
ECC: Platform-Independent Energy-Constrained Deep Neural Network

Compression via a Bilinear Regression Model

Haichuan Yang1, Yuhao Zhu1, and Ji Liu2,1

1University of Rochester, Rochester, USA
2Kwai Seattle AI Lab, Seattle, USA

Abstract

Many DNN-enabled vision applications constantly op-

erate under severe energy constraints such as unmanned

aerial vehicles, Augmented Reality headsets, and smart-

phones. Designing DNNs that can meet a stringent energy

budget is becoming increasingly important. This paper pro-

poses ECC, a framework that compresses DNNs to meet

a given energy constraint while minimizing accuracy loss.

The key idea of ECC is to model the DNN energy consump-

tion via a novel bilinear regression function. The energy

estimate model allows us to formulate DNN compression

as a constrained optimization that minimizes the DNN loss

function over the energy constraint. The optimization prob-

lem, however, has nontrivial constraints. Therefore, exist-

ing deep learning solvers do not apply directly. We pro-

pose an optimization algorithm that combines the essence

of the Alternating Direction Method of Multipliers (ADMM)

framework with gradient-based learning algorithms. The

algorithm decomposes the original constrained optimiza-

tion into several subproblems that are solved iteratively and

efficiently. ECC is also portable across different hardware

platforms without requiring hardware knowledge. Experi-

ments show that ECC achieves higher accuracy under the

same or lower energy budget compared to state-of-the-art

resource-constrained DNN compression techniques.

1. Introduction

Computer vision tasks are increasingly relying on deep

neural networks (DNNs). DNNs have demonstrated supe-

rior results compared to classic methods that rely on hand-

crafted features. However, neural networks are often sev-

eral orders of magnitude more computation intensive than

conventional methods [34, 45]. As a result, DNN-based

vision algorithms incur high latency and consume exces-

sive energy, posing significant challenges to many latency-

sensitive and energy-constrained scenarios in the real-world

such as Augmented Reality (AR), autonomous drones, and

mobile robots. For instance, running face detection con-

tinuously on a mobile AR device exhausts the battery in

less than 45 minutes [20]. Reducing the latency and energy

consumption of DNN-based vision algorithms not only im-

proves the user satisfaction of today’s vision applications,

but also fuels the next-generation vision applications that

require ever higher resolution and frame rate.

Both the computer vision and hardware architecture

communities have been actively engaged in improving the

compute-efficiency of DNNs, of which a prominent tech-

nique is compression (e.g., pruning). Network compres-

sion removes unimportant network weights, and thus re-

duces the amount of arithmetic operations. However, prior

work [38, 39, 41] has shown that the number of non-zero

weights in a network, or the network sparsity, does not di-

rectly correlate with execution latency and energy consump-

tion. Thus, improving the network sparsity does not neces-

sarily lead to latency and energy reduction.

Recognizing that sparsity is a poor, indirect metric for

the actual metrics such as latency and energy consumption,

lots of recent compression work has started directly opti-

mizing for network latency [39, 11] and energy consump-

tion [38], and achieve lower latency and/or energy con-

sumption compare to the indirect approaches. Although

different in algorithms and implementation details, these ef-

forts share one common idea: they try to search the sparsity

bound of each DNN layer in a way that the whole model

satisfies the energy/latency constraint while minimizing the

loss. In other words, they iteratively search the layer spar-

sity, layer by layer, until a given latency/energy goal is met.

We refer to them as search-based approaches.

The effectiveness of the search-based approaches rests

on how close to optimal they can find the per-layer spar-

sity combination. Different methods differ in how they

search for the optimal sparsity combination. For instance,

11206

Energy-Constrained Compression (ECC)

Pre-trained
Network

Hardware Platform
(Blackbox)

Energy Model
Construction

Energy
Estimation Model

Constrained
Optimization

Compressed
Network

Empirical Measurements

Energy

Online

Offline

Optional
Fine-tuning

Figure 1: ECC framework overview.

NetAdapt [39] uses a heuristic-driven search algorithm

whereas AMC [11]1 uses reinforcement learning. However,

the search-based approaches are fundamentally limited by

the search space, which could be huge for deep networks.

In this paper, we propose an alternative DNN compres-

sion algorithm that compresses all the DNN layers together

rather than compressing it layer by layer. This strategy elim-

inates many of the heuristics and fine-tuning required in pre-

vious layer-wise approaches. As a result, it is able to find

compression strategies that lead to better latency and en-

ergy reductions. Due to the lack of compression techniques

that specifically target energy consumption, this paper fo-

cuses on energy consumption as a particular direct metric

to demonstrate the effectiveness of our approach, but we ex-

pect our approach to be generally applicable to other direct

metrics as well such latency and model size.

The key to our algorithm is to use a differentiable model

that numerically estimates the energy consumption of a net-

work. Leveraging this model, we formulate DNN compres-

sion as a constrained optimization problem (constrained by

a given energy budget). We propose an efficient optimiza-

tion algorithm that combines ideas from both classic con-

strained optimizations and gradient-based DNN training.

Crucially, our approach is platform-free in that it treats the

underlying hardware platform as a blackbox. Prior energy-

constrained compressions all require deep understanding

of the underlying hardware architecture [38, 37], and thus

are necessarily tied to a particular hardware platform of

choice. In contrast, our framework directly measures the

energy consumption of the target hardware platform with-

out requiring any hardware domain knowledges, and thus is

portable across different platforms.

Leveraging the constrained optimization algorithm, we

propose ECC, a DNN compression framework that auto-

matically compresses a DNN to meet a given energy bud-

get while maximizing its accuracy. ECC has two phases:

an offline energy modeling phase and an online compres-

sion phase. Given a particular network to compress, the of-

fline component profiles the network on a particular target

platform and constructs an energy estimation model. The

online component leverages the energy model to solve the

1The method proposed in AMC originally targets model size, FLOPs

or latency, but can be extended to target energy consumption using our

modeling method introduced in Section 3.2.

