3],

this framework has experienced several significant upgrades
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Figure 1. Illustration of auto-encoding scene graphs (blue arrows)

into the conventional encoder-decoder framework for image cap-

tioning (red arrows), where the language inductive bias is en-

coded in the trainable shared dictionary. Word colors correspond

to nodes in image and sentence scene graphs.

such as the top-bottom [50] and bottom-up [2] visual atten-

tions for dynamic encoding, and the reinforced mechanism

for sequence decoding [38, 9, 35]. However, a ubiquitous

problem has never been substantially resolved: when we

feed an unseen image scene into the framework, we usu-

ally get a simple and trivial caption about the salient objects

such as “there is a dog on the floor”, which is no better than

just a list of object detection [29]. This situation is par-

ticularly embarrassing in front of the booming “mid-level”

vision techniques nowadays: we can already detect and seg-

ment almost everything in an image [12, 17, 36].

We humans are good at telling sentences about a visual

scene. Not surprisingly, cognitive evidences [32] show that

the visually grounded language generation is not end-to-

end and largely attributed to the “high-level” symbolic rea-

soning, that is, once we abstract the scene into symbols,

the generation will be almost disentangled from the visual

perception. For example, as shown in Figure 1, from the

scene abstraction “helmet-on-human” and “road dirty”, we

can say “a man with a helmet in countryside” by using the

common sense knowledge like “country road is dirty”. In

fact, such collocations and contextual inference in human

10685



language can be considered as the inductive bias that is

apprehended by us from everyday practice, which makes

us performing better than machines in high-level reason-

ing [22, 5]. However, the direct exploitation of the inductive

bias, e.g., early template/rule-based caption models [20, 8],

is well-known ineffective compared to the encoder-decoder

ones, due to the large gap between visual perception and

language composition.

In this paper, we propose to incorporate the inductive

bias of language generation into the encoder-decoder frame-

work for image captioning, benefiting from the complemen-

tary strengths of both symbolic reasoning and end-to-end

multi-modal feature mapping. In particular, we use scene

graphs [13, 47] to bridge the gap between the two worlds.

A scene graph (G) is a unified representation that connects

1) the objects (or entities), 2) their attributes, and 3) their

relationships in an image (I) or a sentence (S) by directed

edges. Thanks to the recent advances in spatial Graph Con-

volutional Networks (GCNs) [31, 24], we can embed the

graph structure into vector representations, which can be

seamlessly integrated into the encoder-decoder. Our key in-

sight is that the vector representations are expected to trans-

fer the inductive bias from the pure language domain to the

vision-language domain.

Specifically, to encode the language prior, we propose

the Scene Graph Auto-Encoder (SGAE) that is a sentence

self-reconstruction network in the S → G → D → S
pipeline, where D is a trainable dictionary for the re-

encoding purpose of the node features, the S → G module

is a fixed off-the-shelf scene graph language parser [1], and

the D → S is a trainable RNN-based language decoder [2].

Note that D is the “juice” — the language inductive bias

— we extract from training SGAE. By sharing D in the

encoder-decoder training pipeline: I → G → D → S ,

we can incorporate the language prior to guide the end-to-

end image captioning. In particular, the I → G module

is a visual scene graph detector [56] and we introduce a

multi-modal GCN for the G → D module in the caption-

ing pipeline, to complement necessary visual cues that are

missing due to the imperfect visual detection. Interestingly,

D can be considered as a working memory [45] that helps

to re-key the encoded nodes from I or S to a more generic

representation with smaller domain gaps. More motivations

and the incarnation of D will be discussed in Section 4.3.

We implement the proposed SGAE-based captioning

model by using the recently released visual encoder [37]

and language decoder [2] with RL-based training strat-

egy [38]. Extensive experiments on MS-COCO [26] vali-

dates the superiority of using SGAE in image captioning.

Particularly, in terms of the popular CIDEr-D metric [44],

we achieve an absolute 7.2 points improvement over a

strong baseline: an upgraded version of Up-Down [2].

Then, we advance to a new state-of-the-art single-model

achieving 127.8 on the Karpathy split and a competitive

125.5 on the official test server even compared to many en-

semble models.

In summary, we would like to make the following tech-

nical contributions:

• A novel Scene Graph Auto-Encoder (SGAE) for learning

the feature representation of the language inductive bias.

• A multi-modal graph convolutional network for modulat-

ing scene graphs into visual representations.

• A SGAE-based encoder-decoder image captioner with a

shared dictionary guiding the language decoding.

