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Abstract

Hand image synthesis and pose estimation from RGB im-

ages are both highly challenging tasks due to the large dis-

crepancy between factors of variation ranging from image

background content to camera viewpoint. To better ana-

lyze these factors of variation, we propose the use of dis-

entangled representations and a disentangled variational

autoencoder (dVAE) that allows for specific sampling and

inference of these factors. The derived objective from the

variational lower bound as well as the proposed training

strategy are highly flexible, allowing us to handle cross-

modal encoders and decoders as well as semi-supervised

learning scenarios. Experiments show that our dVAE can

synthesize highly realistic images of the hand specifiable by

both pose and image background content and also estimate

3D hand poses from RGB images with accuracy competitive

with state-of-the-art on two public benchmarks.

1. Introduction

Vision-based hand pose estimation has progressed very

rapidly in the past years [27, 38], driven in part by its po-

tential for use in human-computer interaction applications.

Advancements are largely due to the widespread availability

of commodity depth sensors as well as the strong learning

capabilities of deep neural networks. As a result, the major-

ity of state-of-the-art methods apply deep learning methods

to depth images [5, 6, 7, 8, 14, 18, 19, 32, 33]. Estimating

3D hand pose from single RGB images, however, is a less-

studied and more difficult problem which has only recently

gained some attention [3, 16, 21, 25, 40].

Unlike depth, which is a 2.5D source of information,

RGB inputs have significantly more ambiguities. These

ambiguities arise from the 3D to 2D projection and di-

verse backgrounds which are otherwise less pronounced in

depth images. As such, methods which tackle the problem

of monocular RGB hand pose estimation rely on learning

from large datasets [40]. However, given the difficulties

of accurately labelling hand poses in 3D, large-scale RGB

datasets collected to date are synthesized [16, 40]. Real

Figure 1: Illustration of dVAE. The red lines denote variational

approximations while the black lines denote the generative model.

With the help of labelled factors of variations (e.g. pose, viewpoint

and image content), we learn a disentangled and specifiable rep-

resentation for RGB hand images in a VAE framework.

recorded datasets are much smaller, with only tens of se-

quences [30, 39]. This presents significant challenges when

it comes to learning and motivates the need for strong kine-

matic and or image priors.

Even though straight-forward discriminative approaches

have shown great success in accurately estimating hand

poses, there has also been growing interest in the use

of deep generative models such as adversarial networks

(GANs) [16, 32] and variational autoencoders (VAEs) [25].

Generative models can approximate and sample from the

underlying distribution of hand poses as well as the associ-

ated images, and depending on the model formulation, may

enable semi-supervised learning. This is particularly ap-

pealing for hand pose estimation, for which data with accu-

rate ground truth can be difficult to obtain. One caveat, how-

ever, is that in their standard formulation, GANs and VAEs

learn only black-box latent representations. Such repre-

sentations offer little control for conditioning upon human-

interpretable factors. Of the deep generative works pre-

sented to date [16, 25, 32], the latent representations are

specifiable only by hand pose. Consequently it is possible

to sample only a single (average) image per pose.
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A recent work combining VAEs and GANs [4] intro-

duced a conditional dependency structure to learn image

backgrounds and demonstrated the possibility of transfer-

ring body poses onto different images. Inspired by this

work, we would like to learn a similar latent representation

that can disentangle the different factors that influence how

hands may appear visually, i.e. normalized hand pose, cam-

era viewpoint, scene context and background, etc. At the

same time, we want to ensure that the disentangled repre-

sentation remains sufficiently discriminative to make highly

accurate estimates of 3D hand pose.

We present in this paper a disentangled variational au-

toencoder (dVAE) – a novel framework for learning disen-

tangled representations of hand poses and hand images. As

the factors that we would like to disentangle belong to dif-

ferent modalities, we begin with a cross-modal VAE [20,

25] as the baseline upon which we define our dVAE. By

construction, our latent space is a disentangled one, com-

posed of sub-spaces calculated by factors and a training

strategy to fuse different latent space into one disentangled

latent space. We show how these disentangled factors can

be learned from both independent and confounding label in-

puts. To the best of our knowledge, our proposed model is

the first disentangled representation that is able to both syn-

thesize hand images and estimate hand poses with explicit

control over the latent space. A schematic illustration of our

dVAE and the disentangled factors is shown in Fig. 1. We

summarize our contributions below:

• We propose a novel disentangled VAE model crossing

different modalities; this model is the first VAE-based

model that uses independent factors of variations to

learn disentangled representations.

