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Abstract

Face anti-spoofing is an important task in full-stack

face applications including face detection, verification, and

recognition. Previous approaches build models on datasets

which do not simulate the real-world data well (e.g., small

scale, insignificant variance, etc.). Existing models may

rely on auxiliary information, which prevents these anti-

spoofing solutions from generalizing well in practice. In

this paper, we present a data collection solution along with

a data synthesis technique to simulate digital medium-based

face spoofing attacks, which can easily help us obtain a

large amount of training data well reflecting the real-world

scenarios. Through exploiting a novel Spatio-Temporal

Anti-Spoof Network (STASN), we are able to push the per-

formance on public face anti-spoofing datasets over state-

of-the-art methods by a large margin. Since the proposed

model can automatically attend to discriminative regions,

it makes analyzing the behaviors of the network possible.

We conduct extensive experiments and show that the pro-

posed model can distinguish spoof faces by extracting fea-

tures from a variety of regions to seek out subtle evidences

such as borders, moire patterns, reflection artifacts, etc.

1. Introduction

Face anti-spoofing [40, 1, 15, 14] is an important, yet

challenging problem in the face recognition community. It

has wide practical applications in face authentication, secu-

rity check, and access control. This task is to recognize

whether a face is captured from spoof attacks, including

printed face, replaying a face video with digital medium,

wearing a mask, etc. Therefore, face anti-spoofing is quite

vital to the security of face recognition systems [39].

Previous methods have made a progress in achieving ac-

ceptable accuracy in recent years, while are hardly adopt-
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Figure 1. The proposed model STASN includes three components,

TASM, RAM and SASM. TASM extracts temporal and global fea-

ture representation, SASM learns discrimination from local impor-

tant regions, attended by RAM. With our collected data, the model

achieves the state-of-the-art performance.

able in practical applications due to various reasons. For

example, one reason may be that some methods are trained

using datasets which are of small scale and/or indistinc-

tive variations. This prevents these methods from gener-

alizing well. Moreover, some algorithms rely on additional

information, such as rPPG [26] and depth [2]. The perfor-

mance depends on the quality of the auxiliary information

to some extent. The dependence may also bring inconve-

nience in practice. Besides, existing datasets for face anti-

spoofing including NUAA [37], CASIA-MFSD [44], and

Replay-Attack [11] were released years ago. More recent

MSU-USSA [32] and OULU-NPU datasets [10] do not in-

clude significant variations in poses, illuminations, and ex-

pressions. Current methods are trained/tested on specific

datasets, but are not comprehensively justified in the com-

plex real scenarios.

To make the research on face anti-spoofing more valu-

able for practical applications, in this paper we present an

easy-to-execute solution to obtain a large amount of training

data and build a model upon the data to push the limits of the

face anti-spoofing performance. Specifically, we download

positive samples (live face videos) from the Web, and col-

lect negative samples by recording displayed videos on var-

ious digital devices. A novel spoof face synthesis method
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is proposed to further accelerate the data acquisition pro-

cedure. With the proposed solution, we are able to collect

5, 000 positive videos and 5, 000 negative videos within a

month.

On the other hand, we build a model, dubbed Spatio-

Temporal Anti-Spoofing Network (STASN), with a spatio-

temporal attention mechanism. This model is com-

posed of three modules, Temporal Anti-Spoofing Module

(TASM), Region Attention Module (RAM), and Spatial

Anti-Spoofing Module (SASM). In TASM, a CNN is used

to learn powerful features and the employed LSTM encodes

temporal information for video classification. From a spa-

tial perspective, considering that the sole entire image fails

to show a sufficient discriminating power, local subtle fea-

tures are proven to be more useful [2, 25]. Different from

previous random method [2] or fixed setting [25], we learn

the discriminative region attention via a deep module RAM.

