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Abstract

Great progress has been made on estimating dispar-

ity maps from stereo images. However, with the limited

stereo data available in the existing datasets and unstable

ranging precision of current stereo methods, industry-level

stereo matching in autonomous driving remains challeng-

ing. In this paper, we construct a novel large-scale stereo

dataset named DrivingStereo. It contains over 180k images

covering a diverse set of driving scenarios, which is hun-

dreds of times larger than the KITTI Stereo dataset. High-

quality labels of disparity are produced by a model-guided

filtering strategy from multi-frame LiDAR points. For bet-

ter evaluations, we present two new metrics for stereo

matching in the driving scenes, i.e. a distance-aware metric

and a semantic-aware metric. Extensive experiments show

that compared with the models trained on FlyingThings3D

or Cityscapes, the models trained on our DrivingStereo

achieve higher generalization accuracy in real-world driv-

ing scenes, while the proposed metrics better evaluate the

stereo methods on all-range distances and across different

classes. Our dataset and code are available at https:

//drivingstereo-dataset.github.io.

1. Introduction

Depth estimation is one of the critical topics in au-

tonomous driving perception. Though LiDAR is commonly

used for the accurate depth and surrounding sensing, the

LiDAR point clouds acquired are usually sparse especially

for the objects in far range while the device itself is high-

priced. Alternatively, the calibrated stereo camera system

⋆ indicates equal contribution.
† State Key Laboratory of Intelligent Technology and Systems, Bei-

jing National Research Center for Information Science and Technology,

and Center for Intelligent Connected Vehicles and Transportation.

is able to provide the affordable dense depth estimation.

Recently deep learning methods greatly improve the per-

formance of stereo matching, bringing in better and more

accurate depth estimation. As a result, on KITTI Stereo

2015 leaderboard [21], the bad pixels rate (D1 error) re-

duces from 6.38% [13] to 1.74% [6], which shows the rapid

progress of stereo matching in the driving scenes.

Though deep learning methods of stereo matching on ex-

isting driving benchmarks achieve good performance, they

still suffer from unreliable adaptation and insufficient preci-

sion when applied to the real-world driving scenarios. The

main issue lies in data and metric.

Training deep learning models requires massive labeled

data. The existing driving datasets only comprise hundreds

of images [11, 21], on which deep neural networks are

prone to overfit. Moreover, the large-scale synthetic stereo

datasets [20, 10] cannot reflect the real-world data distri-

bution, so that the trained model is difficult to generalize.

Thus a large-scale stereo dataset containing a diverse set of

road scenarios is demanding. On the other hand, we find

that the performance metrics for stereo matching, such as

the end-point error (EPE) [2] and D1 error [21], are insuffi-

cient to evaluate capabilities of stereo matching algorithms

in complex driving scenes. In our statistics, more than 80%
valid pixels locate on short-range distances or background

regions, which heavily affects the final measures of EPE or

D1 error. In real-world driving, the different-distance re-

gions as well as various moving objects such as the vehicles

and pedestrian, should also be considered. As a result, new

metrics tailored for driving scenarios are needed.

To address the issue of data and metric mentioned above,

we construct a large-scale stereo matching dataset Driv-

ingStereo for driving scenes. We build the data acqui-

sition platform and collect over 180K frames with Li-

DAR point clouds. As shown in Fig. 1, our dataset con-

tains a diverse range of driving scenarios, including urban,

suburban, highway, elevated, and country roads, together
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Figure 1. Examples of our DrivingStereo dataset. Our dataset contains a diverse range of driving scenarios. The image of the left camera

and the disparity map are shown.

with scenarions under different climates like sunny, rainy,

cloudy, foggy, and dusky weathers. Compared to existing

synthetic [10, 20, 3] and real-world datasets [11, 21, 7],

our DrivingStereo has many advantages such as real-world

scenes, large quantity, high diversity, and high-quality dis-

parity labels. A model-guided strategy is proposed to filter

original disparity maps directly projected from multi-frame

fused LiDAR point clouds.

