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Abstract

The clustering methods have recently absorbed even-

increasing attention in learning and vision. Deep cluster-

ing combines embedding and clustering together to obtain

optimal embedding subspace for clustering, which can be

more effective compared with conventional clustering meth-

ods. In this paper, we propose a joint learning framework

for discriminative embedding and spectral clustering. We

first devise a dual autoencoder network, which enforces the

reconstruction constraint for the latent representations and

their noisy versions, to embed the inputs into a latent space

for clustering. As such the learned latent representations

can be more robust to noise. Then the mutual information

estimation is utilized to provide more discriminative infor-

mation from the inputs. Furthermore, a deep spectral clus-

tering method is applied to embed the latent representations

into the eigenspace and subsequently clusters them, which

can fully exploit the relationship between inputs to achieve

optimal clustering results. Experimental results on bench-

mark datasets show that our method can significantly out-

perform state-of-the-art clustering approaches.

1. Introduction

As an important task in unsupervised learning [39, 8, 20]

and vision communities, clustering has been widely used

in image segmentation [33], image categorization [41], and

digital media analysis [1]. The goal of clustering is to find

a partition in order to keep similar data points in the same

cluster while dissimilar ones in different clusters. In recen-

t years, many clustering methods have been proposed, such

asK-means clustering [24], spectral clustering [27, 42], and

non-negative matrix factorization clustering [37], among

whichK-means and spectral clustering are two well-known
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(a) Raw data (b) ConvAE (c) Our method

Figure 1. Visualizing the discriminative embedding capability on

MNIST-test with t-SNE algorithm. (a): the space of raw data, (b):

data points in the latent subspace of convolution autoencoder; (c):

data points in the latent subspace of the proposed autoencoder net-

work. Our method can provide a more discriminative embedding

subspace.

conventional algorithms that are applicable to a wide range

of various tasks. However, these shallow clustering method-

s depend on low-level features such as raw pixels, SIFT [28]

or HOG [7] of the inputs. Their distance metrics are only

exploited to describe local relationships in data space, and

have limitation to represent the latent dependencies among

the inputs [3].

This paper presents a novel deep learning based unsu-

pervised clustering approach. Deep clustering, which inte-

grates embedding and clustering processes to obtain opti-

mal embedding subspace for clustering, can be more effec-

tive than shallow clustering methods. The main reason is

that the deep clustering methods can effectively model the

distribution of the inputs and capture the non-linear proper-

ty, being more suitable to real-world clustering scenarios.

Recently, many clustering methods are promoted by

deep generative approaches, such as autoencoder net-

work [25]. The popularity of the autoencoder network lies

in its powerful ability to capture high dimensional probabil-

ity distributions of the inputs without supervised informa-

tion. The encoder model projects the inputs into the latent
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space, and adopts an explicit approximation of maximum

likelihood to estimate the distribution diversity between the

latent representations and the inputs. Simultaneously, the

decoder model reconstructs the latent representations to en-

sure the output maintaining all of the details in the input-

s [34]. Almost all existing deep clustering methods endeav-

or to minimize the reconstruction loss. The hope is making

the latent representations more discriminative which direct-

ly determines the clustering quality. However, in fact, the

discriminative ability of the latent representations has no

substantial connection with the reconstruction loss, causing

the performance gap that is to be bridged in this paper.

We propose a novel dual autoencoder network for deep

spectral clustering. First, a dual autoencoder, which en-

forces the reconstruction constraint for the latent represen-

tations and their noisy versions, is utilized to establish the

relationships between the inputs and their latent represen-

tations. Such a mechanism is performed to make the la-

tent representations more robust. In addition, we adop-

t the mutual information estimation to reserve discrimina-

tive information from the inputs to an extreme. In this

way, the decoder can be viewed as a discriminator to de-

termine whether the latent representations are discrimina-

tive. Fig. 1 demonstrates the performance of our proposed

autoencoder network by comparing different data represen-

tations on MNIST-test data points. Obviously, our method

can provide more discriminative embedding subspace than

the convolution autoencoder network. Furthermore, deep

spectral clustering is harnessed to embed the latent repre-

sentations into the eigenspace, which followed by cluster-

ing. This procedure can exploit the relationships between

the data points effectively and obtain the optimal results.

The proposed dual autoencoder network and deep spectral

clustering network are jointly optimized.