Table 1: Comparison across different resource-constrained DNN

compression techniques.

Properties/Methods EAP [38] AMC [11] NetAdapt [39] LcP [5] ECC

Use direct metric? X X X X X

Target energy? X X

Optimization-based? X

Platform-free? X X X X

constrained optimization problem followed by an optional

fine-tuning phase before generating a compressed model.

In summary, we make the following contributions:

• We propose a bilinear energy consumption model of

DNN inference that models the DNN inference energy

as a function of both its weights and sparsity settings.

The energy model is constructed based on real hard-

ware energy measurement and thus requires no domain-

knowledge of the hardware architecture. Our model

shows < ±3% error rate.

• We propose ECC, a DNN compression framework that

maximizes the accuracy while meeting a given energy

budget. ECC leverages the energy estimation model to

formulate DNN compression as a constrained optimiza-

tion problem. We present an efficient optimization algo-

rithm that combines the classic ADMM framework with

recent developments in gradient-based DNN algorithms.

Although targeting energy in this paper, our framework

can be extended to optimize other metrics such as latency

and model size.

• We evaluate ECC using a wide range of computer vision

tasks on both a mobile platform Jetson TX2 and a desk-

top platform with a GTX 1080 Ti GPU. We show that

ECC achieves higher accuracy under the same energy

budget compared to state-of-the-art resource-constrained

compression methods including NetAdapt [39] and

AMC [11].

2. Related Work

Network Compression Network compression [18] is a

key technique in reducing DNN model complexity. It lever-

ages the observation that some network weights have less

impact on the final results and thus could be removed (zero-

ed out). Compression techniques directly reduce a DNN

model’s size, which often also leads to latency and energy

reductions. Early compression techniques focus exclusively

on reducing the model size [9, 10, 36, 21, 44, 19] while la-

tency and energy reductions are “byproducts.” It is well-

known now that model size, latency, and energy consump-

tion are not directly correlated [38, 39, 41]. Therefore, com-

pressing for one metric, such as model size, does not always

translate to optimal compression results for other metrics

such as latency and energy reduction, and vice versa.

Resource-Constrained Compression Researchers re-

cently started investigating resource-constrained compres-

11207

sion, which compresses DNNs under explicit resource con-

straints (e.g., energy, latency, the number of Multiply-

accumulate operations) instead of using model size as a

proxy, though the model size could also be used as a con-

straint itself. Table 1 compares four such state-of-the-art

methods, EAP, AMC, and NetAdapt, and LcP. EAP [38]

compresses a model to reduce its energy consumption while

meeting a given accuracy threshold. AMC [11] compresses

a model to meet a given resource (size, FLOPs or latency)

constraint while maximizing the accuracy. NetAdapt [39]

compresses a model to meet a given latency constraint while

maximizing the accuracy. LcP [5] compresses a model to

meet a given resource constraint (the number of parameters

or the number of multiply-accumulate operations) while

maximizing the accuracy.

Although the four techniques target different metrics and

have different procedures, the core of them is to determine

the optimal sparsity ratio of each layer in a way that the

whole model meets the respective objectives. They differ

in how they determine the layer-wise sparsity ratio. EAP,

LcP, and NetAdapt all use heuristic-driven search algo-

rithms. Specifically, EAP compresses layers in the order

in which they contribute to the total energy, and prioritizes

compressing the most energy-hungry layers; NetAdapt it-

eratively finds the per-layer sparsity by incrementally de-

creasing the latency budget; LcP assigns a score to each

convolution filter, and prunes the filters based on the score

until the resource constraint is satisfied. AMC uses rein-

forcement learning that determines the per-layer sparsity by

“trial and error.”

ECC is a different compression technique that, instead

of compressing DNNs layer by layer, compresses all the

network layers at the same time. It avoids heuristic searches

and achieves better results.

Platform (In)dependence Previous energy-constrained

compressions [38, 37] rely on energy modeling that is tied

to a specific hardware architecture. ECC, in contrast, con-

structs the energy model directly from real hardware mea-

surements without requiring platform knowledges, and is

thus generally applicable to different hardware platforms.

AMC and NetAdapt are also platform-free as they take em-

pirical measurements from the hardware, but they target la-

tency and model size. In particular, NetAdapt constructs a

latency model using a look-up table whereas ECC’s energy

model is differentiable, which is key to formulating DNN

compression as a constrained optimization problem that can

be solved using gradient-based algorithms.

3. Method

This section introduces the proposed ECC framework for

energy-constrained DNN compression. We first formulate

DNN compression as a constrained optimization under the

constraint of energy (Section 3.1). We then describe how

the energy is estimated using a bilinear model (Section 3.2).

Finally, we explain our novel gradient-based algorithm that

solves the optimization problem (Section 3.3).

3.1. Problem Formulation

Our objective is to minimize the loss function ℓ under a

predefined energy constraint:

min
W

ℓ(W) (1a)

E(W) ≤ Ebudget, (1b)

where W := {w(u)}u∈U (U is the set of all layers) stacks

the weights tensors of all the layers, and E(W) denotes the

real energy consumption of the network, which depends on

the structure of DNN weightsW . Compression affects the

DNN weightsW , and thus affects E(W). ℓ is the loss func-

tion specific to a given learning task. In deep learning, ℓ is

a highly non-convex function.

There are two distinct classes of compression techniques.

Unstructured, fine-grained compression prunes individual

elements [9, 10]; whereas structured, coarse-grained com-

pression prunes a regular structure of a DNN such as a filter

channel. While our method is applicable to both methods,

we particularly focus on the coarse-grained method that

prunes channels in DNN layers [33, 44, 19, 22, 12, 23, 25, 7]

because channel pruning is more effective on off-the-shelf

DNN hardware platforms such as GPUs [41] whereas the

fine-grained approaches require specialized hardware archi-

tectures to be effective [4, 8, 37].