• Our dVAE model is highly flexible and handles mul-

tiple tasks including RGB hand image synthesis, pose

transfer and 3D pose estimation from RGB images.

• We enable explicit control over different factors of

variation and introduce the first model with multiple

degrees of freedom for synthesizing hand images.

• We decouple the learning of disentangling factors and

the embedding of image content and introduce two

variants of learning algorithms for both independent

and confounding labels.

2. Related Works

2.1. Hand Pose Estimation

Much of the progress made in hand pose estimation have

focused on using depth image inputs [5, 6, 7, 8, 11, 14, 15,

18, 19, 32, 33, 35]. State-of-the-art methods use a convolu-

tional neural network (CNN) architecture, with the majority

of works treating the depth input as 2D pixels, though a few

more recent approaches treat depth inputs as a set of 3D

points and or voxels [7, 5, 15].

Estimating hand poses from monocular RGB inputs is

more challenging. Early methods could recognize only a

restricted set of poses [1, 36] or used simplified hand rep-

resentations instead of full 3D skeletons [26, 37]. In more

recent approaches, the use of deep learning and CNNs has

become common-place [3, 21, 40]. In [16, 25], deep gener-

ative models such as variational auto-encoders (VAE) [25]

and generative adversarial networks (GANs) [16] are ap-

plied, which makes feasible not only to estimate pose, but

also generate RGB images from given hand poses.

Two hand pose estimation approaches [32, 25] stand out

for being similar to ours in spirit. They also use shared la-

tent spaces, even though the nature of these spaces are very

different. Wan et al. [32] learns two separate latent spaces,

one for hand poses and one for depth images, and uses a

one-to-one mapping function to connect the two. Spurr et

al. [25] learns a latent space that cross multiple hand modal-

ities, such as RGB to pose and depth to pose. To force the

cross-modality pairings onto a single latent space, separate

VAEs are learned in an alternating fashion, with one input

modality contributing to the loss per iteration. Such a learn-

ing strategy is non-ideal, as it tends to result in fluctuations

in the latent space and has no guarantees for convergence.

Additionally, by assuming all crossing modalities as one-to-

one mappings, only one image can be synthesized per pose.

Different from [32] and [25], our dVAE learns a single

latent space by design. We learn the latent space with the

different modalities jointly, as opposed to alternating frame-

work of [25]. We find that our joint learning is more stable

and has better convergence properties. And because we ex-

plicitly model and disentangle image factors, we can handle

one-to-many mappings, i.e. synthesize multiple images of

the same hand pose.

2.2. Disentangled Representations

Disentangled representations separate data according to

salient factors of variation and have recently been learned

with deep generative models such as VAEs and GANs.

Such representations have been applied successfully to im-

age editing [2, 4, 13, 17, 24, 28], video generation [29]

and image-to-image translation [12]. Several of these

works [24, 28, 29, 34], however, require specially designed

layers and loss functions, making the architectures difficult

to work with and extend beyond their intended task.

Previous works learning disentangled representations

with VAEs [2, 12, 13] typically require additional weak la-

bels such as grouping information [2, 13] and pairwise sim-

ilarities [12]. Such labels can be difficult to obtain and are

often not defined for continuous variables such as hand pose

and viewpoint. In [4, 17], a conditional dependency struc-

ture is proposed to train disentangled representations for a
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semi-supervised learning. The work of [4] resembles ours

in the sense that they also disentangle pose from appear-

ance; however, their conditional dependency structure is

sensitive to the number of factors. As the number of factors

grows, the complexity of the network structure increases ex-

ponentially. In comparison to existing VAE approaches, we

are able to learn interpretable and disentangled representa-

tions by the shared latent space produced by image and its

corresponding factors without additional weak labels.