The main contributions of this paper are in three-folds:

• We propose a novel dual autoencoder network for gen-

erating discriminative and robust latent representation-

s, which is trained with the mutual information estima-

tion and different reconstruction results.

• We present a joint learning framework to embed the

inputs into a discriminative latent space with a dual

autoencoder and assign them to the ideal distribution

by a deep spectral clustering model simultaneously.

• Empirical experiments demonstrate that our method

outperforms state-of-the-art methods over the five

benchmark datasets, including both traditional and

deep network-based models.

2. Related Work

Recently, a number of deep learning-based clustering

methods are proposed. Deep Embedding Clustering [36]

(DEC) adopts a fully connected stacked autoencoder net-

work in order to learn the latent representations by min-

imizing the reconstruction loss in the pre-training phase.

The objective function applied to the clustering phase is the

Kullback Leibler (KL) divergence between the soft assign-

ments of clustering modelled by a t-distribution. And then,

a K-means loss is adopted at the clustering phase to train a

fully connected autoencoder network [38], which is a joint

approach of dimensionality reduction andK-means cluster-

ing. In addition, Gaussian Mixture Variational Autoencoder

(GMVAE) [9] shows that minimum information constraint

can be utilized to mitigate the effect of over-regularization

in VAEs and provides an unsupervised clustering within the

VAE framework considering a Gaussian mixture as a pri-

or distribution. Discriminatively Boosted Clustering [21],

a fully convolutional network with layer-wised batch nor-

malization, adopts the same objective function as DEC and

uses a boosting factor to the relatively train a stacked au-

toencoder.

Shah and Koltun [30] jointly solve the tasks of clus-

tering and dimensionality reduction by efficiently optimiz-

ing a continuous global objective based on robust statistics,

which allows heavily mixed clusters to be untangled. Fol-

lowing this method, a deep continuous clustering approach

is suggested in [31], where the autoencoder parameters and

a set of representatives defined against each data-point are

simultaneously optimized. The convex clustering approach

proposed by [6] optimizes the representatives by minimiz-

ing the distances between each representative and its asso-

ciated data-point. Non-convex objectives are involved to

penalize for the pairwise distances between the representa-

tives.

Furthermore, to improve the performance of clustering,

some methods combine convolutional layers with fully con-

nected layers. Joint Unsupervised Learning (JULE) [40]

jointly optimizes a convolutional neural network with the

clustering parameters in a recurrent manner using an ag-

glomerative clustering approach, where image clustering

is conducted in the forward pass and representation learn-

ing is performed in the backward pass. Dizaji [10] pro-

poses DEPICT, a method that trains a convolutional auto-

encoder with a softmax layer stacked on-top of the en-

coder. The softmax entries represent the assignment of

each data-point to one cluster. VaDE [16] is a variation-

al autoencoder method for deep embedding, and combines

a Gaussian Mixture Model for clusering. In [15], a deep

autoencoder is trained to minimize a reconstruction loss

together with a self-expressive layer. This objective en-

courages a sparse representation of the original data. Zhou

et al. [44] presents a deep adversarial subspace clustering

(DASC) method to learn more favorable representations

and supervise sample representation learning by adversar-

ial deep learning [19]. However, the results of reconstruc-
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Figure 2. Illustration of the overall architecture. We first pre-train a dual autoencoder to embed the inputs into a latent space, and reconstruc-

tion results are obtained by the latent representations and their noise versions based on the noisy-transformer ψ. The mutual information

calculated with negative sampling estimation is utilized to learn the discriminative information from inputs. Then, we assign the latent

representations to the ideal clusters by a deep spectral clustering model, and jointly optimize the dual autoencoder and spectral clustering

network simultaneously.

tion through low-dimensional representations are often very

blurry. One possible way is to train a discriminator with ad-

versarial learning but it can further increase the difficulty of

training. Comparatively, our method introduces a relative

reconstruction loss and mutual information estimation to

obtain more discriminative representations, and jointly op-

timize the autoencoder network and the deep spectral clus-

tering network for optimal clustering.

3. Methodology

As aforementioned, our framework consists of two main

components: a dual autoencoder and a deep spectral clus-

tering network. The dual autoencoder, which reconstructs

the inputs using the latent representations and their noise

versions, is introduced to make the latent representations

more robust. In addition, the mutual information estimation

between the inputs and the latent representations is applied

to preserve the input information as much as possible. Then

we utilize the deep spectral clustering network to embed the

latent representations into the eigenspace and subsequently

clustering is performed. The two networks are merged into

a unified framework and jointly optimized with KL diver-

gence. The framework is shown in Fig. 2.