2. Related Work

Image Captioning. There is a long history for researchers

to develop automatic image captioning methods. Compared

with early works which are rules/templates based [21, 33,

23], the modern captioning models have achieved striking

advances by three techniques inspired from the NLP field,

i.e., encoder-decoder based pipeline [46], attention tech-

nique [50], and RL-based training objective [38]. After-

wards, researchers tried to discover more semantic infor-

mation from images and incorporated them into captioning

models for better descriptive abilities. For example, some

methods exploit object [29], attribute [54], and relation-

ship [53] knowledge into their captioning models. Com-

pared with these approaches, we use the scene graph as the

bridge to integrate object, attribute, and relationship knowl-

edge together to discover more meaningful semantic con-

texts for better caption generations.

Scene Graphs. The scene graph contains the structured se-

mantic information of an image, which includes the knowl-

edge of present objects, their attributes, and pairwise rela-

tionships. Thus, the scene graph can provide a beneficial

prior for other vision tasks like VQA [40, 43],image gener-

ation [13, 59], and visual grounding [28]. By observing the

potential of exploiting scene graphs in vision tasks, a vari-

ety of approaches are proposed to improve the scene graph

generation from images [57, 56, 52, 51, 49, 42, 6]. On the

another hand, some researchers also tried to extract scene

graphs only from textual data [1, 47]. In this research, we

use [56] to parse scene graphs from images and [1] to parse

scene graphs from captions.

Memory Networks. Recently, many researchers try to

augment a working memory into network for preserving

a dynamic knowledge base for facilitating subsequent in-

ference [41, 48, 45]. Among these methods, differentiable

attention mechanisms are usually applied to extract useful

knowledge from memory for the tasks at hand. Inspired by

these methods, we also implement a memory architecture

to preserve humans’ inductive bias, guiding our image cap-

tioning model to generate more descriptive captions.
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Figure 2. Top: the conventional encoder-decoder. Bottom: our

proposed encoder-decoder, where the novel SGAE embeds the

language inductive bias in the shared dictionary.

3. Encoder-Decoder Revisited

As illustrated in Figure 2, given an image I, the target of

image captioning is to generate a natural language sentence

S = {w1, w2, ..., wT } describing the image. A state-of-the-

art encoder-decoder image captioner can be formulated as:

Encoder: V ← I,

Map: V̂ ← V,

Decoder: S ← V̂.

(1)

Usually, an encoder is a Convolutional Neural Network

(CNN) [11, 37] that extracts the image feature V; the map is

the widely used attention mechanism [50, 2] that re-encodes

the visual features into more informative V̂ that is dynamic

to language generation; a decoder is an RNN-based lan-

guage decoder for the sequence prediction of S . Given a

ground truth caption S∗ for I, we can train this encoder-

decoder model by minimizing the cross-entropy loss:

LXE = − logP (S∗), (2)

or by maximizing a reinforcement learning (RL) based re-

ward [38] as:

RRL = ESs∼P (S)[r(S
s;S∗)], (3)

where r is a sentence-level metric for the sampled sentence

Ss and the ground-truth S∗, e.g., the CIDEr-D [44] metric.

This encoder-decoder framework is the core pillar un-

derpinning almost all state-of-the-art image captioners

since [46]. However, it is widely shown brittle to dataset

bias [14, 29]. We propose to exploit the language inductive

bias, which is beneficial, to confront the dataset bias, which

is pernicious, for more human-like image captioning. As

shown in Figure 2, the proposed framework is formulated

as:
Encoder: V ← I,

Map: V̂ ← R(V,G;D), G ← V,

Decoder: S ← V̂.

(4)

As can be clearly seen that we focus on modifying the Map

module by introducing the scene graph G into a re-encoder

R parameterized by a shared dictionary D. As we will de-

tail in the rest of the paper, we first propose a Scene Graph

Auto-Encoder (SGAE) to learn the dictionary D which em-

beds the language inductive bias from sentence to sentence

self-reconstruction (cf. Section 4) with the help of scene

graphs. Then, we equip the encoder-decoder with the pro-

posed SGAE to be our overall image captioner (cf. Sec-

tion 5). Specifically, we use a novel Multi-modal Graph

Convolutional Network (MGCN) (cf. Section 5.1) to re-

encode the image features by using D, narrowing the gap

between vision and language.

4. Auto-Encoding Scene Graphs

In this section, we will introduce how to learnD through

self-reconstructing sentence S . As shown in Figure 2,

the process of reconstructing S is also an encoder-decoder

pipeline. Thus, by slightly abusing the notations, we can

formulate SGAE as:

Encoder: X ← G ← S,

Map: X̂ ← R(X ;D),

Decoder: S ← X̂ .

(5)

Next, we will detail every component mentioned in Eq. (5).