We further define the distance-aware and semantic-aware

metrics for the performance evaluation of stereo match-

ing algorithms. The distance-aware metric is designed to

measure the error between the disparity prediction and the

ground-truth label on all ranges. In contrast to the overall

metrics such as EPE and D1 error, we draw the distance-

aware curve to distinguish the deviation of estimated dispar-

ity across all possible depths. Similarly, the semantic-aware

metric is devised to compute the matching rate on various

semantic categories, such as vehicle and human concerned

in driving, via a semantic-aware radar map. Based on these

two metrics, different properties of current stereo matching

methods can be better uncovered in driving scenarios.

We benchmark stereo matching baselines, including

eight state-of-the-art deep learning-based stereo matching

models [20, 15, 23, 4, 17, 32, 28] and the classical semi-

global matching (SGM) algorithm [12], on our Driving-

Stereo. In order to demonstrate the generalization ability

of our dataset and metrics, deep stereo models are trained

on FlyingThings3D [20], Cityscapes [7], and our Driv-

ingStereo dataset respectively then compared. Results on

KITTI [21] and our dataset demonstrates that our Driv-

ingStereo makes stereo models more generalizable to real-

world driving scenes. Rather than the previous metrics EPE

or D1 error, our metrics reveal the perceptive deviation on

all-range distances and the matching accuracy on specific

objects for those stereo methods. Based on our dataset and

metrics, we further compare the stereo perception with Li-

DAR measurements [16] on different distances or objects

so as to quantify their gap for future improvement.

We summarize the main contributions below:

• We construct a large-scale stereo dataset that com-

prises over 180K images covering a diverse range of

driving scenarios, along with a model-guided filtering

strategy for producing high-quality disparity labels.

• We define distance-aware and semantic-aware metrics

that are suitable for stereo matching evaluation on far-

ther ranges and various classes.

• Experimental results across different datasets and

stereo methods demonstrate the capacity of our dataset

and the effectiveness of the proposed metrics.

2. Related Work

Stereo Datasets. With the rapid development of deep

learning, a couple of datasets emerge for autonomous driv-

ing [11, 21, 33, 14, 7, 22, 19]. A few of these datasets get in-

volved in stereo collections [11, 21, 7, 14, 19]. KITTI stereo

2012 [11] and 2015 [21] release hundreds of image pairs,

where the disparity labels are transformed from Velodyne

LiDAR points. The main problem of KITTI stereo datasets

is the small quantity, which is insufficient for training deep

learning models. Cityscapes dataset [7] provides a consid-

erable amount of stereo images, while the disparity labels

are pre-computed by SGM method [13]. On the other hand,

various synthetic stereo datasets are set up based on graphic

techniques. The Scene Flow [20], virtual KITTI [10], and

Sintel [3] datasets synthesize dense disparity maps, but it

remains a huge gap between the synthetic domain and the

real domain. In addition, Middleburry stereo dataset [25]

and ETH 3D dataset [27] are not made for driving scenario.
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Above all, it is demanding to have a large stereo dataset with

high-quality disparity labels for driving scenarios.

In our DrivingStereo, all of stereo images are collected in

real-world driving scenarios. The disparity labels are pro-

jected from multi-frame LiDAR point clouds. To reduce

potential errors caused by moving objects or calibration de-

viation, we present a model-guided strategy to filter origi-

nal disparity maps. Similarly, the KITTI Depth dataset [30]

also employs SGM [13] to make choice of correct pixels.

In our method, the filtering is conducted by a guided model

which further ensures the quality of final disparity labels.

Stereo Matching Methods. Stereo matching problems

have been studied for several decades. Scharstein et al. [26]

summarize typical stereo algorithms as a four-step pipeline.

SGM [12] is a classical algorithm that follows the pipeline.

Zbontar and LeCun [34] first introduce CNN to describe

image patches for stereo matching. Inspired by FCN used

in semantic segmentation [18, 5], Mayer et al. [20] raise an

encoder-decoder architecture called DispNet to enable end-

to-end disparity regression. DispNet adopts a correlation

operation as FlowNet [8] where the matching cost can be

directly integrated to encoder volumes. Pang et al. [23] pro-

vide a cascade structure to optimize residues between pre-

diction results and ground-truths. Liang et al. [17] also pro-

pose a two-stage pipeline to refine initially estimated dis-

parity. A few methods introduce 3D convolution kernels

to learn disparity. For example, Kendall et al. [15] inte-

grate contextual information by 3D convolutions over a cost

volume. Chang et al. [4] combine spatial pyramid network

with 3D convolutional layers to incorporate global context.