With the channel pruning method, the optimization prob-

lem becomes finding the sparsity of each layer, i.e., the

number of channels that are preserved in each layer, such

that the total energy meets the given budget, that is,

min
W,s

ℓ(W) (2a)

s.t. φ(w(u)) ≤ s(u), u ∈ U (2b)

E(s) ≤ Ebudget, (2c)

where s(u) corresponds to the sparsity bound of layer u ∈
U , and s := {s(u)}u∈U stacks the (inverse) sparsities of all

the layers. The energy consumption of a DNN E can now be

expressed as a function of s2. w(u) denotes the weight ten-

sor of layer u. The shape of w(u) is d(u)×c(u)×r
(u)
h ×r

(u)
w

for the convolution layer u with d(u) output channels, c(u)

input channels, and spatial kernel size r
(u)
h × r

(u)
w . With-

out loss of generality, we treat the fully connected layer as a

special convolution layer where r
(u)
h = r

(u)
w = 1. φ(w(u))

calculates the layer-wise sparsity as
∑

i I(‖w
(u)
·,i,·,·‖ 6= 0)

where I(·) is the indicator function which returns 1 if the

inside condition is satisfied and 0 otherwise.

2For simplicity, we reuse the same notion E in both Equation (1b)

and Equation (2c).

11208

3.2. Bilinear Energy Consumption Model

The key step to solving Equation (2) is to identify the en-

ergy model E(s), i.e., to model the DNN energy as a func-

tion of the sparsity of each layer. This step is particularly

important in that it provides an analytical form to charac-

terize the energy consumption. Existing DNN energy mod-

els are specific to a particular hardware platform [38, 37],

which requires deep understandings of the hardware and

is not portable across different hardware architectures. In

contrast, we construct an energy model directly from hard-

ware measurements while treating the hardware platform

as a blackbox. This is similar in spirit to NetAdapt [39],

which constructs a latency model through hardware mea-

surements. However, their model is a look-up table that is

huge and not differentiable. Our goal, however, is to con-

struct a differentiable model so that the optimization prob-

lem can be solved using conventional gradient-based algo-

rithms.

Our key idea is that the energy model can be obtained via

a data driven approach. Let Ê be a differentiable function to

approximate E :

Ê = argmin
f∈F

Es[(f(s)− E(s))
2], (3)

where F is the space of all the potential energy mod-

els, and Es is the expectation with respect to s :=
[s1, · · · , s|U|, s|U+1|].

To find a differentiable energy model Ê , our intuition is

that the energy consumption of a DNN layer is affected by

the number of channels in its input and output feature maps,

which in turn are equivalent to the sparsity of the current and

the next layer, respectively. Therefore, the energy consump-

tion of layer j can be captured by a function that models

the interaction between sj and sj+1, where sj denotes the

(inverse) sparsity of layer j (j ∈ [1, |U|]). Based on this in-

tuition, we approximate the total network energy consump-

tion using the following bilinear model: F := {f(s) =

a0 +
∑|U|

j=1 ajsjsj+1 : a0, a1, ..., a|U| ∈ R+}, where

s|U|+1 is defined as the network output dimensionality, e.g.,

the number of classes in a classification task. Coefficients

a0, a1, ...a|U| are the variables defining this space.

The rationale behind using the bilinear structure is that

the total number of arithmetic operations (multiplications

and additions) during a DNN inference with layers defined

by s would roughly be in a bilinear form. Although other

more complex models are possible, the bilinear model is

simple and tight, which is easy to train and also avoids over-

fitting effectively. We will show in Section 4 that our model

achieves high prediction accuracy.

Sharp readers might ask what if the energy function fun-

damentally can not be modeled in the bilinear form (e.g.,

for some particular DNN architectures). In such a case, one

could use a neural network to approximate the energy func-

tion since a three-layer neural network can theoretically ap-

proximate any function [13]. Note that our constrained op-

timization formulation requires only that the energy model

is differentiable and thus is still applicable.

To obtain Ê , we sample s from a uniform distribution and

measure the real energy consumption on the target hardware

platform to get E(s). Please refer to Section 4.1 for a com-

plete experimental setup. We then use the stochastic gradi-

ent descent (SGD) method to solve Equation (3) and obtain

Ê . Note that this process is performed once for a given net-

work and hardware combination. It is performed offline as

shown in Figure 1 and thus has no runtime overhead.

3.3. Optimization Algorithm

The optimization problem posed by Equation (2) is a

constrained optimization whereas conventional DNN train-

ing is unconstrained. Therefore, conventional gradient-

based algorithms such as SGD and existing deep learning

solvers do not directly apply here. Another idea is to extend

the gradient-based algorithm to the projected version [32]

– a (stochastic) gradient descent step followed by a pro-

jection step to the constraint [37]. When the projection is

tractable [40] or the constraint is simple (e.g., linear) [29],

Lagrangian methods can be used to solve constraints on

the parameters or the outputs of DNNs. However, due to

the complexity of our constraint, the projection step is ex-

tremely difficult.

In this paper, we apply the framework of ADMM [3],

which is known to handle constrained optimizations ef-

fectively. ADMM is originally designed to solve opti-

mization problems with linear equality constraints and con-

vex objectives, both of which do not hold in our problem.

Therefore, we propose a hybrid solver that is based on the

ADMM framework while taking advantage of the recent ad-

vancements in gradient-based deep learning algorithms and

solvers [15].