4.1. Scene Graphs

We introduce how to implement the step G ← S , i.e.,

from sentence to scene graph. Formally, a scene graph is a

tuple G = (N , E), whereN and E are the sets of nodes and

edges, respectively. There are three kinds of nodes in N :

object node o, attribute node a, and relationship node r. We

denote oi as the i-th object, rij as the relationship between

object oi and oj , and ai,l as the l-th attribute of object oi.
For each node in N , it is represented by a d-dimensional

vector, i.e., eo, ea, and er. In our implementation, d is set

to 1, 000. In particular, the node features are trainable label

embeddings. The edges in E are formulated as follows:

• if an object oi owns an attribute ai,l, assigning a di-

rected edge from ai,l to oi;
• if there is one relationship triplet < oi − rij − oj >

appearing, assigning two directed edges from oi to rij
and from rij to oj , respectively.
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Figure 3. Graph Convolutional Network. In particular, it is spatial

convolution, where the colored neighborhood is “convolved” for

the resultant embedding.

Figure 3 shows one example of G, which contains 7 nodes

in N and 6 directed edges in E .

We use the scene graph parser provided by [1] for scene

graphs G from sentences, where a syntactic dependency tree

is built by [18] and then a rule-based method [39] is applied

for transforming the tree to a scene graph.

4.2. Graph Convolution Network

We present the implementation for the step X ← G in

Eq. (5), i.e., how to transform the original node embed-

dings eo, ea, and er into a new set of context-aware embed-

dingsX . Formally,X contains three kinds of d-dimensional

embeddings: relationship embedding xrij for relationship

node rij , object embedding xoi for object node oi, and at-

tribute embedding xai
for object node oi. In our implemen-

tation, d is set to 1, 000. We use four spatial graph convolu-

tions: gr, ga, gs, and go for generating the above mentioned

three kinds of embeddings. In our implementation, all these

four functions have the same structure with independent pa-

rameters: a vector concatenation input to a fully-connected

layer, followed by an ReLU.

Relationship Embedding xrij : Given one relationship

triplet < oi − rij − oj > in G, we have:

xrij = gr(eoi , erij , eoj ), (6)

where the context of a relationship triplet is incorporated

together. Figure 3 (a) shows such an example.

Attribute Embedding xai
: Given one object node oi with

all its attributes ai,1:Nai
in G, where Nai is the number of

attributes that the object oi has, then xai
for oi is:

xai
=

1

Nai

Nai∑

l=1

ga(eoi , eai,l
), (7)

where the context of this object and all its attributes are in-

corporated. Figure 3 (b) shows such an example.

Object Embedding xoi : In G, oi can act as “subject” or

“object” in relationships, which means oi will play different

roles due to different edge directions. Then, different func-

tions should be used to incorporate such knowledge. For

avoiding ambiguous meaning of the same “predicate” in dif-

ferent context, knowledge of the whole relationship triplets

Figure 4. The visualization of the re-encoder function R. The

black dashed block shows the operation of re-encoding. The top

part demonstrates how “imagination” is achieved by re-encoding:

green line shows the generated phrase by re-encoding, while the

red line shows the one without re-encoding.

where oi appears should be incorporated into xoi . One sim-

ple example for ambiguity is that, in <hand-with-cup>, the

predicate “with” may mean “hold”, while in <head-with-

hat>, “with” may mean “wear”. Therefore, xoi can be cal-

culated as:

xoi =
1

Nri
[

∑

oj∈sbj(oi)

gs(eoi , eoj , erij )

+
∑

ok∈obj(oi)

go(eok , eoi , erki
)].

(8)

For each node oj ∈ sbj(oi), it acts as “object” while oi
acts as “subject”, e.g., sbj(o1) = {o2} in Figure 3 (c).

Nri = |sbj(i)| + |obj(i)| is the number of relationship

triplets where oi is present. Figure 3 (c) shows this example.

4.3. Dictionary

Now we introduce how to learn the dictionary D and

then use it to re-encode X̂ ← R(X ;D) in Eq. (5). Our

key idea is inspired by using the working memory to pre-

serve a dynamic knowledge base for run-time inference,

which is widely used in textual QA [41], VQA [48], and

one-shot classification [45]. Our D aims to embed lan-

guage inductive bias in language composition. Therefore,

we propose to place the dictionary learning into the sen-

tence self-reconstruction framework. Formally, we denote

D as a d ×K matrix D = {d1,d2, ...,dK}. The K is set

as 10, 000 in implementation. Given an embedding vector

x ∈ X , the re-encoder function RD can be formulated as:

x̂ = R(x;D) = Dα =
K∑

k=1

αkdk, (9)

where α = softmax(DT
x) can be viewed as the “key” op-

eration in memory network [41]. As shown in Figure 4,

this re-encoding offers some interesting “imagination” in

human common sense reasoning. For example, from “yel-

low and dotted banana”, after re-encoding, the feature will

be more likely to generate “ripe banana”.
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We deploy the attention structure in [2] for reconstruct-

ing S . Given a reconstructed S , we can use the training ob-

jective in Eq. (2) or (3) to train SGAE parameterized byD in

an end-to-end fashion. Note that training SGAE is unsuper-

vised, that is, SGAE offers a potential never-ending learning

from large-scale unsupervised inductive bias learning forD.