Cheng et al. [6] extend their convolutional spatial propaga-

tion network to 3D space for correlation. Lately, several

methods attempt to combine other information to enhance

stereo matching. In SegStereo [32], semantic cues are em-

ployed to improve stereo matching. EdgeStereo [28, 29]

extracts edge cues to refine disparity estimation.

In this work, we evaluate several popular stereo match-

ing methods on our dataset. Compared to existing models

that are trained on FlyingThings3D [20] or Cityscapes [7],

the models pretrained on our DrivingStereo outperform the

others on our test set and KITTI Stereo dataset [21], which

demonstrates the capacity of our dataset. Furthermore, all

of the methods are evaluated on our proposed metrics. Such

new metrics uncover more detailed results of stereo match-

ing under all ranges and at different semantic classes, bring-

ing insights to future study on stereo matching.

3. Dataset Construction

In this section, we first introduce the data acquisition

system, where stereo images and LiDAR point clouds are

simultaneously collected. Then a model-guided filtering

strategy is presented to generate high-quality disparity la-

bels from multi-frame point clouds.

3.1. Data Acquisition

Similar to the KITTI [11], we install several color cam-

eras (Basler ACA1920-40GC), a 3D laser scanner (Velo-

dyne HDL-64E S3) and a GPS/IMU navigation system

(OXTS RT3003G) on our SUV. We select two cameras as

stereo pairs, one is mounted on the top center, and the other

is mounted on the top right. The baseline distance between

such stereo pair is 54cm, and the field of view (FOV) is 50◦.

The LiDAR is also equipped behind the center camera, and

the navigation unit is at the rear. For spatial alignment, the

intrinsic and extrinsic parameters of cameras are at first cal-

culated to rectify stereo images. Then we jointly make cal-

ibration of the cameras with LiDAR and GPS/IMU. More

details of calibration are provided in the supplementary me-

terial. For time synchronization, all of the sensors adopt

GPS clocks. When the LiDAR turns to the front view, the

stereo cameras are triggered, and the corresponding vehicle

pose is also saved. Limited by the LiDAR, the frequency of

the collection system is set to 10Hz.

Totally, we collect 42 sequences with totally more than

1 million frames, which covers a wide range of driving sce-

narios. Some of the examples are shown in Fig. 1. Among

the raw frames, we choose 18, 2188 frames to construct our

DrivingStereo dataset, where 174, 437 frames from 38 se-

quences are used as training dataset. The remaining 7, 751
frames from 4 sequences are manually selected as testing

dataset that has a higher quality of disparity labels. For

the testing frames, we produce their pixel-level semantic la-

bels by PSP-Net [35] trained from Cityscapes [7] with some

post-processing. To our best knowledge, the DrivingStereo

is the largest stereo dataset for the real-world driving sce-

nario so far.

Apparently, the LiDAR point clouds acquired are sparse,

particularly in the farther place. When single-frame points

are projected onto an image plane, only a few pixels in the

image have valid values. In order to increase the number

of valid pixels in a single frame, we integrate point clouds

from adjacent frames and fuse them together as shown in

Fig. 3. The data fusion can be written as:

C
f
k =

n
∑

i=−m

Cs
(k+i) × T(k+i)→k, (1)

where C
f
k and Cs

k denote the fused cloud and single cloud

on frame k, respectively. m and n indicate the backward

and forward seeking frames. T(k+i)→k represents the map-

ping matrix from frame k+ i to k. We add a voxel grid [24]

to reduce redundant points in fused cloud Cf . According to

calibration matrices, each LiDAR point pl = [x, y, z, 1]T in

Cf is projected to camera pixel pc = [u, v, 1]T :

pc = Prect ×Rrect × (R|T )l→c × pl, (2)
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Figure 2. Diagram of model-guided filtering. From left to right, we perform cloud fusion, cloud projection, primary and secondary

filtering. The GuideNet are utilized to output guided disparity map for filtering.