3. Methodology

3.1. Cross Modal VAE

Before we present how a disentangled latent space

can be incorporated into a VAE framework across differ-

ent modalities, we first describe the original cross modal

VAE [20, 25]. As the name suggests, the cross modal VAE

aims to learn a VAE model across two different modalities

x and y. We begin by defining the log probability of the

joint distribution p(x,y). Since working with this distribu-

tion is intractable, one maximizes the evidence lower bound

(ELBO) instead via a latent variable z. Note that x and y

are assumed to be conditionally independent given the la-

tent z, i.e. (x⊥y | z).

log p(x,y) ≥ ELBOcVAE(x,y, θx, θy, φ) (1)

= Ez∼qφ log pθx(x|z) + Ez∼qφ log pθy(y|z)

−DKL(qφ(z|x)||p(z)).

Here, DKL(·) is the Kullback-Leibler divergence. The vari-

ational approximation qφ(z|x) can be thought of as an en-

coder from x to z, while pθx(x|z) and pθy(y|z) can be

thought of as decoders from z to x and z to y respectively.

p(z) = N (0, I) is a Gaussian prior on the latent space.

In the context of hand pose estimation, x would represent

the RGB or depth image modality and y the hand skeleton

modality. One can then estimate hand poses from images

by encoding the image x into the latent space and decoding

the corresponding 3D hand pose y. A variant of this model

was applied in [25] and shown to successfully estimate hand

poses from RGB images or depth images.

3.2. Disentangled VAE

In our disentangled VAE, we define a latent variable z

which can be deterministically decomposed into N + 1 in-

dependent factors {zy1
, zy2

, ..., zyN
, zu}. Of these factors,

{zyi
}i=1...N are directly associated with observed variables

{yi}i=1...N . zu is an extra latent factor which is not inde-

pendently associated with any observed variables; it may or

may not be included (compare Fig. 2a versus Fig. 2b).

Fully specified latent z: We begin first by consider-

ing the simplified case in which z can be fully specified by
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(a) dVAE
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Figure 2: Graphical models of disentangled VAEs. The shaded

nodes represent observed variables while un-shaded nodes are la-

tent. The red and black solid lines denote variational approxima-

tions qφ or encoders, and the generative models pθ or decoders re-

spectively. The dashed lines denote deterministically constructed

variables. Figure best viewed in colour.

zyi
without zu, i.e. all latent factors can be associated with

some observed yi. For clarity, we limit our explanation to

N = 2, though the theory generalizes to higher N as well.

Our derivation can be separated into a disentangling step

and an embedding step. In the disentangling step, we first

consider the joint distribution between x, y1 and y2. The

evidence lower bound of this distribution can be defined as:

log p(x,y1,y2) ≥ ELBOdis(x,y1,y2, φy1
, φy2

, θy1
, θy2

, θx)

= λxEz∼qφy1
,φy2

log pθx(x|z)

+ λy1
Ezy1

∼qφy1

log pθy1
(y1|zy1

)

+ λy2
Ezy2

∼qφy2

log pθy2
(y2|zy2

)

− βDKL

(

qφy1
,φy2

(z|y1,y2)||p(z)
)

, (2)

where the λs and β are additional hyperparameters added to

trade off between latent space capacity and reconstruction

accuracy, as recommended by the β trick [10].

The ELBO in Eq. 2 allows us to define a disentangled

z = [zy1
, zy2

] based on y1, y2 and x. In this step, one

can learn the encoding and decoding of yi to and from zyi
,

as well as the decoding of z to x. However, the mapping

from x to z is still missing so we need an additional embed-

ding step [31] to learn the encoder qφx
(z|x). Keeping all

decoders fixed, qφx
(z|x) can be learned by maximizing:

L(φx|θy1
, θy2

, θx) = −DKL (qφx
(z|x)||pθ(z|x,y1,y2))

= ELBOemb(x,y1,y2, φx)− log p(x,y1,y2). (3)

Since the second term is constant with respect to φx and the

θ’s, the objective simplifies to the following evidence lower
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bound with λ′ and β′ as hyperparameters:

ELBOemb(x,y1,y2, φx) = λ′

xEz∼qφx
log pθx(x|z)

+ λ′

y1
Ezy1

∼qφx
log pθy1

(y1|zy1
)

+ λ′

y2
Ezy2

∼qφx
log pθy2

(y2|zy2
)

− β′DKL(qφx
(z|x)||p(z)). (4)

Combining the disentangling and embedding evidence

lower bounds, we get the following joint objective:

L(φx,φy1
, φy2

, θx, θy1
, θy2

) =

ELBOdis(x,y1,y2, φy1
, φy2

, θx, θy1
, θy2

)

+ELBOemb(x,y1,y2, φx). (5)

The above derivation shows that the encoding of modal-

ity x can be decoupled from y1 and y2 via a disentangled

latent space. We detail the training strategy for the fully

specified version of the dVAE in Alg. 1.