Some preliminary studies are reported in Section 6.2.2.

5. Overall Model: SGAE-based Encoder-

Decoder

In this section, we will introduce the overall model:

SGAE-based Encoder-Decoder as sketched in Figure 2 and

Eq. (4).

5.1. Multimodal Graph Convolution Network

The original image features extracted by CNN are not

ready for use for the dictionary re-encoding as in Eq. (9),

due to the large gap between vision and language. To this

end, we propose a Multi-modal Graph Convolution Net-

work (MGCN) to first map the visual features V into a set

of scene graph-modulated features V ′.

Here, the scene graph G is extracted by an image scene

graph parser that contains an object proposal detector, an at-

tribute classifier, and a relationship classifier. In our imple-

mentation, we use Faster-RCNN as the object detector [37],

MOTIFS relationship detector [56] as the relationship clas-

sifier, and we use our own attribute classifier: an small fc-

ReLU-fc-Softmax network head. The key representation

difference between the sentence-parsed G and the image-

parsed G is that the node oi is not only the label embed-

ding. In particular, we use the RoI features pre-trained from

Faster RCNN and then fuse the detected label embedding

eoi with the visual feature voi , into a new node feature uoi :

uoi = ReLU(W1eoi +W2voi)− (W1eoi −W2voi)
2.

(10)

where W1 and W2 are the fusion parameters follow-

ing [58]. Compared to the popular bi-linear fusion [58],

Eq (10) is empirically shown a faster convergence of train-

ing the label embeddings in our experiments. The rest node

embeddings: urij and uai
are obtained in a similar way.

The differences between two scene graphs generated from

I and S are visualized in Figure 1, where the image G is

usually more simpler and nosier than the sentence G.

Similar to the GCN used in Section 4.2, MGCN also has

an ensemble of four functions fr, fa, fs and fo, each of

which is a two-layer structure: fc-ReLU with independent

parameters. And the computation of relationship, attribute

and object embeddings are similar to Eq. (6), Eq. (7), and

Eq. (8), respectively. After computing V ′ by using MGCN,

we can adopt Eq. (9) to re-encode V ′ as V̂ and feed V̂ to the

decoder for generating language S . In particular, we deploy

the attention structure in [2] for the generation.

5.2. Training and Inference

Following the common practice in deep-learning feature

transfer [7, 55], we use the SGAE pre-trained D as the ini-

tialization for the D in our overall encoder-decoder for im-

age captioning. In particular, we intentionally use a very

small learning rate (e.g., 10−5) for fine-tuning D to impose

the sharing purpose. The overall training loss is hybrid: we

use the cross-entropy loss in Eq. (2) for 20 epochs and then

use the RL-based reward in Eq. (3) for another 40 epochs.

For inference in language generation, we adopt the beam

search strategy [38] with a beam size of 5.

6. Experiments

6.1. Datasets, Settings, and Metrics

MS-COCO [26]. There are two standard splits of

MS-COCO: the official online test split and the 3rd-

party Karpathy split [15] for offline test. The first split

has 82, 783/40, 504/40, 775 train/val/test images, each of

which has 5 human labeled captions. The second split has

113, 287/5, 000/5, 000 train/val/test images, each of which

has 5 captions.

Visual Genome [19] (VG). This dataset has abundant scene

graph annotations, e.g., objects’ categories, objects’ at-

tributes, and pairwise relationships, which can be exploited

to train the object proposal detector, attribute classifier, and

relationship classifier [56] as our image scene graph parser.

Settings. For captions, we used the following steps to pre-

process the captions: we first tokenized the texts on white

space; then we changed all the words to lowercase; we also

deleted the words which appear less than 5 times; at last, we

trimmed each caption to a maximum of 16 words. This re-

sults in a vocabulary of 10, 369 words. This pre-processing

was also applied in VG. It is noteworthy that except for ab-

lative studies, these additional text descriptions from VG

were not used for training the captioner. Since the object,

attribute, and relationship annotations are very noisy in VG

dataset, we filter them by keeping the objects, attributes,

and relationships which appear more than 2, 000 times in

the training set. After filtering, the remained 305 objects,

103 attributes, and 64 relationships are used to train our ob-

ject detector, attribute classifier and relationship classifier.