where the Prect is the 3 × 4 intrinsic matrix of left refer-

enced camera, and the Rrect is the 4 × 4 calibrated matrix

between stereo cameras. The (R|T )tr is extrinsic matrix

transformed from the Velodyne coordinate system to the im-

age plane of the camera. For the problem of overlapping,

we select the nearest LiDAR point for projection. After

the cloud fusion and the point projection, we obtain orig-

inal disparity map denoted as Dc. Although the fusion of

multiple frames increases the number of valid pixels, more

errors caused by dynamic objects are introduced in the Dc,

which leads to the familiar problem of long-tail distortion

as shown in Fig. 3. Furthermore, several inevitable fac-

tors, such as calibration error and accumulative deviation,

also lower the quality of fused clouds. Hence, we present a

guided filtering strategy to tackle the problem.

3.2. ModelGuided Filtering

The goal of guided filtering is to generate high-quality

disparity labels from the fused cloud. We design a light-

weight model named GuideNet for guided filtering. Follow-

ing the encoder-decoder architecture like that in [18, 8, 20],

the GuideNet employs 16 residual blocks as the encoder and

3 deconvolutional layers as the decoder. A correlation mod-

ule [8] is embedded into the encoder to compute a matching

cost between stereo features. We shrink the channel num-

ber in the convolutional layers to reduce model size. The

inference time of our GuideNet is 20ms, which is about 3

times faster than DispNet [20]. The GuideNet is pretrained

on the FlyingThings3D dataset [20] to predict a reasonable

disparity map for initial filtering. Training implementations

are described in Sec. 5.2, and the layer-by-layer definition

is provided in supplementary material. Based on the dispar-

ity map predicted by GuideNet, we define the filtering rule

expressed as:

Df = Dc ∩ Dg,

dc ∩ dg =

{

1 |dc − dg| ≤ δd

0 |dc − dg| > δd
,

(3)

where Dc indicates the disparity map projected from fused

clouds Cf , Dg denotes the predicted disparity map from

the GuideNet. Since Dc is sparse and Dg is dense, the ∩
operation is defined as each disparity value dc on DC is

validated by dg on Dg , and only consistent disparity whose

deviation is less δd is retained on Df . After primary filter-

ing, the disparity maps are used to finetune the GuideNet,

which makes the model better suitable for the driving case.

In other words, the finetuned GuideNet can make the pre-

diction of more accurate disparity maps, which are used to

conduct secondary filtering for final disparity labels.

Instead of manual adjustment [21], our guided filter-

ing enables the automatic generation of high-quality la-

bels, which is the foundation for large-scale dataset con-

struction. Meanwhile, the GuideNet is well-trained when

making DrivingStereo. Experimental result in 5.3 shows

that our light-weight GuideNet achieves similar accuracy to

other stereo methods.

4. Evaluation Metrics

In driving perception, we should consider objects in dif-

ferent ranges and classes. For example, reliable detection

of the objects in long-range distances benefits our velocity

planning, while the detection of moving foreground objects

plays a more important role in obstacle avoidance. First, we

provide a statistical analysis of depth information and se-

mantic distribution. We then define new distance-aware and

semantic-aware metrics that can better recognize the accu-

racy on all-range distances and diverse classes.
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4.1. Statistical Analysis

In a normal road image, most of pixels locate on nearby

objects or background surroundings, such as roadway,

building, and vegetation. Here, we conduct quantitative

statistics of depth distribution on KITTI Stereo 2015 [21, 1].

We transform the disparity maps to depth images and com-

pute the proportion of pixels in each depth interval. We

find that more than 80% valid pixels are less than 40m.

When computing the overall EPE or the D1 error, the

close regions or objects largely determine the final results.

While for autonomous driving, the metrics need to strike

a balance among short, middle and long distances. Sim-

ilarly, the proportion of pixels distributed in different se-

mantic categories are: ground(53.62%), nature(23.05%),

construction(3.43%), vehicle(17.63%), human(0.04%) and

others(2.23%). The pixels on ground and nature play a ma-

jority to the final results. During actual driving, we should

pay more attention to the foreground objects, especially the

moving vehicles and pedestrians. Therefore, we define the

following metrics to evaluate comprehensive performance

across different ranges and classes.