This module can capture important local regions of spoof

clues with a strong discriminating ability. Feature learn-

ing is carried out more effectively by attending these local

regions in the so-called SASM. Moreover, local attention

structure and LSTM features complement each other to en-

dow different information into spatio-temporal incorpora-

tion.

The attention scheme in the proposed model allows us to

explore a more intuitive representation which benefits hu-

mans in understanding how this problem can be tackled. We

dive into the model to conduct a set of investigation stud-

ies, and show some interesting (intermediate) results, which

would be useful for future research in the community.

Our main contributions are summarized as follows:

• We present an easy-to-execute solution to collect a

large amount of data by mimicking the spoofing at-

tacks in real world, which is demonstrated to be vital

for the face anti-spoofing research.

• We propose a face anti-spoofing model with a spatio-

temporal attention mechanism to fuse global temporal

and local spatial information, which allows us to ana-

lyze the model’s interpretable behaviors.

• We significantly advance the state-of-the-art perfor-

mances on public face anti-spoofing datasets, thus pro-

viding the community a promising direction along

with building powerful anti-spoofing solutions in prac-

tice.

2. Related Work

Traditional Methods. The difference in textures is one of

the main clues to distinguish live faces from spoof faces

[7]. Such information has been exploited for face anti-

spoofing. For example, many hand-crafted features have

been studied in previous works, including LBP [29, 12, 13],

HOG [21, 43], DOG [37, 33], SIFT [32], and SURF [9]. In

addition, different data domains have been exploited to ex-

tract discriminative features. Boulkenafet et al. investigated

different color spaces such as HSV and YCbCr [6, 8]. Fea-

tures in the frequency domain were also studied in [22]. The

common issue existing in these methods is that these hand-

crafted features are not robust to various nuisance variables

in the wild, such as illuminations and occlusions.

In contrast to solely using a still image, researchers at-

tempt to leverage spontaneous face motions in a sequence

of frames for face anti-spoofing. For example, eyes blinking

has been utilized to detect face liveness in [30, 36]. Kollrei-

der et al. used mouth and lip motions for face anti-spoofing

[20]. However, spontaneous face motions are often too sub-

tle to be captured by hand-crafted features in practice.

Deep Learning Methods. The strong representation power

of modern CNNs has been exploited [27] in face anti-

spoofing research [16, 23, 31, 42]. The methods in [23, 31]

used a pretrained CaffeNet or VGG-face model as a feature

extractor to distinguish live and spoof faces. Multiple spa-

tial scales have been leveraged in [38] to classify live and

spoof images. Additional information, such as remote pho-

toplethysmography (rPPG, a heart pulse signal) and spoof

noise, has been exploited in [26, 18]. Despite the progress

in their performance with regard to traditional methods, the

detection accuracy and the robustness to the nuisance vari-

ables in the wild are still less satisfied for practical use.

Most recently, improvements have been achieved by si-

multaneously taking spatial and temporal aspects into ac-

count. Our work is most related to [41] in this category,

where we both used an LSTM-CNN architecture on multi-

ple frames of a video. In contrast to [41], we further explore

local regions fusion and an attention mechanism to boost the

performance and allow interpretable analysis.

3. Data

Sufficient data plays an important role in deriving satis-

factory models. Typically the data used to train the models

is expected to be sufficient and close to the testing data.

However, the current data sets in the community are ei-

ther of small scale or do not mimic the real-world testing

data sufficiently well, which limits the potential of models

trained on these datasets.

To this end, we collect a set of data ourselves and build

models based on the collected data. Generally, live faces

(not spoof) are not difficult to obtain. For example, there are

a lot of selfie videos on the Web. Additionally, it is also easy

to collect videos which are not selfie but include faces. We

downloaded a set of positive samples consisting of 5, 000
live face videos using Python scripts. Then a 5∼10 seconds

clip is extracted from each video using the Dlib [19] face

detector.