Additional zu: When learning a latent variable model,

many latent factors may be very difficult to associate in-

dependently with an observation (label), e.g. the style of

handwritten digits, or the background content in an RGB

image [4, 13, 2]. Nevertheless, we may still want to disen-

tangle such factors from those which can be associated in-

dependently. We model these factors in aggregate form via

a single latent variable zu and show how zu can be disen-

tangled from the other zyi
which are associated with direct

observations yi. For clarity of discussion, we limit N = 1,

such that z = [zy1
, zu]. To disentangle zu from z, both of

which are specified by a confounding x, we aim to make

zu and y1 conditionally independent given zy1
To achieve

this, we try to make p(y1|zy1
, zu) approximately equal to

Algorithm 1 dVAE learning for fully specified z.

Require: x,y1,y2, λx, λy1
, λy2

, β, T1, T2

Ensure: φx, φy1
, φy2

, θx, θy1
, θy2

1: Initialize φx, φy1
, φy2

, θx, θy1
, θy2

2: for t1 = 1, . . . , T1 epochs do

3: Encode y1,y2 to qφy1
(zy1
|y1), qφy2

(zy2
|y2)

4: Construct z← [zy1
, zy2

]
5: Decode z to pθx(x|z), pθy1

(y1|zy1
), pθy2

(y2|zy2
)

6: Update φy1
, φy2

, θy1
, θy2

, θx via gradient ascent of

Eq. 2

7: end for

8: for t2 = 1, . . . , T2 epochs do

9: Encode x to qφx
(z|x)

10: Construct [zy1
, zy2

]← z

11: Decode z to pθx(x|z), pθy1
(y1|zy1

), pθy2
(y2|zy2

)
12: Update φx via gradient ascent of Eq. 4

13: end for

p(y1|zy1
) and update the encoder and the decoder of y1

by random sampling of zu and minimizing the distance be-

tween p(y1|zy1
, zu) and p(y1|zy1

). The training strategy

for this is detailed in Alg. 2. In this case, the joint distribu-

tion of x and y1 has the following evidence lower bound in

the disentangling step with hyperparameters λ′′ and β′′:

log p(x,y1) ≥ ELBOu
dis(x,y1, φy1

, φu, θy1
, θx)

=λ′′

xEz∼qφy1
,φu

log pθx(x|z)

+λ′′

y1
Ez∼qφy1

,φu
log pθy1

(y1|z)

−β′′DKL(qφy1
,φu

(z|y1,x)||p(z)). (6)

Note that in the above ELBO, zu is encoded from x by qφu

instead of being specified by some observed label u, as was

done previously in [13, 2, 4]. After this modified disentan-

gling step, we can apply the same embedding step in Eq. 3

to learn qφx
(z|x).

Multiple x modalities: The situation may arise in which

we have multiple input modalities which fully specify and

share the latent space of z, i.e. not only an x but also an ad-

ditional x̂ (see Fig. 2c). Here, it is possible to first consider

the joint distribution between x, y1 and y2, and maximize

the ELBO in Eq. 2 for the disentangling step. To link the

two modalities of x and x̂ into the same disentangled latent

space and embed x̂, we can use the following:

L(φx̂|θx, θy1
, θy2

) = −DKL(qφx̂
(z|x̂)||pθ(z|x,y1,y2))

= ELBO′

emb(x̂,x,y1,y2, φx̂)− log p(x,y1,y2).
(7)

Similar to Eq. 4, we get the following evidence lower bound

with λ′′′ and β′′′ as hyperparameters:

ELBO′

emb(x̂,x,y1,y2, φx̂) = λ′′′

x Ez∼qφx̂
log pθx(x|z)

+ λ′′′

y1
Ezy1

∼qφx̂
log pθy1

(y1|zy1
)

+ λ′′′

y2
Ezy2

∼qφx̂
log pθy2

(y2|zy2
)

− β′′′DKL(qφx̂
(z|x̂)||p(z)). (8)

For learning, one simply encodes x̂ with qφx̂
(z|x̂) to z in-

stead of pφx
(z|x) as shown currently in line 9 of Alg. 1. A

full derivation of the dVAE and its variants is given in the

supplementary.