4.2. Distanceaware Metrics

To capture the depth information in a farther range and

prevent the disturbance from sparse LiDAR-transformed la-

bel, the distance-aware metrics are defined on the whole dis-

tances. Based on the focal length and the stereo baseline,

the ground-truth disparity map Dg is transformed back to

depth map D−1
g . We sample multiple points K with a cer-

tain of interval on depth axis. For each sampled depth point

k, we indicate its measurement range Rk as [k − r, k + r].
The pixels of D−1

g within the range Rk are accumulated.

Then we compute the absolute relative difference (ARD)

between the disparity estimation dp and the ground-truth dg
in such range Rk:

ARDk =
1

NRk

∑

dg∈Rk

|dp − dg|

dg
, (4)

where NRk
is the number of valid pixels in Rk. We can

draw the ARD curve by linking the ARDk. Moreover, the

global difference (GD) as the summation of single ARDs:

GD =
1

K

∑

k∈K

ARDk. (5)

From the ARD curve, we observe the change of pre-

dicted error with the increase of distance. Compared to

EPE and D1 error, the GD is able to overcome the im-

balance among different distance. In Sec. 5.3, we will

draw the ARD curves of deep stereo methods on the KITTI

dataset [21] and exploit the properties of various methods.

4.3. Semanticaware Metrics

The semantic-aware metrics are presented to evaluate the

stereo matching performance on different objects in driving

scenes, especially for vehicle and pedestrian. We merge the

classes from the Cityscapes semantic segmentation [7] into

6 categories, including ground, nature, construction, vehi-

cle, human, and others. Inspired from [9], we define the

matching rate (MR) for each category k:

MRk : % of dp s.t. max(
dp

dg
,
dg

dp
) < θ, (6)

where θ is a threshold to identify whether the disparity pre-

diction dp matches dg . We draw the radar map of matching

rate for each category in Sec. 5.3. In addition to background

regions, we can observe the accuracy of learning disparity

on foreground objects, which facilitates the analysis of cur-

rent stereo methods.

5. Experiments

In this section, we first provide an overview of our

dataset and compare it with existing stereo datasets. We

then introduce the implementations of our GuideNet and

validate the filtering strategy on KITTI Stereo dataset [21].

Finally, we provide baseline results of several stereo meth-

ods on our dataset and evaluate these methods using the pro-

posed metrics. Comparative results illustrate the capacity of

our dataset and metrics.

5.1. Dataset Overview

We first specify the key parameters of collecting stereo

data. When we make fusion of multi-frame point clouds,

the forward-searching frames n and the backward-searching

frames m are set to 20 and 5, respectively. The stereo

images are well rectified, and the resolution is cropped to

1762 × 800. For semantic labels, we produce initial seg-

mentation results using PSP-Net [35], then use a common

2D detector for refinement on vehicles and humans. The

examples of semantic segmentation are shown in supple-

mentary material.

Table 1. Comparison of available stereo datasets.

Dataset Scenario
Frames

Resolution Labels
Training Testing

Virtual KITTI [10] Virtual 21, 260 − 1242× 375 ✓

FlyingThings3D [20] Virtual 21, 818 4, 248 960× 540 ✓

MPI Sintel [3] Virtual 1, 064 564 1024× 436 ✓

Middleburry [25] Indoor 15 15 720× 480 ✓

ETH 3D [27] Outdoor 27 20 940× 490 ✓

Cityscapes [7] Driving 2, 975 500 2048× 1024 ✗

RobotCar [19] Driving − − 1280× 960 ✗

Raw KITTI [11] Driving − − 1226× 370 ✗

KITTI 2012 [11] Driving 194 195 1226× 370 ✓

KITTI 2015 [21] Driving 200 200 1242× 375 ✓

DrivingStereo(Ours) Driving 174,437 7,751 1762× 800 ✓
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In Tab. 1, we list the parameters of previous stereo

datasets. Our dataset has the following advantages: 1)

Real-world scenes. Unlike synthetic datasets [10, 20, 3],

we focus on real-world driving scenarios and build the ac-

quisition platform to collect data. 2) High diversity. As

shown in Fig. 1, our dataset provides diverse scenarios,

which is possible to cover most conditions in autonomous

driving. 3) Substantial size. The total frames of our data

exceed 180k that are much larger than other real-world

datasets [25, 27, 11, 21], even more than those synthetic

datasets [10, 20, 3]. 4) High-quality labels. Different from

Cityscapes [7], the disparity labels are projected from Li-

DAR points and filtered by model-guided strategy as well.