The difficulties lie in the acquisition of negative samples,
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Figure 2. The procedure of synthesizing spoof faces. Please zoom in to check the synthetic reflection artifacts exhibited in the result.

i.e., spoof face videos. As it is known to all, spoof behaviour

is rare in the real world, so the spoof face data is scarce and

expensive. We adopt the following two methods to acquire

negative samples.

3.1. ManuallyMimicked Spoof Faces

To mimic the spoof attacking procedure, we use various

kinds of digital device to display positive face videos and

different kinds of devices to record the displayed videos.

Specifically, the devices displaying the normal videos in-

clude three models of iPhone (iPhone 6, iPhone 7, and

iPhone X), over 10 models of typical Android phones of

popular brands (Samsung, Huawei, Xiaomi, etc.), pads

(iPad and an Android pad), and desktop/laptop screens.

The mobile devices used to record videos include popu-

lar iPhone models and Android models. It is important

to note that the human workers are required to try their

best to mimic the attacking procedure when recording spoof

videos. To be specific, they are asked to avoid the artifacts

of reflection on the screen, moire pattern, the appearance of

device edge/border, etc. This kind of careful handling would

approximate the spoof videos in deliberated attacking. In

this way, we collected 2, 500 negative samples (5∼10 sec-

onds videos) in less than a month with two human workers.

3.2. MachineSynthesized Spoof Faces

The aforementioned procedure, elaborated by humans, is

not sufficiently efficient. To tackle this, we propose a novel

and effective method to synthesize a large number of neg-

ative samples based on the collected positive samples. We

observe that the spoof face videos in the real world usu-

ally exhibit either low quality in the form of blurs, or re-

flections in the display screen plus perspective distortions.

Thus we synthesize two sets of negative samples consisting

of 2, 500 videos in total. Given a positive (image) sample

X, a Gaussian blur kernel G is applied to the image with

random strength to blur the image. This procedure is for-

mulated as X̂ = X ∗ G (σ), where σ is the strength of the

blur drawn as a random variable.

On the other hand, the process to augment the positive

sample with reflection plus distortion is as follows (also

as shown in Fig. 2). 1) We firstly fit the positive sam-

ple into the screen of a device template (e.g., an iPhone).

The derived image, to mimic the display in a device, is de-

noted as X′. 2) This image is blended with a random im-

age as a reflection layer image, and we have a new image

X′

r = (1− α)X′ + αXr, where α is the strength variable

of the content in the reflection layer image Xr, randomly

drawn from [0, 0.2]. 3) As the display device can hardly be

posed strictly vertically in front of the live camera, we ad-

ditionally apply a perspective transformation (with random

parameters) P (·) to the image X′

r, yielding a new image

X′

rd. There will be a mask M associated with the transfor-

mation. 4) We again blend the transformed image X′

rd with

a random background image Xb from a collected image set,

considering the mask M as, X̃ = M⊙X′

rd+(1−M)⊙Xb,

where 1 is a 2D matrix with the same resolution size of X′

rd,

and ⊙ means the element-wise product between matrices.

4. Model

The input of the anti-spoofing task is a face video, so we

propose to mine both the spatial and temporal cues to ac-

complish this task. Moreover, we discover that, besides the

whole image which provides a complete view of the face,

local subtle regions are more helpful for our verification

task. In light of this, we develop a neural network model

called Spatio-Temporal Anti-Spoofing Network (STASN)

to learn more discriminative spatio-temporal features to

complete our task. As shown in Fig. 3, this model is

composed of three modules, Temporal Anti-Spoofing Mod-

ule (TASM), Region Attention Module (RAM), and Spa-

tial Anti-Spoofing Module (SASM). TASM addresses face

anti-spoofing as a video classification problem, making de-

cisions by mining temporal cues. RAM explores the loca-

tion of potential subtle details and each patch of the attended
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Figure 3. An overview of the STASN model. There are three components, Temporal Anti-Spoofing Module (TASM), Region Attention

Module (RAM), and Spatial Anti-Spoofing Module (SASM), in the model. The TASM is a CNN-LSTM structure, taking the frame

sequence as input and predicting binary classification results. The RAM learns the offset based on CNN features from TASM and out-

puts attended regions with respect to sequential images. The attended regions are forwarded in a parameter-shared CNN to give binary

predictions.

location is fed into SASM to learn region representations.