Algorithm Overview We first convert the original

problem (2) to an equivalent minimax problem [3]:

min
W,s

max
z≥0,y≥0

L(W, s,y, z) (4)

where y is the dual variable introduced for the con-

straint (2b), and z is the dual variable for the con-

straint (2c). L is defined as the augmented Lagrangian

L(W, s,y, z) := ℓ(W) + L1(W, s,y) + L2(s, z),
where L1(W, s,y) := ρ1

2

∑

u[φ(w
(u)) − s(u)]2+ +

∑

u y
(u)(φ(w(u))−s(u)),L2(s, z) :=

ρ2

2 [Ê(s)−Ebudget]
2
++

z(Ê(s) − Ebudget). [·]+ denotes the nonnegative clamp

max(0, ·), and ρ1, ρ2 are two predefined nonnegative hyper-

parameters. Note that the choices of ρ1 and ρ2 affect only

the efficiency of convergence, but not the convergent point

(for convex optimization).

To compress a DNN under a given energy constraint, we

start with a dense model denoted by Wdense (which could

11209

Algorithm 1: Energy-Constrained DNN Compression.

Input: Energy budget Ebudget, learning rates α, β,

penalty parameters ρ1, ρ2.

Result: DNN weightsW∗.

InitializeW =Wdense, s = {φ(w(u))}u∈U , y = 0,

z = 0;

while Ê(s) > Ebudget or ∃u, φ(w(u)) > s(u) do
UpdateW by proximal Adam update: W = (7);

Update s by gradient descent: (10);

Update y, z by projected gradient ascent: (11) and

(12);
end

W∗ =W .

be obtained by optimizing the unconstrained objective), and

solve the problem in Equation (4) to obtain a compressed

network. Inspired by the basic framework of ADMM, we

solve Equation (4) iteratively, where each iteration updates

the primal variables W, s and dual variables y, z. Algo-

rithm 1 shows the pseudo-code of our algorithm.

Specifically, each iteration first updates the DNN

weightsW to minimize ℓ while preventingW to have layer-

wise (inverse) sparsities larger than s. s is then updated to

reduce the energy estimation Ê(s). Dual variables y and z
can be seen as penalties that are dynamically changed based

on how muchW and s violate the constraints (2b) and (2c).

We now elaborate on the three key updating steps.

3.3.1 Updating Primal VariableW

We first fix the sparsity bounds s and the two dual variables

y, z to update the primal variable weight tensorW by:

argmin
W

ℓ(W) + L1(W, s,y). (5)

The challenge here is that updating W is time-

consuming, mainly due to the complexity of calculating

argminW ℓ(W), where ℓ is the non-convex loss function

of the network. Stochastic ADMM [43] could simplify the

complexity of the primal update by using stochastic gradi-

ent, but they consider only the convex problems with shal-

low models. Instead, we propose to improve the primal up-

date’s efficiency using a proxy of the loss ℓ(W) atWt:

ℓ(Wt) + 〈∇̂ℓ(Wt),W −Wt〉+
1

2α
‖W −Wt‖2B , (6)

where B is a positive diagonal matrix, which is usually

used in many adaptive optimizers such as ADADELTA [42]

and Adam [15]; ‖W‖B is defined by the norm
√

vec(W)⊤Bvec(W) where vec(·) is the vectorization op-

eration. Without loss of generality, we use the diagonal ma-

trix B as in Adam. ∇̂ℓ(Wt) is the stochastic gradient of ℓ at

Wt, and α is the learning rate for updatingW . Therefore,

Equation (5) is simplified to a proximal [27] Adam update:

Algorithm 2: Proximal Operator proxαL1
(·).

Input: Input tensors W̄ = {w̄(u)}u∈U .

Result: Proximal operation resultW = {w(u)}u∈U .

Let a
(u)
i = ‖w̄

(u)
·,i,·,·‖

2
B(u) , ∀u ∈ U ;

Sort a(u) in descending order, let r(u) be the

corresponding ranks of elements in a(u);

foreach Layer u ∈ U do

for i← 1 to c(u) do

if a
(u)
i >

ρ1α([r
(u)
i −s

(u)]2+−[r
(u)
i −1−s

(u)]2+)+2αy(u)

then

w
(u)
·,i,·,· = w̄

(u)
·,i,·,·;

else

w
(u)
·,i,·,· = 0;

end

end

end

argmin
W

1

2α
‖W−(Wt−αB−1∇̂ℓ(Wt))‖2B+L1(W, s,y).

(7)

If we define proxαL1
(·) as the proximal operator of func-

tion αL1(·, s, y):

proxαL1
(W̄) := argmin

W

1

2
‖W − W̄‖2B + αL1(W, s,y),

(8)

the optimal solution of problem (7) admits a closed form:

proxαL1
(Wt − αB−1∇̂ℓ(Wt)). This update essentially

performs pruning and fine-tuning simultaneously. The de-

tailed algorithm for proximal operator proxαL1
(·) is shown

in Algorithm 2.

3.3.2 Updating Primal Variable s

In this step, we update the primal variable s by:

argmin
s

L1(W, s,y) + L2(s, z). (9)

Similar as above, instead of searching for exactly solving

this subproblem, we only apply a gradient descent step:

st+1 = st − β(∇sL1(W, st,y) +∇sL2(s
t, z)), (10)

where β is the learning rate for updating s. To avoid remov-

ing a certain layer entirely, a lower bound is set for s(u). In

our method, it is set as 1 if not explicitly mentioned.

3.3.3 Updating Dual Variables

The dual updates simply fix W, s and update y, z by pro-

jected gradient ascent with learning rates ρ1, ρ2:

y(u)
t+1

= [y(u)
t
+ ρ1(φ(w

(u))− s(u))]+, (11)

zt+1 = [zt + ρ2(Ê(s)− Ebudget)]+. (12)

11210

To stabilize the training process, we perform some addi-

tional steps when updating the dual variables. The dual

variable y controls the sparsity of each DNN layer, and

larger y(u) prunes more channels in layer u. It is not neces-

sary to penalize φ(w(u)) when φ(w(u)) ≤ s(u), so y(u)

is trimmed to meet φ(w(u)) ≥ ⌊s(u)⌋. The dual vari-

able z is used to penalize the violation of energy cost Ê(s),
and larger z makes s prone to decrease Ê(s). In the train-

ing process, we want Ê(s) to be monotonically decreased.