We also validate the effectiveness of guided filtering on

KITTI in next sub-section.

5.2. Validation of ModelGuided Filtering

When conducting guided filtering, the GuideNet is suc-

cessively trained on FlyingThings3D dataset [20] and fine-

tuned on the primary DrivingStereo. We implement the

GuideNet in PyTorch. In the phase of training, we use the

“poly” learning rate policy. We set the base learning rate to

0.01, the power to 0.9, the momentum to 0.9 and the weight

decay to 0.0001 respectively. The maximum iteration and

batch size are set to 300K and 16. For spatial augmentation,

we adopt random resize and crop. The random factor is be-

tween 0.5 to 2.0. The “crop size” is set to 513 × 321. For

color augmentation, we use the adjustments of color shift

and contrast brightness. The maximum color shift along

RGB axes is set to 20, and the maximum brightness shift is

set to 5. The multiplier of contrast brightness is between 0.8
to 1.2. We adopt L1 loss to train the model. The threshold

δd in Eq. 3 is set to 2 for guided filtering. We also provide

the layer-by-layer definition of GuideNet and the ablation

study on “poly” learning policy in supplementary material.

Table 2. Results of model-guided filtering on KITTI Stereo

2015 [21] and our dataset.

(a) KITTI Stereo 2015 [21]

All Valid Pixels Correct Pixels Accuracy

single frame 1,586,714 1,548,043 97.56%

iter0 4,948,724 3,607,359 72.89%

iter1 2,445,925 2,374,226 97.07%

iter2 2,973,882 2,915,110 98.02%

Obj Valid Pixels Correct Pixels Accuracy

single frame 127,579 102,728 80.54%

iter0 1,005,084 283,011 28.13%

iter1 219,319 200,559 91.45%

iter2 221,828 210,912 95.07%

(b) Our DrivingStereo dataset

Iteration single frame iter0 iter1 iter2
Valid Pixels 8,250 216,025 61,555 105,800

Figure 3. Model-guided filtering examples.

Since our dataset originally does not have ground-

truths, we validate the guided filtering strategy on KITTI

dataset [21]. The stereo 2015 dataset [21] releases 200 pairs

of disparity labels along with their foreground masks, in

which 142 images have origin index in raw sequences [11].

Here, we select these 142 images as a validation set and

sample other 8, 260 frames from the raw dataset as a train-

ing set. Similar to the preparation on DrivingStereo, we

conduct cloud fusion, guided filtering as Sec. 3.2. In

Tab. 2(a), we measure the valid pixels, correct pixels, and

accuracy at different iterations. Compared with the dispar-

ity map from a single-frame cloud, the projected dispar-

ity map from fused clouds at iter0 has a large number of

valid pixels, but its accuracy is only 72.89% on all areas

and 28.13% on foreground regions. After the primary and

secondary filtering, the accuracy is improved to 98.02% on

all areas and 95.07% on foreground regions. In addition,

the numbers of valid pixels and correct pixels also increase

by secondary filtering. It is because the finetuned model is

more adaptable to the road scene and predict better results.

Thus, the validation results on KITTI illustrate the usability

of the guided filtering for improving the labeling accuracy.

After the validation on KITTI [21] is done, we adopt the

guided filtering to generate disparity labels for our dataset.

In Tab. 2(b), the average amount of valid pixels is increased

from 8, 250 to 216, 025 by multi-frame fusion, and from

61, 555 to 105, 800 by secondary filtering. Fig. 3 shows

several examples of our guided filtering. It can be found

that the artifacts from moving objects in the fused cloud and

the holes located on roads in primary filtering are mostly

optimized in secondary filtering.