4.1. Network

Let {(Vi, yi)}
N
i=1

denote the set of training data, where

Vi represents a training video and yi denotes its label, 0

representing spoof video and 1 representing normal video.

Each video consists of multiple frames, as Vi = {Xi,j}
M
j=1

,

where Xi,j denotes the j-th frame in video Vi.

Typically, as ground-truth, only the class label is pro-

vided and there is no annotation of important regions. Thus

we have to discover these regions for specified processing

in the face anti-spoofing task. Unlike traditional strategies

like random choice [2] or simple fusion of adding convo-

lutional layer [24], we carefully design an attention mech-

anism, RAM, with fewer parameters and more reasonable

initialization settings for locating the discriminative and sig-

nificant sub-regions. The overview of our STASN is shown

in Fig. 3. As described before, STASN includes three mod-

ules. Temporal Anti-Spoofing Module (TASM) aims to cap-

ture temporal dependencies among video frames. Spatial

Anti-Spoofing Module (SASM) consists of K streams and

each aims to learn subtle discriminative features. Region

Attention Module (RAM) generates attention regions.

Temporal Anti-Spoofing Module (TASM). The TASM is

a Conv-LSTM structure composed of a convolutional neu-

ral network to extract representative visual features and an

LSTM module to encode temporal correlation across multi-

ple frames. We use a 50-layer ResNet pre-trained on the Im-

ageNet dataset as the visual feature extractor. This network

is followed by a global average pooling layer. An LSTM

module follows the pooling layer, extracting the temporal

relationship from different video frames.

Region Attention Module (RAM). The region attention

module aims to generate important local regions, which

are fed into the SASM. Specifically, when the attended po-

sitions are located, we crop the corresponding regions to

finer scale with higher resolution to extract subtle features.

To ensure that the whole network can be optimized during

training, we model this process by learning a transformation

matrix as,

T =

[

sh 0 ax
0 sw ay

]

, (1)

which allows cropping and translation operations. We fix sh
and sw as predefined constant values to set the region size,

and output 2 × K (K is the number of attended regions)

parameters so as to locate individual regions within the im-

age boundary. To achieve this goal, we develop a simple yet

effective sub-network. As shown in Fig. 4, we take input

as features from the res conv5 block. It is followed by a

depth-wise convolutional layer of 7×7 filter. After that, we

perform a 1 × 1 channel convolution operation and output

2×K parameters, indicating the offset/translation with re-

gard to the anchor locations. This cross depthwise-channel

structure is useful for learning spatial attention locations.

The operation also reduces the computational complexity

with merely 1/C (C is the number of channels) times of

parameters needed by conventional convolution.

It is straightforward to initialize the anchor position of

attended regions as the center of the image. However, we

discover that the optimization of seeking the attention re-

gion position easily gets stuck in local overfitting during the
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Figure 4. The region attention module. The input are features from the CNN in TASM. By applying depth-wise convolution and conven-

tional convolution, transformation parameters are output. These parameters are referred by a sampler to give the attended local regions.

training stage. Therefore, a mechanism to produce a better

initial localization of important regions is expected. We em-

ploy Grad-Gram [35] which produces a coarse localization

map highlighting the important regions to initialize the po-

sition of attention regions. As the RAM structure learns the

position offset, the attended regions can be obtained along

with the better initialization.