3.3. Applications

Based on the theory proposed above, we develop two ap-

plications: image synthesis and pose estimation from RGB

images. Like [40], we distinguish between an absolute 3D

hand pose (3DPose), a canonical hand pose (CPose), and a

viewpoint. The canonical pose is a normalized version of

the 3D pose within the canonical frame, while viewpoint is

the rotation matrix that rotates CPose to 3DPose.
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Figure 3: Inference models for the tasks of image synthesis (left and middle) and pose estimation (right).

In image synthesis, we would like to sample values of

z and decode this into an image x via the generative model

pθx . To control the images being sampled, we want to have

a latent z which is disentangled with respect to the 3DPose,

and image (background) content, i.e. all aspects of the RGB

image not specifically related to the hand pose itself. A

schematic of the image synthesis is shown in the left panel

of Fig. 3; in this case, we follow the model in Fig. 2a and

use Alg. 1. Here, y1 would represent 3DPose and y2 would

represent the image content; similar to [29], this content is

specified by a representative tag image. By changing the

inputs y1 and y2, i.e. by varying the 3DPose and content

through the encoders qφy1
and qφy2

, we synthesize new im-

ages with specified poses and background content. Further-

more, we can also evaluate the pose error of the synthesized

image via the pose decoder pθy1
.

Tag images for specifying background content are easy

Algorithm 2 dVAE learning for additional zu.

Require: x,y1, λx, λy1
, β, T1, T2, T3

Ensure: φx, φy1
, φu, θx, θy1

1: Initialize φx, φy1
, φu, θx, θy1

2: for t1 = 1, . . . , T1 epochs do

3: Encode x,y1 to qφy1
(zy1
|y1), qφu

(zu|x)
4: Construct z← [zy1

, zu], [µ, σ]← qφu
(zu|x)

5: Decode z to pθx(x|z), pθy1
(y1|z)

6: Update φy1
, φu, θy1

, θx
7: for t2 = 1, . . . , T2 epochs do

8: Encode y1 to qφy1
(zy1
|y1)

9: Construct znoise ← N (µ, σ), z← [zy1
, znoise]

10: Decode z to pθy1
(y1|z)

11: Update φy1
, θy1

12: end for

13: end for

14: for t3 = 1, . . . , T3 epochs do

15: Encode x to qφx
(z|x)

16: Construct [zy1
, zu]← z

17: Decode z to pθx(x|z), pθy1
(y1|z)

18: Update φx

19: end for

to obtain if one has video sequences from which to extract

RGB frames. However, for some scenarios, this may not be

the case, i.e. if each RGB image in the training set contains

different background content. This is what necessitates the

model in Fig. 2b and the learning algorithm in Alg. 2. In

such a scenario, y1 again represents the 3DPose, while the

image content is modelled indirectly through x. For test-

ing purposes, however, there is no distinction between the

two variants, as input is still given in the form of a desired

3DPose and an RGB image specifying the content.

For hand pose estimation, we aim to predict 3DPose x,

CPose y1 and viewpoint y2 from RGB image x̂ according

to the model in Fig. 2c by disentangling z into the CPose

zy1
and viewpoint zy2

. In this case, we embed x and x̂ into

a shared latent space. We apply inference as shown by the

right panel in Fig. 3 and learn the model with Alg. 1. More-

over, because annotated training data is sparse in real world

applications, we can further leverage unlabelled or weakly

labelled. Our proposed method consists of multiple VAEs,

which can be trained respectively for semi- and weakly-

supervised setting. For semi-supervised setting, we use both

labelled and unlabelled CPose, viewpoint and 3DPose data

to train the encoders qφy1
,qφy2

and all decoders in the dis-

entangled step. For weakly-supervised setting, we exploit

images and their weak labels like viewpoint y2 by training

the VAE with qφx̂
and pθy2

in the embedding step.

4. Experimentation

A good disentangled representation should show good

performance on both discriminative tasks such as hand pose

estimation as well as generative tasks. We transfer attributes

between images and infer 3D hand poses from monocular

hand RGB images via disentangled representations. More

precisely, for image synthesis, we transfer image content

with fixed 3DPose, while for 3D hand pose estimation, we

predict viewpoint, CPose and 3DPose.