We chose the language decoder proposed in [2]. The

number of hidden units of both LSTMs used in this decoder

is set to 1000. For training SGAE in Eq. (5), the decoder is

firstly set as S ← X and D is not trained to learn a rudi-

ment encoder and decoder. We used the corss-entropy loss

in Eq. (2) to train them for 20 epochs. Then the decoder

was set as S ← X̂ to train D by cross-entropy loss for an-

other 20 epochs. The learning rate was initialized to 5e−4

for all parameters and we decayed them by 0.8 for every 5
epochs. For training our SGAE-based encoder-decoder, we

followed Eq. (4) to generate S with shared D pre-trained
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Table 1. The performances of various methods on MS-COCO

Karpathy split. The metrics: B@N, M, R, C and S denote

BLEU@N, METEOR, ROUGE-L, CIDEr-D and SPICE. Note

that the fuse subscript indicates fused models while the rest meth-

ods are all single models. The best results for each metric on fused

models and single models are marked in boldface separately.
Models B@1 B@4 M R C S

SCST [38] − 34.2 26.7 55.7 114.0 −
LSTM-A [54] 78.6 35.5 27.3 56.8 118.3 20.8
StackCap [9] 78.6 36.1 27.4 − 120.4 −
Up-Down [2] 79.8 36.3 27.7 56.9 120.1 21.4
CAVP [27] − 38.6 28.3 58.5 126.3 21.6
GCN-LSTM† [53] 80.0 37.1 28.0 57.3 122.8 21.1
GCN-LSTM [53] 80.5 38.2 28.5 58.3 127.6 22.0
Base 79.9 36.8 27.7 57.0 120.6 20.9
Base+MGCN 80.2 37.2 27.9 57.5 123.4 21.2
Base+D w/o GCN 80.2 37.3 27.8 58.0 124.2 21.4
Base+D 80.4 37.7 28.1 58.2 125.7 21.4
SGAE 80.8 38.4 28.4 58.6 127.8 22.1
SGAEfuse 81.0 39.0 28.4 58.9 129.1 22.2
GCN-LSTMfuse [53] 80.9 38.3 28.6 58.5 128.7 22.1

from SGAE. The decoder was set as S ← {V̂,V ′}, where

V ′ and V̂ can provide visual clues and high-level seman-

tic contexts respectively. In this process, cross-entropy loss

was first used to train the network for 20 epochs and then the

RL-based reward was used to train for another 80 epochs.

The learning rate forD was initialized to 5e−5 and for other

parameters it was 5e−4, and all these learning rates were de-

cayed by 0.8 for every 5 epochs. Adam optimizer [16] was

used for batch size 100.

Metrics. We used five standard automatic evalua-

tions metrics: CIDEr-D [44], BLEU [34], METEOR[4],

ROUGE [25] and SPICE [1].

6.2. Ablative Studies

We conducted extensive ablations for architecture (Sec-

tion 6.2.1), language corpus (Section 6.2.2), and sentence

reconstruction quality (Section 6.2.3). For simplicity, we

use SGAE to denote our SGAE-based encoder-decoder

captioning model.

6.2.1 Architecture

Comparing Methods. For quantifying the importance of

the proposed GCN, MGCN, and dictionary D, we ablated

our SGAE with the following baselines: Base: We followed

the pipeline given in Eq (1) without using GCN, MGCN,

and D. This baseline is the benchmark for other ablative

baselines. Base+MGCN: We added MGCN to compute the

multi-modal embedding set V̂ . This baseline is designed for

validating the importance of MGCN. Base+D w/o GCN:

We learned D by using Eq. (5), while GCN is not used and

only word embeddings of S were input to the decoder. Also,

MGCN in Eq. (4) is not used. This baseline is designed for

validating the importance of GCN. Base+D: Compared to

Table 2. The performances of using different language corpora

Models B@1 B@4 M R C S

Base 79.9 36.8 27.7 57.0 120.6 20.9
VG 80.2 37.8 28.0 58.2 123.2 21.3
COCO 80.8 38.4 28.4 58.6 127.8 22.1
VG+COCO 81.1 38.9 28.6 58.8 128.6 22.2