Let X = {x1, ..., xn} denote the input samples, Z =
{z1, ..., zn} denote their corresponding latent representa-

tions where zi = f(xi; θe) ∈ R
d is learned by the encoder

E. The parameters of the encoder are defined by θe, and

d is the feature dimension. x̃zi = g(zi; θd) represents the

reconstructed data point, which is the output of the decoder

D, and the parameters of the decoder are denoted by θd.

We adopt a deep spectral clustering network C to map zi to

yi = c(zi; θy) ∈ R
K , where K is the number of clusters.

3.1. Discriminative latent representation

We first train the dual autoencoder network to embed the

inputs into a latent space. Based on the original reconstruc-

tion loss, we add a noise-disturbed reconstruction loss to

learn the decoder network. In addition, we introduce the

maximization of mutual information [13] to the learning

procedure of the encoder network, so that the network can

obtain more robust representations.

Encoder: Feature extraction is the major step in cluster-

ing and a good feature can effectively improve clustering

performance. However, a single reconstruction loss can-

not well guarantee the quality of the latent representations.

We hope that the representations will help us to identify the

sample from the inputs, which means it is the most unique

information extracted from the inputs. Mutual information

measures the essential correlation between two samples and

can effectively estimate the similarity between features Z

and inputs X . The definition of mutual information is de-

fined as:

I(X,Z) =

∫∫

p(z|x)p(x) log p(z|x)
p(z)

dxdz

=KL(p(z|x)p(x)||p(z)p(x)),
(1)

where p(x) is the distribution of the inputs, p(z|x) is the

distribution of the latent representations, and the distribu-

tion of latent space p(z) can be calculated by p(z) =
∫

p(z|x)p(x)dx. The mutual information is expected to

be as large as possible when training the encoder network,

hence we have:

p(z|x) = max
θe

I(X,Z). (2)
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In addition, the learned latent representations are required

to obey the prior distribution of the standard normal distri-

bution with KL divergence. This is beneficial to make the

latent space more regular. The distribution difference be-

tween p(z) and its prior q(z) is defined as.

KL(p(z)||q(z)) =
∫

p(z)log
p(z)

q(z)
dz. (3)

According to Eqs. (2) and (3), we have:

p(z|x) = min
θe

{

−
∫∫

p(z|x)p(x) log p(z|x)
p(z)

dxdz

+α

∫

p(z) log
p(z)

q(z)
dz

}

.

(4)

It can be further rewritten as:

p(z|x) = min
θe

{
∫∫

p(z|x)p(x)[−(α+ 1) log
p(z|x)
p(z)

+α log
p(z|x)
q(z)

]dxdz

}

.

(5)

According to Eq. (1), the Eq. (5) can be viewed as:

p(z|x) = min
θe

{−βI(X,Z)

+γEx∼p(x)[KL(p(z|x)||q(z))]
}

.
(6)

Unfortunately, KL divergence is unbounded. Instead of us-

ing KL divergence, JS divergence is adopted for mutual

information maximization:

p(z|x) = min
θe

{−βJS(p(z|x)p(x), p(z)p(x))

+γEx∼p(x)[KL(p(z|x)||q(z))]
}

.
(7)

We have known that the variational estimation of JS di-

vergence [29] is defined as:

JS(p(x)||q(x)) = max
T

(Ex∼p(x)[log σ(T (x))]

+Ex∼q(x)[log(1− σ(T (x)))]).
(8)

where T (x) = log 2p(x)
p(x)+q(x) [29]. Here p(z|x)p(x) and

p(z)p(x) are utilized to replace p(x) and q(x). As a result,

Eq. (7) can be defined as:

p(z|x) = min
θe

{

−β(E(x,z)∼p(z|x)p(x)[log σ(T (x, z))]

+E(x,z)∼p(z)p(x)[log(1− σ(T (x, z)))])

+ γEx∼p(x)[KL(p(z|x)||q(z))]
}

.