So we project the variable z to be large enough to meet

max(∇sL1(W, s,y)+∇sL2(s, z)) ≥ ǫ, where ǫ is a small

positive quantity and we simply set 10−3. The gradient of s

is also clamped to be nonnegative.

4. Evaluation Results

We evaluate ECC on real vision tasks deployed on two

different hardware platforms. We first introduce our exper-

imental setup (Section 4.1), followed up by the accuracy of

the energy prediction model (Section 4.2). Finally, we com-

pare ECC with state-of-the-art methods (Section 4.3).

4.1. Experimental Setup

Vision tasks & Datasets We evaluate ECC on two im-

portant vision tasks: image classification and semantic seg-

mentation. For image classification, we use the complete

ImageNet dataset [31]. For semantic segmentation, we use

the recently released large-scale segmentation benchmark

Cityscapes [6] which contains pixel-level high resolution

video sequences from 50 different cities.

DNN architectures For image classification, we use

two representative DNN architectures AlexNet [17] and

MobileNet [14]. The dense versions of the two models are

from the official PyTorch model zoo and the official Tensor-

Flow repository [1], respectively. For semantic segmenta-

tion, we choose the recently proposed ERFNet [30], which

relies on residual connections and factorization structures,

and is shown to be efficient on real-time segmentation. We

use the pre-trained ERFNet released by the authors. The

collection of the three networks allows us to evaluate ECC

against different DNN layer characteristics including fully

connected, convolutional, and transposed convolutional lay-

ers.

Hardware Platforms We experiment on two different

GPU platforms. The first one is a GTX 1080 Ti GPU. We

use the nvidia-smi utility [26] to obtain real-hardware

energy measurements. The second one is the Nvidia Jet-

son TX2 embedded device, which is widely used in mobile

vision systems and contains a mobile Pascal GPU. We re-

trieve the TX2’s GPU power using the Texas Instruments

INA 3221 voltage monitor IC through the I2C interface.

The DNN architectures as well as our ECC framework are

implemented using PyTorch [28].

Baseline We compare ECC with two most recent (as

of submission) resource-constrained compression methods

NetAdapt [39] and AMC [11]. We faithfully implement

them according to what is disclosed in the papers. Ne-

tAdapt is originally designed to compress DNNs under la-

tency constraints and AMC is designed to compress DNNs

under constraint of model size, FLOPs or latency. We adapt

them to obtain the energy-constrained versions for compar-

ison. Both methods use channel pruning for compression,

same as ECC.

Earlier channel pruning methods such as Network-

Slimming [22], Bayesian Compression [23], and several

others [7, 12, 25] are agnostic to resource constraints (e.g.,

energy) because they focus on sparsity itself. They require

a sparsity bound (or regularization weight) for each layer

to be manually set before compression. The compressed

model is generated only based on the given sparsity bounds,

regardless of the energy budget. We thus do not compare

with them here.

Hyper-parameters & implementation details The

batch size is set to 128 for AlexNet and MobileNet and to 4

for ERFNet based on the GPU memory capacity. We use the

Adam optimizer with its default Beta (0.9, 0.999); its learn-

ing rate is set to 10−5, and the weight decay is set as 10−4.3

All the compression methods are trained with the same

number of data batches / iterations, which are about 300,000

for ImageNet and 30,000 for Cityscapes. These iterations

correspond to the “short-term fine-tuning” [39] in NetAdapt

and the “4-iteration pruning & fine-tuning” [11] in AMC.

The reinforcement learning episodes in AMC is set to 400

as described in [11]. For the loss function ℓ, we add a

knowledge distillation (KD) term [2] combined with the

original loss (e.g., cross-entropy loss), since KD has been

shown as effective in DNN compression tasks [24, 35, 37].

In our method, the learning rate β for the sparsity bounds s

is set to reach the energy budgets with given iteration num-

ber, and the dual learning rates ρ1, ρ2 are set as 10 on Ima-

geNet and 1 on Cityscapes.

After getting the compressed models with given energy

budgets, we fine-tune each model for 100,000 iterations

with aforementioned setup. For MobileNet, we addition-

ally perform 300,000 iterations of fine-tuning with decayed

learning rate (cosine decay from 3 × 10−5) to minimize

the cross-entropy loss. The fine-tuning procedures train the

DNN with fixed non-zero positions in their weight tensors.

4.2. Energy Prediction Model

To train the energy prediction model, we obtain the real

energy measurements under different layer-wise sparsity

bounds s. We first randomly sample s from the uniform

distribution: s(u) ∼ unif{1, c(u)}. For each sample, we

3They are chosen in favor of best pre-trained model accuracy rather

than biasing toward any compression methods.

11211

10
0

10
1

10
2

10
3

#Iterations

0.02

0.21

0.40

0.59

0.78

0.97

R
e

la
ti
v
e

 T
e

s
t

E
rr

o
r

(a) MobileNet on GTX 1080 Ti.

10
0

10
1

10
2

10
3

#Iterations

0.03

0.17

0.31

0.45

0.58

0.72

R
e

la
ti
v
e

 T
e

s
t

E
rr

o
r

(b) MobileNet on TX2.

Figure 2: Relative test error of energy prediction using the

proposed bilinear model.

0 1 2 3

#Hidden Layer

0.01

0.015

0.02

0.025

0.03

R
e
la

ti
v
e
 T

e
s
t
E

rr
o
r

(a) MobileNet on GTX 1080 Ti.

0 1 2 3

#Hidden Layer

0.03

0.035

0.04

0.045

0.05

0.055

0.06

R
e
la

ti
v
e
 T

e
s
t
E

rr
o
r

(b) MobileNet on TX2.