4.1. Implementation details

Our architecture consists of multiple encoders and de-

coders. For encoding images, we use Resnet-18 [9]; for
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Figure 4: Latent space walk. The images in the red boxes are provided inputs. The first two rows show synthesized images when interpo-

lating on the latent 3DPose space; the third row shows skeletons of the reconstructed 3DPose. The fourth row shows synthesized images

when the pose is fixed (to the fourth column) when interpolating in the content latent space.

decoding images, we follow the decoder architecture DC-

GAN [22]. For encoding and decoding hand poses, we use

six fully connected layers with 512 hidden units. Exact ar-

chitectural specifications are provided in the supplementary.

For learning, we use the ADAM optimizer with a learn-

ing rate of 10−4, a batch size of 32. We fix the dimension-

ality of d of z to 64 and set the dimensionality of sub-latent

variable zy1
and zy2

to 32 and 32. For all applications, the

λ’s are fixed (λx = 1, λy1
= λy2

= 0.01) while we must

adjust β (β =100 for image synthesis, β′′′ =0.01 for pose

estimation). Further discussion on the impact of β and d

can be found in the supplementary.

4.2. Datasets & Evaluation

We evaluate our proposed method on two publicly avail-

able datasets: Stereo Hand Pose Tracking Benchmark

(STB) [39] and Rendered Hand Pose Dataset (RHD) [40].

The STB dataset features videos of a single person’s left

hand in front of 6 real-world indoor backgrounds. It pro-

vides the 3D positions of palm and finger joints for approx-

imately 18k stereo pairs with 640 × 480 resolution. Image

synthesis is relatively easy for this dataset due to the small

number of backgrounds. To evaluate our model’s pose es-

timation accuracy, we use the 15k / 3k training/test split as

given by [40]. For evaluating our dVAE’s generative mod-

elling capabilities, we disentangle z into two content and

3DPose according to the model in Fig. 2a synthesize im-

ages with fixed poses as per the left-most model in Fig. 3.

RHD is a synthesized dataset of rendered hand images

with 320× 320 resolution from 20 characters performing

39 actions with various hand sizes, viewpoints and back-

grounds. The dataset is highly challenging due to the di-

verse visual scenery, illumination and noise. It is composed

of 42k images for training and 2.7k images for testing.

For quantitative evaluation and comparison with other

works on 3D hand pose estimation, we use the common

metrics, mean end-point-error (EPE) and the area under the

curve (AUC) on the percentage of correct keypoints (PCK)

score. Mean EPE is defined as the average euclidean dis-

tance between predicted and groundtruth keypoints; PCK is

the percentage of predicted keypoints that fall within some

given distance with respect to the ground truth.

4.3. Synthesizing Images

We evaluate the ability of our model to synthesize im-

ages by sampling from latent space walks and by transfer-

ring pose from one image to another.

For the fully specified latent z model we show the

synthesized images (see Fig. 4) when we interpolate the

3DPose while keeping the image content fixed (rows 1-

3) and when we interpolate image content while keeping

the pose fixed. In both latent space walks, the recon-

structed poses as well as the synthesized images demon-

strate a smoothness and consistency of the latent space.

We can also extract disentangled latent factors from dif-

ferent hand images and then recombine them to transfer

poses from one image to another. Fig. 6 shows the results

when we take poses from one image (leftmost column),

content from other images (top row) and recombine them

(rows 2-3, columns 3-5). We are able to accurately transfer
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Figure 5: Latent space walk, interpolating zu representing image background content. The images along with groundtruth 3DPose (red)

in the red box are the input points; the first row shows generated images and the second row corresponding reconstructed 3DPose (blue).

Note that because we are interpolating only on the background content, the pose stays well-fixed.

the hand poses while faithfully maintaining the tag content.

With additional zu we also show interpolated results

from a latent space walk on zu in Fig. 5. In this case,

the 3DPose stays well-fixed, while the content changes

smoothly between the two input images, demonstrating our

model’s ability to disentangle the image background con-

tent even with out specific tag images for training.