(9)

Negative sampling estimation [13], which is the process

of using a discriminator to distinguish the real and noisy

𝟏𝟏 × 𝟏𝟏 Conv 
Discriminator 

“Real” “Fake” 

Scores 

𝐌𝐌 ×𝐌𝐌 features 
drawn from another image 

𝐌𝐌 ×𝐌𝐌 features + 
 replicated feature vector 

Latent Representation 
Negative Sample 

Figure 3. Local mutual information estimation.

samples to estimate the distribution of real samples, is gen-

erally utilized to solve the problem in Eq. (9). σ(T (x, z))
is a discriminator, where x and its latent representation z

together form a positive sample pair. We randomly select

zt from the disturbed batch to construct a negative sample

pair according to x. Note that Eq. (9) represents the global

mutual information between X and Z.

Furthermore, we extract the feature map from the middle

layer of the convolutional network, and construct the rela-

tionship between the feature map and the latent representa-

tion, which is the local mutual information. The estimation

method plays the same role as global mutual information.

The middle layer feature are combined with the latent repre-

sentation to obtain a new feature map. Then a 1×1 convolu-

tion is considered as the estimation network of local mutual

information, as shown in Fig. 3. The selection method of

negative samples is the same as global mutual information

estimation. Therefore, the objective function that needs to

be optimized can be defined as:

Le =− β(E(x,z)∼p(z|x)p(x)[log σ(T1(x, z))]

+ E(x,z)∼p(z)p(x)[log(1− σ(T1(x, z)))])

− β

hw
Σi,j(E(x,z)∼p(z|x)p(x)[log σ(T2(Cij , z))]

+ E(x,z)∼p(z)p(x)[log(1− σ(T2(Cij , z)))])

+ γEx∼p(x)[KL(p(z|x)||q(z))],
(10)

where h and w represent the height and width of the feature

map. Cij represents the feature vector of the middle feature

map at coordinates (i, j) and q(z) is the standard normal

distribution.

Decoder: In the existing decoder networks, the reconstruc-

tion loss is generally a suboptimal scheme for clustering,

due to the natural trade-off between the reconstruction and

the clustering tasks. The reconstruction loss mainly depend-

s on the two parts: the distribution of the latent representa-

tions and the generative capacity of decoder network. How-
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ever, the generative capacity of the decoder network is not

required in the clustering task. Our real goal is not to obtain

the best reconstruction results, but to get more discrimina-

tive features for clustering. We directly use noise distur-

bance in the latent space to discard known nuisance fac-

tors from the latent representations. Models trained in this

fashion become robust by exclusion rather than inclusion,

and are expected to perform well on clustering tasks, where

even the inputs contain unseen nuisance [14]. A noisy-

transformer ψ is utilized to convert the latent representa-

tions Z into their noisy versions Ẑ, and then the decoder re-

constructs the inputs from Ẑ and Z. The reconstruction re-

sults can be defined as x̃ẑi = g(ẑi; θd) and x̃zi = g(zi; θd),
and the relative reconstruction loss can be written as:

Lr(x̃ẑi , x̃zi) =‖ x̃ẑi − x̃zi ‖2F , (11)

where ‖ · ‖F stands for the Frobenius norm. We also use the

original reconstruction loss to ensure the performance of the

decoder network and consider ψ as multiplicative Gaussian

noise. The complete reconstruction loss can be defined as:

Lr =‖ x̃ẑi − x̃zi ‖2F +δ ‖ x− x̃zi ‖2F . (12)

where δ stands for the strength of different reconstruction

loss.

Hence, by considering all the items, the total loss of the

autoencoder network can be defined as:

min
θd,θe

Lr + Le. (13)

3.2. Deep Spectral Clustering

The learned autoencoder parameters θe and θd are con-

sidered as an initial condition in the clustering phase. Spec-

tral clustering can effectively use the relationship between

samples to reduce intra-class differences, and produce bet-

ter clustering results than K-means. In this step, we first

adopt the autoencoder network to learn the latent represen-

tations. Next, a spectral clustering method is used to em-

bed the latent representations into the eigenspace of their

associated graph Laplacian matrix. All the samples will

be subsequently clustered in this space. Finally, both the

autoencoder parameters and clustering objective are jointly

optimized.