Table 3. The performances of using different scene graphs

Models B@1 B@4 M R C S

X̂ 90.3 53.8 34.3 66.5 153.2 30.6
X 93.9 65.2 38.5 71.8 177.0 34.3
SGAE 80.8 38.4 28.4 58.6 127.8 22.1

Table 4. The performances of various methods on MS-COCO

Karpathy split trained by cross-entropy loss only.
Models B@1 B@4 M R C S

SCST[36] − 30.0 25.9 53.4 99.4 −
LSTM-A[50] 73.4 32.6 25.4 54.0 100.2 18.6
StackCap[8] 76.2 35.2 26.5 − 109.1 −
Up-Down[2] 77.2 36.2 27.0 56.4 113.5 20.3
GCN-LSTM[49] 77.3 36.8 27.9 57.0 116.3 20.9
Base 76.8 36.1 27.1 56.3 113.1 20.3
Base+MGCN 77.1 36.2 27.2 56.5 114.2 20.5
SGAE 77.6 36.9 27.7 57.2 116.7 20.9

Base, we learned D by using GCN. And MGCN in Eq. (4)

was not used. This baseline is designed for validating the

importance of the shared D.

Results. The middle section of Table 1 shows the perfor-

mances of the ablative baselines on MS-COCO Karpathy

split. Compared with Base, our SGAE can boost the CIDEr-

D by absolute 7.2. By comparing Base+MGCN, Base+D

w/o GCN, and Base+D with Base, we can find that all

the performances are improved, which demonstrate that the

proposed MGCN, GCN, and D are all indispensable for ad-

vancing the performances. We can also observe that the per-

formances of Base+D or Base+D w/o GCN are better than

Base+MGCN, which suggests that the language inductive

bias plays an important role in generating better captions.

Qualitative Examples. Figure 5 shows 6 examples of

the generated captions using different baselines. We

can see that compared with captions generated by Base,

Base+MGCN’s descriptions usually contain more descrip-

tions about objects’ attributes and pairwise relationships.

For captions generated by SGAE, they are more complex

and descriptive. For example, in Figure 5 (a), the word

“busy” will be used to describe the heavy traffic; in (b) the

scene “forest” can be deduced from “trees”; and in (d), the

weather “rain” will be inferred from “umbrella’.

6.2.2 Language Corpus

Comparing Methods. To test the potential of using large-

scale corpus for learning a better D, we used the texts

provided by VG instead of MS-COCO to learn D, and

then share the learned D in the encoder-decoder pipeline.

The results are demonstrated in Table 2, where VG and
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(e): 325557 (f): 396209