4.4. 3D hand pose estimation

We evaluate the ability of our dVAE to estimate 3D hand

poses from RGB images based on the model variant de-

scribed in Section 3.3 and compare against state-of-the-art

methods [3, 25, 40, 16, 21] on both the RHD and STB

datasets. In [40], a two-stream architecture is applied to es-

timate viewpoint and CPose; these two are then combined

to predict 3DPose. To be directly comparable, we disentan-

gle the latent z into a viewpoint factor and a CPose factor,

as shown in Fig. 3 right. Note that due to the decomposi-

tional nature of our latent space, we can predict viewpoint,

CPose and 3DPose through one latent space.

Figure 6: Pose transfer. The first column corresponds to images

from which we extract the 3DPose (ground truth pose in second

column); the first row corresponds to tag images columns we ex-

tract the latent content; the 2-3 rows, 3-5 columns are pose trans-

ferred images.

We follow the experimental setting in [40, 25] that left vs

right handedness and scale are given at test time. We aug-

ment the training data by rotating the images in the range

of [−180◦, 180◦] and making random flips along the y-axis

while applying the same transformations to the ground truth

labels. We compare the mean EPE in Fig. 7 right. We

outperform [40] on both CPose and 3DPose. These results

highlight the strong capabilities of our dVAE model for ac-

curate hand pose estimation. Our mean EPE is very close

to that of [25], while our 3D PCK is slightly better. As

such, we conclude that the pose estimation capabilities of

our model is comparable to that of [25], though our model

is able to obtain a disentangled representation and make full

use of weak labels. We compare the PCK curves with state-

of-the-art methods [3, 25, 40, 16, 21] on both datasets in

Fig. 7. Our method is comparable or better than most exist-

ing methods except [3], which has a higher AUC of 0.038 on

RHD and 0.03 on STB for the PCK. However, these results

are not directly comparable, as [3] incorporate depth images

as an additional source of training data. Fig. 8 shows some

our estimated hand poses from both RHD and STB datasets.

Semi-, weakly-supervised learning: To evaluate our

method in semi- and weakly-supervised settings, we sam-

ple the first m% images as labelled data and the rest as

unlabelled data by discarding the labels of 3DPose, CPose

and viewpoint. We also consider using only viewpoints as

a weak label while discarding 3DPose and CPose. For the

RHD dataset, we vary m% from 5% to 100% and compare

the mean EPE against the fully supervised setting. We can

see that our model makes full use of additional information.

With CPose, viewpoint and 3DPose labels, we improve the

mean EPE up to 3.5%. With additional images and view-

point labels, the improvement is up to 7.5%.

5. Conclusion

In this paper, we presented a VAE-based method for

learning disentangled representations of hand poses and

hand images. We find that our model allows us to synthe-
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Figure 7: Quantitative evaluation. 3D PCK on RHD (left) and STB (middle). Mean EPE (mm) on RHD and STB (right).

Figure 8: CPose and 3DPose estimation on RHD and STB. For each quintet, the left most column corresponds to the input images, the

second and the third columns correspond to CPose groundtruth (red) and our prediction (blue), the right most two columns correspond to

3DPose groundtruth (red) and our prediction (blue).
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Figure 9: Mean EPE of our model on the semi-supervised setting

and the weakly-supervised setting.

size highly realistic looking RGB images of hands with full

control over factors of variation such as image background

content and hand pose. However, the factors of variation

here should be independent. This is a valid assumption for

hand images, but we will consider to relax the need of inde-

pendence between factors and further investigate disentan-

gled representations with multimodal learning.

For hand pose estimation, our model is competitive with

state of the art and is also able to leverage unlabelled and

weak labels. Currently, STB is the standard benchmark for

real-world monocular RGB hand pose estimation. How-

ever, since the featured background content and hand poses

are quite simple, performance by state-of-the-art methods

on this dataset has become saturated. For the 3D PCK,

recent works [3, 25, 40, 16, 21] achieve AUC values for

error thresholds of 20-50mm ranging from 96% to more

than 99%. As such, we encourage members of the com-

munity to collect more challenging benchmarks for RGB

hand pose estimation. In particular, for the monocular sce-

nario, one possibility would be to collect multi-view [23]

and also multi-modal data, i.e. RGBD, from which it is pos-

sible to use highly accurate model-based trackers to esti-

mate ground truth labels.
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