Figure 3: Relative test error of energy prediction using an

MLP model with different hidden layers.

then construct a corresponding DNN, and measure its en-

ergy E(s). We measure the energy by taking the average of

multiple trials to minimize offset run-to-run variation. For

each DNN architecture, we collect 10,000 (s, E(s)) pairs to

train the energy model Ê . We randomly choose 8,000 pairs

as the training data and leave the rest as test data. To opti-

mize problem (3), we use Adam optimizer with its default

hyper-parameters, and the weight decay is set as 1.0. We set

batch size as 8,000 (full training data) and train the energy

model with 10,000 iterations. It should be noted that the

bilinear energy model is linear in terms of the learnable pa-

rameters, which means a linear regression solver could be

used. In this section, we also compare the bilinear model

with a nonlinear model, for which Adam is more suitable.

In Figure 2, we show the relative test error defined as

Es∼testset[|Ê(s)− E(s)|/E(s)] at each training iteration for

MobileNet on both hardware platforms. We find that the

relative test errors quickly converge to around 0.03. This

indicates that our energy model is not only accurate, but is

also efficient to construct. The same conclusions hold for

other networks as well, but are omitted due to space limit.

To assess whether the bilinear model is sufficient, we

also experiment with a more complex prediction model by

appending a multilayer perceptron (MLP) after the bilinear

model. The widths of all the MLP hidden layers are set to

128, and we use the SELU [16] activation. We vary the

number of hidden layers from 1 through 3. The prediction

errors of this augmented energy model on MobileNet are

shown in Figure 3, where the original bilinear model has

zero hidden layer. We find that adding an MLP does not no-

ticeable improve the prediction accuracy on GTX 1080 Ti,

but significantly reduce the prediction accuracy on TX2. We

thus use the plain bilinear model for the rest of the evalua-

tion.

4.3. DNN Compression Results

We now show the evaluation results on two popular vi-

sion tasks: image classification and semantic segmentation.

4.3.1 ImageNet Classification

MobileNet In Figure 4, we show the validation accuracies

of compressed MobileNet under different energy budgets,

and the energy cost is shown by joule (J). We set four dif-

ferent energy budgets in descending order. The dense Mo-

bileNet model has a top-1 accuracy of 0.709. The energy

cost of the dense model is 0.2877 J on GTX 1080 Ti and

0.0487 J on Jetson TX2.

0.197 0.215 0.233 0.252 0.270 0.288

Energy Cost (J)

0.451

0.503

0.554

0.606

0.657

0.709

A
c
c
u
ra

c
y

ECC

NetAdapt

AMC

Dense

(a) GTX 1080 Ti.

0.020 0.025 0.031 0.037 0.043 0.049

Energy Cost (J)

0.560

0.590

0.621

0.651

0.681

0.711

A
c
c
u
ra

c
y

ECC

NetAdapt

AMC

Dense

(b) Jetson TX2.

Figure 4: Top-1 accuracy of image classification on Mo-

bileNet@ImageNet after fine-tuning.

Figure 4 shows the top-1 accuracy v.s. energy compar-

isons (after fine-tuning) across the three methods. The re-

sults before fine-tuning is included in the supplementary

material. ECC achieves higher accuracy than NetAdapt and

AMC. For instance, on Jetson TX2 under the same 0.0247 J

energy budget, ECC achieves 2.6% higher accuracy com-

pared to NetAdapt. Compared to the dense model, ECC

achieves 37% energy savings with < 1% accuracy loss on

Jetson TX2. AMC has similar performance with NetAdapt

when the energy budget is not too small.

The accuracy improvements of ECC over NetAdapt and

AMC are more significant under lower energy budgets. This

suggests that under tight energy budget, searching for the

optimal per-layer sparsity combinations becomes difficult,

whereas ECC, via its optimization process, is able to iden-

tify better layer sparsities than search-based approaches.

AlexNet We obtain similar conclusions on AlexNet.

The dense model has a 0.566 top-1 accuracy. The energy

cost of the dense model is 0.2339 J on GTX 1080 Ti and

0.0498 J on Jetson TX2. Figure 5 compares the three meth-

ods (after fine-tuning) on two platforms respectively. The

11212

Table 2: Segmentation accuracy (averaged IoU) comparison on the Cityscapes dataset.

Methods / Energy Budget
GTX 1080 Ti Jetson TX2

1.3843 J 1.4451 J 1.5238 J 1.6519 J 1.9708 J 0.8542 J 0.9051 J 0.9756 J 1.0724 J 1.3213 J

Dense - - - - 0.722 - - - - 0.722

ECC 0.6713 0.6830 0.7007 0.7163 - 0.6733 0.6914 0.7017 0.7183 -

NetAdapt [39] 0.6361 0.6523 0.6865 0.7114 - 0.6567 0.6708 0.6916 0.7084 -

AMC [11] 0.6340 0.6374 0.6749 0.6992 - 0.6344 0.6491 0.6685 0.6976 -

0.058 0.093 0.128 0.163 0.199 0.234

Energy Cost (J)

0.376

0.414

0.452

0.490

0.528

0.566

A
c
c
u
ra

c
y

ECC

NetAdapt

AMC

Dense

(a) GTX 1080 Ti.

0.018 0.024 0.030 0.037 0.043 0.050

Energy Cost (J)

0.500

0.514

0.528

0.542

0.556

0.570

A
c
c
u
ra

c
y

ECC

NetAdapt

AMC

Dense

(b) Jetson TX2.

Figure 5: Top-1 accuracy image classification on

AlexNet@ImageNet after fine-tuning.

results before fine-tuning are included in the supplemen-

tary material. Before fine-tuning, ECC outperforms Ne-

tAdapt, which however achieves similar or slightly better

accuracy than ECC after fine-tuning. ECC consistently out-

performs AMC before and after fine-tuning. Compared to

dense models, ECC achieves 28% and 37% energy savings

with < 0.6% and < 1.7% accuracy loss on GTX 1080 Ti

and Jetson TX2, respectively.