5.3. Baseline Results

In order to demonstrate the capacity of our dataset,

we use three dataset including FlyingThings3D [20],

Cityscapes [7], and our DrivingStereo to train deep stereo

models. Here, we employ SGM [12], DispNet [20],

CRL [23], iResNet [17], PSMNet [4], SegStereo [32],
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Table 3. Baseline results on KITTI Stereo 2015 and our DrivingStereo test set. The deep stereo methods are trained on FlyingThings3D [20],

Cityscapes [7], and our DrivingStereo, respectively. Among the metrics, “GD” is the global difference of our distance-aware metric, and

we use percentage mark to identify “GD”. For the running time, [G], [C], [P] denote the platforms of GPU, Caffe, and PyTorch.

(a) Evaluation on KITTI Stereo 2015 [21]

Methods
Running Pretrained on FlyingThings3D [20] Pretrained on Cityscapes [7] Pretrained on DrivingStereo (Ours)

Time EPE D1 Error GD EPE D1 Error GD EPE D1 Error GD

SGM [12] 850ms [G] 1.82 8.28% 13.52% 1.82 8.28% 13.52% 1.82 8.28% 13.52%

DispNet [20] 40ms [C] 3.05 21.50% 14.59% 1.91 14.66% 17.77% 1.24 6.30% 14.04%

CRL [23] 152ms [C] 3.22 28.63% 14.57% 1.26 6.42% 13.45% 1.18 5.34% 10.69%

PSMNet [4] 456ms [P] - - - 1.20 6.05% 10.18% 1.14 5.44% 11.26%

iResNet [17] 122ms [C] 2.98 21.64% 13.52% 1.38 7.51% 14.37% 1.20 5.52% 8.96%

SegStereo [32] 225ms [C] 2.07 12.43% 24.54% 1.43 7.93% 14.07% 1.13 5.31% 12.04%

ResNetCorr [32] 170ms [C] 2.42 15.14% 28.95% 1.46 8.24% 14.13% 1.28 6.50% 14.39%

EdgeStereo [28] 320ms [C] 2.41 12.91% 17.93% 1.27 6.99% 12.56% 1.12 5.35% 10.64%

GuideNet 12ms [P] 2.36 18.02% 22.52% 1.51 9.22% 14.82% 1.36 7.33% 18.44%

(b) Evaluation on DrivingStereo test set

Methods
Running Pretrained on FlyingThings3D [20] Pretrained on Cityscapes [7] Pretrained on DrivingStereo (Ours)

Time EPE D1 Error GD EPE D1 Error GD EPE D1 Error GD

SGM [12] 850ms [G] 4.43 26.44% 8.56% 4.43 26.44% 8.56% 4.43 26.44% 8.56%

DispNet [20] 40ms [C] 4.91 49.47% 11.75% 3.59 34.15% 10.47% 1.93 16.82% 7.02%

CRL [23] 152ms [C] 6.49 51.05% 12.43% 2.25 13.70% 6.18% 1.36 6.02% 4.69%

PSMNet [4] 456ms [P] - - - 2.40 19.09% 7.29% 1.64 10.03% 6.70%

iResNet [17] 122ms [C] 5.10 42.99% 11.14% 2.19 13.42% 6.70% 1.24 4.27% 4.23%

SegStereo [32] 225ms [C] 4.14 36.81% 10.55% 2.17 15.75% 7.40% 1.32 5.89% 4.78%

ResNetCorr [32] 170ms [C] 3.54 34.90% 10.94% 2.27 17.55% 7.74% 1.37 6.75% 4.97%

EdgeStereo [28] 320ms [C] 5.02 36.85% 10.12% 2.05 12.39% 6.12% 1.19 3.47% 4.17%

GuideNet 12ms [P] 4.92 42.02% 11.13% 2.43 19.86% 8.33% 1.51 8.89% 5.85%

ResNetCorr [31], and EdgeStereo [28, 29]. Due to the

different size of three training datasets, we keep the same

epochs, so that the maximum training iterations for Fly-

ingThings3D [20], Cityscapes [7], and our DrivingStereo

are set to 62.5K, 62.5K, and 500K respectively. The other

parameters are set as same as the training of our GuideNet

described in Sec. 5.2. In addition to traditional EPE and D1

error, the proposed metrics are used to evaluate the stereo

methods. For distance-aware metrics, the measuring range

r for each depth point is set to 4m. The sampling inter-

val is set to 8m so that 10 depth values are accumulated to

compute GD. When drawing the distance-aware curves, the

sampling interval is set to 1m for better visualization. For

semantic-aware metrics, the threshold θ is set to 1.10.