Specifically, we first utilize the latent representations Z

to construct the non-negative affinity matrix W :

Wi,j = e−
‖zi−zj‖

2

2σ2 . (14)

The loss function of spectral clustering is defined as:

Lc = E[Wi,j ‖ yi − yj ‖2], (15)

where yi is the output of the network. When we adopt the

general neural network to output y, we randomly select a

minibatch of m samples at each iteration and thus the loss

function can be defined as:

Lc =
1

m2

m
∑

i,j=1

Wi,j ‖ yi − yj ‖2 . (16)

In order to prevent that all points are grouped into the

same cluster in network maps, the output y is required to be

orthonormal in expectation. That is to say:

1

m
Y TY = Ik×k, (17)

where Y is a m × k matrix of the outputs whose ith row is

yTi . The last layer of the network is utilized to enforce the

orthogonality [32] constraint. This layer gets input from K

units, and acts as a linear layer with K outputs, in which

the weights are required to be orthogonal, producing the or-

thogonalized output Y for a minibatch. Let Ỹ denote the

m × k matrix containing the inputs to this layer for Z, a

linear map that orthogonalizes the columns of Ỹ is comput-

ed through its QR decomposition. Since integrated A⊤A is

full rank for any matrix A, the QR decomposition can be

obtained by the Cholesky decomposition:

A⊤A = BB⊤, (18)

where B is a lower triangular matrix, and Q = A(B−1)⊤.

Therefore, in order to orthogonalize Ỹ , the last layer mul-

tiplies Ỹ from the right by
√
m(L−1)T . Actually, L̃ can

be obtained from the Cholesky decomposition of Ỹ and the√
m factor is needed to satisfy Eq. (17).

We unify the latent representation learning and the spec-

tral clustering using KL divergence. In the clustering

phase, the last term of Eq. (10) can be rewritten as:

Ex∼p(x)[KL(p((y, z)|x)||q(y, z))], (19)

where p((y, z)|x) = p(y|z)p(z|x) and q(y, z) =
q(z|y)q(y). Note q(z|y) is a normal distribution with mean

µy and variance 1. Therefore, the overall loss of the autoen-

coder and the spectral clustering network is defined as:

min
θd,θe,θc

Lr + Le + Lc. (20)

Finally, we jointly optimize the two networks until con-

vergence to obtain the desired clustering results.

4. Experiments

In this section, we evaluate the effectiveness of the pro-

posed clustering method in five benchmark datasets, and

then compare the performance with several state-of-the-

arts.
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Table 1. Description of Datasets

Dataset Samples Classes Dimensions

MNIST-full 70,000 10 1×28×28

MNIST-test 10,000 10 1×28×28

USPS 9298 10 1×16×16

Fashion-Mnist 70,000 10 1×28×28

YTF 10,000 41 3×55×55

(a) MNIST

(b) Fashion-Mnist

Figure 4. The image samples from the benchmark datasets used in

our experiments

4.1. Datasets

In order to show that our method works well with various

kinds of datasets, we choose the following image datasets.

Considering that clustering tasks are fully unsupervised, we

concatenate the training and testing samples when applica-

ble. MNIST-full [18]: A dataset containing a total of 70,000

handwritten digits with 60,000 training and 10,000 testing

samples, each being a 32×32 monochrome image. MNIST-

test: A dataset only consists of the testing part of MNIST-

full data. USPS: A handwritten digits dataset from the USP-

S postal service, containing 9,298 samples of 16×16 im-

ages. Fashion-MNIST [35]: This dataset has the same num-

ber of images and the same image size with MNIST, but it

is fairly more complicated. Instead of digits, it consists of

various types of fashion products. YTF: We adopt the first

41 subjects of YTF dataset and the images are first cropped

and resized to 55 × 55. Some image samples are shown in

Fig. 4. The brief descriptions of the datasets are given in

Tab. 1.

4.2. Clustering Metrics

To evaluate the clustering results, we adopt two standard

evaluation metrics: Accuracy (ACC) and Normalized Mu-

tual Information (NMI) [37].

The best mapping between cluster assignments and true

labels is computed using the Hungarian algorithm to mea-

sure accuracy [17]. For completeness, we define ACC by:

ACC = max
m

∑n

i=1 1{li = m(ci)}
n

, (21)

where li and ci are the true label and predicted cluster of

data point xi.

NMI calculates the normalized measure of similarity be-

tween two labels of the same data, which is defined as:

NMI =
I(l; c)

max{H(l), H(c)} , (22)

where I(l, c) denotes the mutual information between true

label l and predicted cluster c, and H represents their en-

tropy. Results of NMI do not change by permutations of

clusters (classes), and they are normalized to the range of

[0, 1], with 0 meaning no correlation and 1 exhibiting per-

fect correlation.