Assuming that we have already the Temporal Anti-

Spoofing Module (TASM), given an image X and its cor-

responding label yc, we forward this image through the

TASM and compute a raw score considering its label. This

score signal is propagated back to the convolutional feature

maps Fk of a convolutional layer. Then we derive the gra-

dient of the score regarding Fk as ∂yc

∂Fk , and the gradient

is manipulated by global pooling to obtain the importance

weights αc
k of the feature map Fk for a target class c,

αc
k =

1

z

∑

i

∑

j

∂yc

∂F k
ij

, (2)

where z is a normalization factor. We can perform a

weighted combination of forward activation maps and for-

mulate it as,

SF = ReLU(
∑

k

αc
kF

k). (3)

We obtain a score map of the same size as the convolu-

tional feature maps (7 × 7 in this case), and bilinear inter-

polation is applied at this score map to make it of the same

size as the input image. Then we use the average pooling

operation to derive a 4× 4 score map, each value indicating

the importance of one grid in the 4× 4 grids. We select the

largest K values, and let their corresponding region posi-

tions as the initial important regions in a frame. The RAM

structure will learn the corresponding offsets ax and ay con-

sidering the initialization positions. By doing so, the final

important local regions can be obtained.

Spatial Anti-Spoofing Module (SASM). As shown in Fig.

3, the Spatial Anti-Spoofing Module (SASM) is a multi-

branch network structure. This module includes K streams

of local-region branches. Each stream aims to learn the

most discriminative features for one of the K local regions

of a face image. To reduce the model parameters, we share

convolutional layers among the multiple streams. Global

max-pooling operation on the corresponding output map is

conducted, and a 1 × 1 convolutional layer with batch nor-

malization [17] and ReLU reduces the 2048-dim feature to

256-dim. Then we concatenate the number of K 256-dim

features to classify spoof faces versus live faces.

During the testing phase, to obtain the most powerful dis-

crimination, we combine both temporal and spatial scores to

yield the final score.

4.2. StepWise Training

To better optimize attention localization and the task of

classification, we develop a three-step training algorithm.

In the first step, we initialize the CNN in TASM by us-

ing a ResNet network pre-trained on ImageNet. We then

feed video data into TASM with 5 training epochs with the

cross-entropy loss and derive a pre-trained temporal path

model TASM. In the second step, we fix the pre-trained

TASM, and train the RAM and SASM together. Specifi-

cally, we employ the TASM to obtain a response image of

each frame by the Grad-Gram algorithm. Then we use the

proposed region attention module to generate local regions,

and feed these resized local patches into SASM with the

cross-entropy loss. After 5 training epochs, we obtain the

pre-trained RAM and SASM. In the third step, we train the

whole model in another 5 epochs by decreasing the learn-

ing rate to 1/10 of the previous rate to optimize the training

performance.

5. Experiments

In this section, we conduct extensive experiments on the

task of face anti-spoofing to demonstrate the effectiveness

of our method and data. In the following, we sequentially

describe the employed datasets & metrics (Sec. 5.1), imple-

mentation details (Sec. 5.2) and results (Sec. 5.3 - 5.5).

5.1. Datasets & Metrics

We evaluate the proposed model on four public face anti-

spoofing databases, including Replay-Attack [11], CASIA-

MFSD [44], Oulu-NPU [10] and the latest SiW [26].

CASIA-MFSD [44] contains 50 subjects, and 12 videos

for each subject with 3 different resolutions and illumina-

tion conditions. Replay-Attack [11] includes 1, 300 live and
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Table 1. The ablation study results on Oulu-NPU in terms of Pro-

tocols 1 and 3.
Prot. Method APCER(%) BPCER(%) ACER(%)