In Tab. 3, we provide the baseline results on the KITTI

Stereo 2015 [21] and the test set of our DrivingStereo.

Compared to the FlyingThings3D-trained and Cityscapes-

trained models, the DrivingStereo-trained models achieve

the best performance on both KITTI and our test set, which

shows the capacity of DrivingStereo for deep stereo mod-

els. Among the models, EdgeStereo [28] gets the high-

est accuracy, followed by iResNet [17], SegStereo [32] and

CRL [23]. On the other hand, the mean and the variance

of these results evaluated on our DrivingStereo are larger

than the results evaluated on KITTI. This reflects that our

dataset is more challenging for current stereo methods due

to the large amounts of frames and diverse scenarios.

In order to further analyze the properties of our dataset

and current methods, we utilize the distance-aware and

semantic-aware metrics to perform evaluations. Fig. 4 de-

picts the distance-aware curves of stereo methods which

are trained on DrivingStereo dataset and evaluated on

KITTI [21] and our test set. Compared to EPE or D1 er-

ror, these metric curves intuitively exhibit the performance

of stereo methods on different ranges. The general trend is

that the average difference slightly decreases in the inter-

val of 0 ∼ 10m and then increases with distances. Bene-

fited from the structure of cascade refinement, iResNet [17],

CRL [23] and EdgeStereo [28] are better than other meth-

ods, especially on KITTI dataset. Besides, our GuideNet

achieves similar accuracy on short and middle distances,

which shows the feasibility of our design. From the radar

maps of semantic-aware metrics in Fig. 5, we discover

that most of deep learning methods behave better on the

ground and vehicles, but the accuracy is slightly lower on

the classes of human, construction, and others. The above

results illustrate that the distance-aware and semantic-aware

metrics facilitate the exploitation of stereo methods.

6. Discussion

Comparison with LiDAR. Most of perception systems

adopt LiDAR to measure ranges. Here, we compare the

stereo accuracy with LiDAR in terms of distance-aware and

semantic-aware metrics. State-of-the-art depth completion
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(a) Evaluated on our DrivingStereo (b) Evaluated on KITTI Stereo 2015 [21]

Figure 4. The distance-aware ARD curves.

(a) Evaluated on our DrivingStereo [20] (b) Evaluated on KITTI Stereo 2015 [21]

Figure 5. The semantic-aware MR radar maps.

method [16] is employed to produce dense LiDAR outputs

and make a fair comparison on KITTI benchmark [21].

From the distance-aware curve in Fig. 4 and the

semantic-aware map in Fig. 5, we find existing stereo mod-

els reach comparable accuracy with LiDAR-based methods

in short ranges and the areas of ground and vehicle, while

the gaps on long distances and complex objects remain. It

is natural since disparity relies on focal length and baseline

distance between stereo cameras.

To shorten this gap, more remote disparity labels are nec-

essary for stereo training, and the baseline between cam-

eras should be stretched so as to increase stereo identifica-

tion. If possible, the telephoto-lens camera could be uti-

lized. Meanwhile, the loss function needs to be more sen-

sitive to long ranges and foreground objects. For quanti-

tative evaluation, our DrivingStereo dataset and metrics is

an appropriate platform to evaluate the performance of such

methodologies.

7. Conclusion

In this work, we build a large-scale stereo dataset for

driving scenarios and present new evaluation metrics. The

baseline results demonstrate the capacity of our dataset and

validate the effectiveness of our new metrics. With the

progress to be made on stereo performance, the gap between

the stereo cameras and the expensive sensors like LiDAR

can be further decreased, facilitating an affordable stereo

matching solution to autonomous driving vehicles.
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