4.3. Implementation Details

In our experiments, we set β = 0.01, γ = 1, and

δ = 0.5. The channel numbers and kernel sizes of the

autoencoder network are shown in Tab. 2, and the dimen-

sion of latent space is set to 120. The deep spectral cluster-

ing network consists of four fully connected layers, and we

adopt ReLU [22] as the non-linear activations. We construct

the original weight matrix W with probabilistic K-nearest

neighbors for each dataset. The weight Wij is calculated as

nearest-neighbor graph [11], and the number of neighbors

is set to 3.

4.4. Comparison Methods

We compare our clustering model with several base-

lines, including K-means [24], spectral clustering with nor-

malized cuts (SC-Ncut) [33], large-scale spectral clustering

(SC-LS) [4], NMF [2], graph degree linkage-based agglom-

erative clustering (AC-GDL) [43]. In addition, we also eval-

uate the performance of our method with several state-of-

the-art clustering algorithms based on deep learning, includ-

ing deep adversarial subspace clustering (DASC) [44], deep

embedded clustering (DEC) [36], variational deep embed-

ding (VaDE) [16], joint unsupervised learning (JULE) [40],

deep embedded regularized clustering (DEPICT) [10], im-

proved deep embedded clustering with locality preservation

(IDEC) [12], deep spectral clustering with a set of near-

est neighbor pairs (SpectralNet) [32], clustering with GAN

(ClusterGAN) [26] and GAN with the mutual information

(InfoGAN) [5].

4.5. Evaluation of Clustering Algorithm

We run our method with 10 random trials and report the

average performance, the error range is no more than 2%. In

terms of the compared methods, if the results of their meth-

ods on some datasets are not reported, we run the released
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Table 2. Description the structure of the autoencoder network

Method encoder-1/decoder-4 encoder-2/decoder-3 encoder-3/decoder-2 encoder-4/decoder-1

MNIST 3×3×16 3×3×16 3×3×32 3×3×32

USPS 3×3×16 3×3×32 - -

Fashion-Mnist 3×3×16 3×3×16 3×3×32 3×3×32

YTF 5×5×16 5×5×16 5×5×32 5×5×32

Table 3. Clustering performance of different algorithms on five datasets based on ACC and NMI

Method
MNIST-full MNIST-test USPS Fashion-10 YTF

NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC

K-means [24] 0.500 0.532 0.501 0.546 0.601 0.668 0.512 0.474 0.776 0.601

SC-Ncut [33] 0.731 0.656 0.704 0.660 0.794 0.649 0.575 0.508 0.701 0.510

SC-LS [4] 0.706 0.714 0.756 0.740 0.755 0.746 0.497 0.496 0.759 0.544

NMF [2] 0.452 0.471 0.467 0.479 0.693 0.652 0.425 0.434 - -

AC-GDL [43] 0.017 0.113 0.864 0.933 0.825 0.725 0.010 0.112 0.622 0.430

DASC [44] 0.784∗ 0.801∗ 0.780 0.804 - - - - - -

DEC [36] 0.834∗ 0.863∗ 0.830∗ 0.856∗ 0.767∗ 0.762∗ 0.546∗ 0.518∗ 0.446∗ 0.371∗

VaDE [16] 0.876 0.945 - - 0.512 0.566 0.630 0.578 - -

JULE [40] 0.913∗ 0.964∗ 0.915∗ 0.961∗ 0.913 0.950 0.608 0.563 0.848 0.684

DEPICT [10] 0.917∗ 0.965∗ 0.915∗ 0.963∗ 0.906 0.899 0.392 0.392 0.802 0.621

IDEC [12] 0.867∗ 0.881∗ 0.802 0.846 0.785∗ 0.761∗ 0.557 0.529 - -

SpectralNet [32] 0.814 0.800 0.821 0.817 - - - - 0.798 0.685

InfoGAN [5] 0.840 0.870 - - - - 0.590 0.610 - -

ClusterGAN [26] 0.890 0.950 - - - - 0.640 0.630 - -

Our Method 0.941 0.978 0.946 0.980 0.857 0.869 0.645 0.662 0.857 0.691

code with hyper-parameters mentioned in their papers, and

the results are marked by (*) on top. When the code is not

publicly available, or running the released code is not prac-

tical, we put dash marks (-) instead of the corresponding

results.