1 TASM 1.7 3.3 2.5

STASN(w/o search) 2.1 2.5 2.3

STASN 1.2 2.5 1.9

3 TASM 5.8±4.3 1.4±2.4 3.6±1.9

STASN(w/o search) 5.4±3.8 1.1±1.3 3.3±1.9

STASN 4.7±3.9 0.9±1.2 2.8±1.6

spoof videos from 50 subjects. These two datasets are used

for cross testing. Oulu-NPU [10] consists of 990 real face

videos and 3, 960 spoof face videos. There are four testing

protocols associated with Oulu-NPU to evaluate the gener-

alization of algorithms. Protocol 1 evaluates on the illumi-

nation variation, and Protocol 2 studies the impact of differ-

ent types of spoof medium. Protocol 3 examines the effect

of different camera devices and Protocol 4 investigates all

the challenges above. The SiW dataset exhibits variations of

different real-world factors. Three protocols are proposed

with this dataset, concerning the model performance with

regard to face pose and expression variations, cross spoof

medium of replay attack, and cross types of attacking (e.g.

from print attack to replay attack).

The performance metrics we employed are the Attack

Presentation Classification Error Rate (APCER) [4], the

Bona Fide Presentation Classification Error Rate (BPCER)

[4] and Half Total Error Rate (HTER) [4]. The HTER is

half of the sum of the False Rejection Rate (FRR) and the

False Acceptance Rate (FAR). Besides, we use ACER =

(APCER+BPCER)/2.

5.2. Implementation Details

The model is implemented with PyTorch framework. We

use K = 4 as the number of regions and set sh = sw =
0.25. After face detection for each frame, we resize each

face to the fixed size 224× 224. We use Adam to optimize

our proposed network with learning rate of 5e − 5 in the

first and second step describe in Sec. 4.2. This learning rate

is decreased to its 1/10 magnitude in the third step of fine-

tuning. The batch size of the temporal CNN-LSTM network

is 10 and the number of frames M is 10.

We also use our collected data to further improve the per-

formance. To be specific, we train a CNN with the same

structure as the CNN in the TASM using our own data. We

replace the CNN in TASM with the CNN module trained

with our own data. A fine-tuning is carried out using the

individual public dataset before evaluation. Namely, we use

our own data only to learn powerful features as pre-training.

We will discuss the significance of using our own data in the

final performance later.

5.3. Ablation Study

Advantage of the attention mechanism. It is obvious that,

the temporal path TASM could accomplish the task. The

spatial path (SASM) along with the attention module RAM

further mines the important local regions for the task. Thus

by comparing the performance of sole TASM and the whole

network will reveal the effectiveness of the employment of

the local attended regions. We conduct ablation study us-

ing the Protocol 1 and 3 on the Oulu-NPU data set. Table

1 shows the comparison results. TASM indicates the sole

temporal path, and STASN is the full method with both the

temporal path and the attended spatial path. The STASN

outperforms TASM with approximately 30% error reduc-

tion in terms of different metrics, indicating that by fusing

local patches with attention mechanism the spoof faces can

be more accurately classified.

Advantage of the search of initial regions. As mentioned

in Sec. 4.1, initializing the local regions in the center of the

image along with the learning of the offset is prone to get

trapped in local optimum. Thus we employ the Grad-Gram

method through the TASM to derive better initial position

of the local regions and then learn the offset accordingly.

This strategy of seeking initial region is compared with the

naive initialization method (without search) in Table 1. As

it is shown in Table 1, compared with the strategy without

search, seeking better initial region position further reduces

the error rates, suggesting its advantage.

5.4. Intra Testing

The intra testing is carried out on both the Oulu-NPU

and the SiW datasets. We strictly follow the four testing

protocols on Oulu-NPU and the three protocols on SiW for

the evaluation. The metric values of APCER, BPCER and

ACER are reported as quantitative results. A set of meth-

ods are adopted as counterparts to compare with, includ-

ing CPqD [5], GRADIANT [5], MILHP [25], MixedFAS-

Net [5], MassyHNU [5], Auxiliary [26] and FaceDs [18].

We train a model using the Oulu-NPU dataset, termed as

“Ours” in Table 2. Additionally, as described in Sec. 5.2,

we derive a model by using our collected data (Sec. 3) for

pre-training, and fine-tune with the concerned dataset. This

model is termed as “Ours+” in the table.