Comparing the results on AlexNet (7 layers) and Mo-

bileNet (14 layers), we find that the advantage of ECC

is more pronounced on deeper networks. This is because

as the network becomes deeper the layer sparsity search

space grows exponentially, which makes the search-based

approaches such as NetAdapt and AMC less effective.

Sparsity Analysis Figure 6a and Figure 6b show the

normalized (inverse) sparsity (i.e. #(nonzero channels)) of

each layer in MobileNet and AlexNet respectively. Differ-

ent colors represents different energy budgets used in Fig-

ure 4 and Figure 5. We find that the 5th layer in AlexNet is

pruned heaviest. In AlexNet, that is the first fully connected

layer which has the most number of weights; pruning it

saves lots of energy. We also observe many “spikes” in Mo-

bileNet. Our intuition is that every two consecutive layers

can be seen as a low rank factorization of a larger layer (ig-

noring the nonlinear activation between layers). The spikes

may suggest that low rank structure could be efficient in

saving energy.

4.3.2 Cityscapes Segmentation

Now we apply ECC to ERFNet [30] for semantic segmen-

tation. We use the well-established averaged Intersection-

over-Union (IoU) metric, which is defined as TP/(FP+TP+

2 4 6 8 10 12 14

Layer Index

0.20

0.36

0.52

0.68

0.84

1.00

N
o

rm
a

liz
e

d
 S

p
a

rs
it
y

0.0370 J

0.0308 J

0.0247 J

0.0196 J

(a) MobileNet (inverse) sparsity.

1 2 3 4 5 6 7

Layer Index

0.20

0.40

0.60

0.80

1.00

N
o

rm
a

liz
e

d
 S

p
a

rs
it
y

0.0462 J

0.0313 J

0.0233 J

0.0176 J

(b) AlexNet (inverse) sparsity.

Figure 6: Layer (inverse) sparsity after compressing on Jet-

son TX2.

FN) where TP, FP, and FN denote true positives, false pos-

itives, and false negatives, respectively. The training proto-

col is the same as the ImageNet experiments, except that the

number of training iterations is 30,000 and the results are

fine-tuned with 10,000 extra iterations. The dense model

has an IoU of 0.722 and energy cost of 1.9708 J on GTX

1080 Ti and 1.3213 J on Jetson TX2.

Table 2 compares the IoUs of the three compression tech-

niques under different energy budgets. ECC consistently

achieves the highest accuracy under the same energy bud-

get. Similar to MobileNet, ERFNet is also a deep net-

work with 51 layers, which leads to large layer sparsity

search space that makes search-based approaches ineffec-

tive. Compared to the dense model, ECC reduces energy by

16% and 19% with < 0.6% IoU loss on GTX 1080 Ti and

TX2, respectively.

5. Conclusion

Future computer vision applications will be increasingly
operating on energy-constrained platforms such as mobile
robots, AR headsets, and ubiquitous sensor nodes. To accel-
erate the penetration of mobile computer vision, this paper
proposes ECC, a framework that compresses DNN to meet a
given energy budget while maximizing accuracy. We show
that DNN compression can be formulated as a constrained
optimization problem, which can be efficiently solved us-
ing gradient-based algorithms without many of the heuris-
tics used in conventional DNN compressions. Although
targeting energy as a case study in the paper, our frame-
work is generally applicable to other resource constraints
such as latency and model size. We hope that our work
is a first step, not the final word, toward heuristics-free,
optimization-based DNN improvements.

11213

References

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,

M. Devin, S. Ghemawat, G. Irving, M. Isard, et al. Tensor-

flow: a system for large-scale machine learning. In OSDI,

volume 16, pages 265–283, 2016.

[2] J. Ba and R. Caruana. Do deep nets really need to be deep?

In Advances in neural information processing systems, pages

2654–2662, 2014.

[3] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, et al.

Distributed optimization and statistical learning via the al-

ternating direction method of multipliers. Foundations and

Trends R© in Machine learning, 3(1):1–122, 2011.

[4] Y.-H. Chen, J. Emer, and V. Sze. Eyeriss: A Spatial Architec-

ture for Energy-efficient Dataflow for Convolutional Neural

Networks. In Proc. of ISCA, 2016.

[5] T.-W. Chin, C. Zhang, and D. Marculescu. Layer-

compensated pruning for resource-constrained convolutional

neural networks. arXiv preprint arXiv:1810.00518, 2018.

[6] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler,

R. Benenson, U. Franke, S. Roth, and B. Schiele. The

cityscapes dataset for semantic urban scene understanding.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2016.

[7] B. Dai, C. Zhu, and D. Wipf. Compressing neural networks

using the variational information bottleneck. arXiv preprint

arXiv:1802.10399, 2018.

[8] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. Horowitz, and

W. Dally. EIE: Efficient Inference Engine on Compressed

Deep Neural Network. In Proc. of ISCA, 2016.

[9] S. Han, H. Mao, and W. J. Dally. Deep compres-

sion: Compressing deep neural networks with pruning,

trained quantization and huffman coding. arXiv preprint

arXiv:1510.00149, 2015.

[10] S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights

and connections for efficient neural network. In Advances

in neural information processing systems, pages 1135–1143,

2015.

[11] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han. Amc:

Automl for model compression and acceleration on mobile

devices. In Proceedings of the European Conference on

Computer Vision, pages 784–800, 2018.

[12] Y. He, X. Zhang, and J. Sun. Channel pruning for accel-

erating very deep neural networks. In Proceedings of the

IEEE International Conference on Computer Vision, vol-

ume 2, 2017.

[13] K. Hornik. Approximation capabilities of multilayer feed-

forward networks. Neural networks, 4(2):251–257, 1991.