The clustering results are shown in Tab. 3, where the

first five are conventional clustering methods. In the table,

we can notice that our proposed method outperforms the

competing methods on these benchmark datasets. We ob-

serve that the proposed method can improve the clustering

performance whether in digital datasets or in other product

dataset. Especially when performing on the object dataset

MNIST-test, the clustering accuracy is over 98%. Specifi-

cally, it exceeds the second best DEPICT which is trained

on the noisy versions of the inputs by 1.6% and 3.1% on

ACC and NMI respectively. Moreover, our method achieves

much better clustering results than several classical shallow

baselines. This is because compared with shallow method-

s, our method uses a multi-layer convolutional autoencoder

as the feature extractor and adopts deep clustering network

to obtain the most optimal clustering results. The Fashion-

MNIST dataset is very difficult to deal with due to the com-

plexity of samples, but our method still harvests good re-

sults.

We also investigate the parameter sensitivity on MNIST-

test, and the results are shown in Fig. 5, where Fig. 5(a)

(a) (b)

Figure 5. ACC and NMI of Our method with different β and γ on

MNIST dataset

represents the results of ACC from different parameters and

Fig. 5(b) is the results of NMI. It intuitively demonstrates

that our method maintains acceptable results with most pa-

rameter combinations and has relative stability.

4.6. Evaluation of Learning Approach

We compare different strategies for training our mod-

el. For training a multi-layer convolutional autoencoder,

we analyze the following four approaches: (1) convolution-

al autoencoder with original reconstruction loss (ConvA-

E), (2) convolutional autoencoder with original reconstruc-

tion loss and mutual information (ConvAE+MI), (3) con-

volutional autoencoder with improved reconstruction loss

(ConvAE+RS) and (4) convolutional autoencoder with im-
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Table 4. Clustering performance with different strategies on five datasets based on ACC and NMI

Method
MNIST-full MNIST-test USPS Fashion-10 YTF

NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC

ConvAE 0.745 0.776 0.751 0.781 0.652 0.698 0.556 0.546 0.642 0.476

ConvAE+MI 0.800 0.835 0.796 0.844 0.744 0.785 0.609 0.592 0.738 0.571

ConvAE+RS 0.803 0.841 0.801 0.850 0.752 0.798 0.597 0.614 0.721 0.558

ConvAE+MI+RS 0.910 0.957 0.914 0.961 0.827 0.831 0.640 0.656 0.801 0.606

ConvAE+MI+RS+SN 0.941 0.978 0.946 0.980 0.857 0.869 0.645 0.662 0.857 0.691

(a) Raw data (b) ConvAE (c) DEC (d) SpectralNet

(e) ConvAE+RS (f) ConvAE+MI (g) ConvAE+RS+MI (h) ConvAE+MI+RS+SN

Figure 6. Visualization to show the discriminative capability of embedding subspaces using MNIST-test data.

proved reconstruction loss and mutual information (Con-

vAE+MI+RS). The last one is the joint training of convo-

lutional autoencoder and deep spectral clustering. Tab. 4

represents the performance of different strategies for train-

ing our model. It clearly demonstrates that each kind of

strategy of our method can improve the accuracy of cluster-

ing effectively, especially after adding mutual information

and the improved reconstruction loss in the convolutional

autoencoder network. Fig. 6 demonstrates the importance

of our proposed strategy by comparing different data rep-

resentations of MNIST-test data points using t-SNE visu-

alization [23], Fig. 6(a) represents the space of raw data,

Fig. 6(b) is the data points in the latent subspace of convo-

lution autoencoder, Fig. 6(c) and 6(d) are the results of DEC

and SpectralNet respectively, and the rest are our proposed

model with different strategies. The results demonstrate the

latent representations obtained by our method have more

clear distribution structure.

5. Conclusion

In this paper, we propose an unsupervised deep cluster-

ing method with a dual autoencoder network and a deep

spectral network. First, the dual autoencoder, which recon-

structs the inputs using the latent representations and their

noise-contaminated versions, is utilized to establish the re-

lationships between the inputs and the latent representations

in order to obtain more robust latent representations. Fur-

thermore, we maximize the mutual information between the

inputs and the latent representations, which can preserve

the information of the inputs as much as possible. Hence,

the features of the latent space obtained by our autoencoder

are robust to noise and more discriminative. Finally, the

spectral network is fused to a unified framework to cluster

the features of the latent space, so that the relationship be-

tween the samples can be effectively utilized. We evaluate

our method on several benchmarks and experimental result-

s show that our method outperforms those state-of-the-art

approaches.
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