Motorbike

Road

Park

Dirty

BASE: a motorcycle parked on the side of 

a road

BASE+MGCN: a motorcycle parked on the 

side of a road

SGAE: a motorcycle is parked on the 

gravel road

GT: a motor bike parked on the side of 

the road by the bushes

Motorbike

Road

Park

Dirty

BASE: a motorcycle parked on the side of 

a road

BASE+MGCN: a motorcycle parked on the 

side of a road

SGAE: a motorcycle is parked on the 

gravel road

GT: a motor bike parked on the side of 

the road by the bushes

BASE: a city street with many cars

BASE+MGCN: a city street with many cars 

and buses

SGAE: a busy highway filled with lots of 

traffic

GT: there are many cars and buses on the 

busy highway

Road

On

Car

Bus

On

Road

On

Car

Bus

On

BASE: a city street with many cars

BASE+MGCN: a city street with many cars 

and buses

SGAE: a busy highway filled with lots of 

traffic

GT: there are many cars and buses on the 

busy highway

Road

On

Car

Bus

On

(b): 45710(a): 553879 (c): 76529

(d):177861

BASE: a building with a chair on the side 

of it

BASE+MGCN: a street with a motorbike 

and a chair on it

SGAE: a narrow alley with a chair and a 

motorbike on the side of it

GT: a narrow alley way with a chair by the 

side

BASE: a building with a chair on the side 

of it

BASE+MGCN: a street with a motorbike 

and a chair on it

SGAE: a narrow alley with a chair and a 

motorbike on the side of it

GT: a narrow alley way with a chair by the 

side

Road

On

Chair

Motorbike

On

Road

On

Chair

Motorbike

On

BASE: a building with a chair on the side 

of it

BASE+MGCN: a street with a motorbike 

and a chair on it

SGAE: a narrow alley with a chair and a 

motorbike on the side of it

GT: a narrow alley way with a chair by the 

side

Road

On

Chair

Motorbike

On

Green

BASE: a couple of elephants walking in a 

field 

BASE+MGCN: two elephants walking in 

the grass in a field

SGAE: a couple of elephants walking 

through a lush green forest

GT: two elephants standing in grassy area 

with trees around

Green

BASE: a couple of elephants walking in a 

field 

BASE+MGCN: two elephants walking in 

the grass in a field

SGAE: a couple of elephants walking 

through a lush green forest

GT: two elephants standing in grassy area 

with trees around

Yellow

BASE: a banana sitting on top of a bowl

BASE+MGCN: a cup of coffee next to a 

yellow banana

SGAE: a cup of coffee next to a ripe 

banana 

GT: an over ripened banana and a cup of 

coffee

Yellow

BASE: a banana sitting on top of a bowl

BASE+MGCN: a cup of coffee next to a 

yellow banana

SGAE: a cup of coffee next to a ripe 

banana 

GT: an over ripened banana and a cup of 

coffee

Black

BASE: a person walking in the street

BASE+MGCN: a person walking in the 

street with a black umbrella

SGAE: a person walking down street with 

a black umbrella in the rain

GT: a group of people walking down a wet 

rain soaked sidewalk

Black

BASE: a person walking in the street

BASE+MGCN: a person walking in the 

street with a black umbrella

SGAE: a person walking down street with 

a black umbrella in the rain

GT: a group of people walking down a wet 

rain soaked sidewalk

Figure 5. Qualitative examples of different baselines. For each figure, the image scene graph is pruned to avoid clutter. The id refers to the

image id in MS-COCO. Word colors correspond to nodes in the detected scene graphs.

(a): 4760 (b): 199247 (c): 557135 (d): 520430 (e): 173385 (f): 412813

Base: a fire hydrant sitting on the side of 

a street

Web: a black fire hydrant sitting next to a 

sidewalk

SGAE: a green bench sitting next to a 

yellow fire hydrant

GT: a fire hydrant with a bench and 

building in a background

Base: a herd of sheep are laying in a field

Web: a herd of cows laying in the grass

SGAE: a herd of animals laying in a lush 

green  field

GT: a herd of animals laying down in a 

lush green field

Base: a bathroom with two sinks

Web: a bathroom with a sink and a 

mirror

SGAE: a bathroom with two sinks and a 

mirror

GT: a bathroom that has two sinks and a 

shower

Base: a woman holding a wii game 

controller

Web: a woman holding a game controller

SGAE: a woman holding a nintendo wii 

game controller

GT: a young woman smiling holding a 

video game remote

Base: an elephant is standing in front of a 

building

Web: an elephant is standing in the sands

SGAE: an elephant is standing in the dirt 

near a building 

GT: an elephant is by a tire and a pile of 

dirt

Base: an umbrella sitting on the beach

Web: a black umbrella sitting on the 

beach

SGAE: a black and white photo of an 

umbrella on the beach

GT: an umbrella is at the beach tilted 

over

Figure 6. Captions generated by using different language corpora.

Table 5. The performances of various methods on the online MS-

COCO test server.
Model B@4 M R-L C-D

Metric c5 c40 c5 c40 c5 c40 c5 c40

SCST [38] 35.2 64.5 27.0 35.5 56.3 70.7 114.7 116.0
LSTM-A [54] 35.6 65.2 27.0 35.4 56.4 70.5 116.0 118.0
StackCap [9] 34.9 64.6 27.0 35.6 56.2 70.6 114.8 118.3
Up-Down [2] 36.9 68.5 27.6 36.7 57.1 72.4 117.9 120.5
CAVP [27] 37.9 69.0 28.1 37.0 58.2 73.1 121.6 123.8
SGAEsingle 37.8 68.7 28.1 37.0 58.2 73.1 122.7 125.5
SGAEfuse 38.5 69.7 28.2 37.2 58.6 73.6 123.8 126.5

VG+COCO mean the results obtained by using texts from

VG and VG+COCO, respectively.

Results. We can observe that by using the web description

texts, the performances are boosted, which validates the po-

tential of our proposed model in exploiting additional Web

texts. We can also see that by using texts provided by MS-

COCO itself (SGAE), the generated captions have better

scores than using Web texts. This is intuitively reasonable

sinceD can preserve more useful clues when a matched lan-

guage corpus is given. All of these observations validate the

67%
10%

23%

SGAE vs. Base

39%

33%

28%

SGAE vs. Web

61%
12%

27%

Web vs. Base

SGAE Web Base Comparative

Figure 7. The pie charts each comparing the two methods in hu-

man evaluation. Each color indicates the percentage of users who

consider that the corresponding method generates more descrip-

tive captions. In particular, the gray color indicates that the two

methods are comparative.

effectiveness ofD in two aspects: D can memorize common

inductive bias from the additional unmatched Web texts or

specific inductive bias from a matched language corpus. In

addition, when language corpora of both VG and COCO are

exploited, a consistent improvement can be achieved com-

pared with the baselines where only one corpus is used.
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Qualitative Examples. Figure 6 shows 6 examples of gen-

erated captions by using different language corpora. Gen-

erally, compared with captions generated by Base, the cap-

tions of Web and SGAE are more descriptive. Specifically,

the captions generated by using the matched language cor-

pus can usually describe a scene by some specific expres-

sions in the dataset, while more general expressions will

appear in captions generated by using Web texts. For ex-

ample, in Figure 6 (b), SGAE uses “lush green field” as GT

captions while Web uses “grass” ; or in (e), SGAE prefers

“dirt” while Web prefers “sand”.