[14] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,

T. Weyand, M. Andreetto, and H. Adam. Mobilenets: Effi-

cient convolutional neural networks for mobile vision appli-

cations. arXiv preprint arXiv:1704.04861, 2017.

[15] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980, 2014.

[16] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter.

Self-normalizing neural networks. In Advances in Neural

Information Processing Systems, pages 971–980, 2017.

[17] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in neural information processing systems, pages

1097–1105, 2012.

[18] Y. LeCun, J. S. Denker, and S. A. Solla. Optimal brain dam-

age. In Advances in neural information processing systems,

pages 598–605, 1990.

[19] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P.

Graf. Pruning filters for efficient convnets. arXiv preprint

arXiv:1608.08710, 2016.

[20] R. LiKamWa, Z. Wang, A. Carroll, F. X. Lin, and L. Zhong.

Draining our glass: An energy and heat characterization of

google glass. In Proceedings of 5th Asia-Pacific Workshop

on Systems, page 10. ACM, 2014.

[21] B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Pensky.

Sparse convolutional neural networks. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 806–814, 2015.

[22] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang.

Learning efficient convolutional networks through network

slimming. In Proceedings of the IEEE International Confer-

ence on Computer Vision, pages 2755–2763. IEEE, 2017.

[23] C. Louizos, K. Ullrich, and M. Welling. Bayesian compres-

sion for deep learning. In Advances in Neural Information

Processing Systems, pages 3288–3298, 2017.

[24] A. Mishra and D. Marr. Apprentice: Using knowledge dis-

tillation techniques to improve low-precision network accu-

racy. arXiv preprint arXiv:1711.05852, 2017.

[25] K. Neklyudov, D. Molchanov, A. Ashukha, and D. P. Vetrov.

Structured bayesian pruning via log-normal multiplicative

noise. In Advances in Neural Information Processing Sys-

tems, pages 6775–6784, 2017.

[26] Nvidia. nvidia-smi. https://developer.

download.nvidia.com/compute/DCGM/docs/

nvidia-smi-367.38.pdf.

[27] N. Parikh, S. Boyd, et al. Proximal algorithms. Foundations

and Trends R© in Optimization, 1(3):127–239, 2014.

[28] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De-

Vito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. Auto-

matic differentiation in pytorch. In NIPS-W, 2017.

[29] D. Pathak, P. Krahenbuhl, and T. Darrell. Constrained con-

volutional neural networks for weakly supervised segmenta-

tion. In Proceedings of the IEEE International Conference

on Computer Vision, pages 1796–1804, 2015.

[30] E. Romera, J. M. Alvarez, L. M. Bergasa, and R. Arroyo.

Erfnet: Efficient residual factorized convnet for real-time

semantic segmentation. IEEE Transactions on Intelligent

Transportation Systems, 19(1):263–272, 2018.

[31] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual

Recognition Challenge. International Journal of Computer

Vision (IJCV), 115(3):211–252, 2015.

[32] O. Shamir and T. Zhang. Stochastic gradient descent for non-

smooth optimization: Convergence results and optimal av-

eraging schemes. In International Conference on Machine

Learning, pages 71–79, 2013.

11214

[33] S. Srinivas and R. V. Babu. Data-free parameter pruning

for deep neural networks. arXiv preprint arXiv:1507.06149,

2015.

[34] A. Suleiman, Y.-H. Chen, J. Emer, and V. Sze. Towards Clos-

ing the Energy Gap Between HOG and CNN Features for

Embedded Vision. In Proc. of ISCAS, 2017.

[35] M. Tschannen, A. Khanna, and A. Anandkumar. Strassen-

nets: Deep learning with a multiplication budget. arXiv

preprint arXiv:1712.03942, 2017.

[36] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning

structured sparsity in deep neural networks. In Advances in

Neural Information Processing Systems, pages 2074–2082,

2016.

[37] H. Yang, Y. Zhu, and J. Liu. Energy-constrained compres-

sion for deep neural networks via weighted sparse projec-

tion and layer input masking. In International Conference

on Learning Representations, 2019.

[38] T.-J. Yang, Y.-H. Chen, and V. Sze. Designing energy-

efficient convolutional neural networks using energy-aware

pruning. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 5687–5695,

2017.

[39] T.-J. Yang, A. Howard, B. Chen, X. Zhang, A. Go, M. San-

dler, V. Sze, and H. Adam. Netadapt: Platform-aware neural

network adaptation for mobile applications. In Proceedings

of the European Conference on Computer Vision, pages 285–

300, 2018.

[40] S. Ye, T. Zhang, K. Zhang, J. Li, J. Xie, Y. Liang, S. Liu,

X. Lin, and Y. Wang. A unified framework of dnn weight

pruning and weight clustering/quantization using admm.

arXiv preprint arXiv:1811.01907, 2018.

[41] J. Yu, A. Lukefahr, D. Palframan, G. Dasika, R. Das, and

S. Mahlke. Scalpel: Customizing dnn pruning to the under-

lying hardware parallelism. In ACM SIGARCH Computer

Architecture News, volume 45, pages 548–560. ACM, 2017.

[42] M. D. Zeiler. Adadelta: an adaptive learning rate method.

arXiv preprint arXiv:1212.5701, 2012.

[43] S. Zheng and J. T. Kwok. Fast-and-light stochastic admm.

In IJCAI, pages 2407–2613, 2016.

[44] H. Zhou, J. M. Alvarez, and F. Porikli. Less is more: Towards

compact cnns. In European Conference on Computer Vision,

pages 662–677. Springer, 2016.

[45] Y. Zhu, A. Samajdar, M. Mattina, and P. Whatmough. Eu-

phrates: Algorithm-soc co-design for low-power mobile con-

tinuous vision. Proc. of ISCA, 2018.

11215