Human Evaluation. For better evaluating the qualities

of the generated captions by using different language cor-

pora, we conducted human evaluation with 30 workers. We

showed them two captions generated by different methods

and asked them which one is more descriptive. For each

pairwise comparison, 100 images are randomly extracted

from the Karpathy split for them to compare. The results

of the comparisons are shown in Figure 7. From these pie

charts, we can observe that when a D is used, the generated

captions are evaluated to be more descriptive.

6.2.3 Sentence Reconstruction

Comparing Methods. We investigated how well the sen-

tences are reconstructed in training SGAE in Eq. (5), with

or without using the re-encoding by D, that is, we denote

X̂ as the pipeline using D and X as the pipeline directly

reconstructing sentences from their scene graph node fea-

tures. Such results are given in Table 3.

Analysis. As we can see, the performances of using direct

scene graph features X̂ are much better than those (X ) im-

posed with D for re-encoding. This is reasonable since D
will regularize the reconstruction and thus encourages the

learning of language inductive bias. Interestingly, the gap

between X̂ and SGAE suggest that we should develop a

more powerful image scene graph parser for improving the

quality of G in Eq. (4), and a stronger re-encoder should be

designed for extracting more preserved inductive bias when

only low-quality visual scene graphs are available.

6.3. Comparisons with StateofTheArts

Comparing Methods. Though there are various captioning

models developed in recent years, for fair comparison, we

only compared SGAE with some encoder-decoder methods

trained by the RL-based reward (Eq. (3)), due to their su-

perior performances. Specifically, we compared our meth-

ods with SCST [38], StackCap [9], Up-Down [2], LSTM-

A [54], GCN-LSTM [53], and CAVP [27]. Among these

methods, SCST and Up-Down are two baselines where the

more advanced self-critic reward and visual features are

used. Compared with SCST, StackCap proposes a more

complex RL-based reward for learning captions with more

details. All of LSTM-A, GCN-LSTM, and CAVP try to

exploit information of visual scene graphs, e.g., LSTM-A

and GCN-LSTM exploit attributes and relationships infor-

mation respectively, while CAVP tries to learn pairwise re-

lationships in the decoder. Noteworthy, in GCN-LSTM,

they set the batch size as 1, 024 and the training epoch as

250, which is quite large compared with some other meth-

ods like Up-Down or CAVP, and is beyond our computation

resources. For fair comparison, we also re-implemented a

version of their work (since they do not publish the code),

and set the batch size and training epoch both as 100, such

result is denoted as GCN-LSTM† in Table 1. In addition,

the best result reported by GCN-LSTM is obtained by fus-

ing two probabilities computed from two different kinds of

relationships, which is denoted as GCN-LSTMfuse, and our

counterpart is denoted as SGAEfuse.

Analysis. From Table 1 and 4, we can see that our sin-

gle model can outperform the other image captioners. In

particular, when both cross-entropy loss and RL reward are

used, our single model can achieve a new state-of-the-art

score among all the compared methods in terms of CIDEr-

D, 127.8. And compared with GCN-LSTMfuse, our fusion

model SGAEfuse also achieves better performances. By

exploiting the inductive bias in D, even when our decoder

or RL-reward is not as sophisticated as CVAP or Stack-

Cap, our method still has better performances. Moreover,

our small batch size and fewer training epochs still lead to

higher performances than GCN-LSTM, whose batch size

and training epochs are much larger. Table 5 reports the per-

formances of different methods test on the official server.

Compared with the published captioning methods (by the

date of 16/11/2018), our single model has competitive per-

formances and can achieve the highest CIDEr-D score.

7. Conclusions

We proposed to incorporate the language inductive bias

— a prior for more human-like language generation — into

the prevailing encoder-decoder framework for image cap-

tioning. In particular, we presented a novel unsupervised

learning method: Scene Graph Auto-Encoder (SGAE), for

embedding the inductive bias into a dictionary, which can be

shared as a re-encoder for language generation and signif-

icantly improves the performance of the encoder-decoder.

We validated the SGAE-based framework by extensive ab-

lations and comparisons with state-of-the-art performances

on MS-COCO. As we believe that SGAE is a general solu-

tion for capturing the language inductive bias, we are going

to apply it in other vision-language tasks.
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