Table 2 reveals that, 1) compared with the state-of-the-art

results, our method (without our data) achieves comparable

result. It achieves three best values and two second best val-

ues. This suggests that our model works effectively in dis-

tinguishing spoof faces, without resorting to other sources

of information. 2) With our own data for pre-training, our

method beats all the compared methods, with obvious ad-

vantage. Especially with Protocol 4, which is the most dif-

ficult protocol on this dataset, the reduce of the error rates is

significant ( by comparing the best with the second best). It

reveals the importance of the employment of our own data,
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Table 2. The intra-testing results of four protocols on Oulu-NPU

in terms of different metrics. For each metric, smaller value means

better performance. The best performance is shown in bold, and

the second best results are indicated by underline. This also ap-

plies to the following tables.

Prot. Method APCER(%) BPCER(%) ACER(%)

1 CPqD [5] 2.9 10.8 6.9

GRADIANT [5] 1.3 12.5 6.9

MILHP [25] 8.3 0.8 4.6

Auxiliary [26] 1.6 1.6 1.6

FaceDs [18] 1.2 1.7 1.5

Ours 1.2 2.5 1.9

Ours+ 1.2 0.8 1.0

2 MixedFASNet [5] 9.7 2.5 6.1

MILHP [25] 5.6 5.3 5.4

FaceDs [18] 4.2 4.4 4.3

Auxiliary [26] 2.7 2.7 2.7

GRADIANT [5] 3.1 1.9 2.5

Ours 4.2 0.3 2.2

Ours+ 1.4 0.8 1.1

3 MixedFASNet [5] 5.3±6.7 7.8±5.5 6.5±4.6

MILHP [25] 1.5±1.2 6.4±6.6 4.0±2.9

GRADIANT [5] 2.6±3.9 5.0±5.3 3.8±2.4

FaceDs [18] 4.0±1.8 3.8±1.2 3.6±1.6

Auxiliary [26] 2.7±1.3 3.1±1.7 2.9±1.5

Ours 4.7±3.9 0.9±1.2 2.8±1.6

Ours+ 1.4±1.4 3.6±4.6 2.5±2.2

4 MassyHNU [5] 35.8±35.3 8.3±4.1 22.1±17.6

MILHP [25] 15.8±12.8 8.3±15.7 12.0±6.2

GRADIANT [5] 5.0±4.5 15.0±7.1 10.0 ±5.0

Auxiliary [26] 9.3±5.6 10.4±6.0 9.5±6.0

FaceDs [18] 1.2±6.3 6.1±5.1 5.6±5.7

Ours 6.7±10.6 8.3±8.4 7.5±4.7

Ours+ 0.9±1.8 4.2±5.3 2.6±2.8

Table 3. The results on SiW regarding its three protocols.

Prot. Method ACER(%)

1 Auxiliary [26] 3.58

Ours 1.00

Ours+ 0.30

2 Auxiliary [26] 0.57±0.69

Ours 0.28±0.05

Ours+ 0.15±0.05

3 Auxiliary [26] 8.31±3.80

Ours 12.10±1.50

Ours+ 5.85±0.85

consisting of both manually-mimicked data and machine-

synthesized data.

For the latest SiW data, we also follow the three testing

protocols strictly and report the results in Table 3. Regard-

ing the first and second protocols, our method beats the state

of the art [26] with a significant advantage. For the third

protocol, the proposed model does not outperform it. How-

ever, with the collected useful data, our model achieves the

best performance with regard to all protocols, showing the

effectiveness of both our model and data.

Table 4. Cross testing comparison on the CASIA-MFSD dataset

versus the Replay-Attack dataset in terms of HTER.

Method Train Test Train Test

CASIA

MFSD

Replay

Attack

Replay

Attack

CASIA

MFSD

Motion [13] 50.2% 47.9%

LBP-TOP [13] 49.7% 60.6%

Motion-Mag [3] 50.1% 47.0%

Spectral cubes [34] 34.4% 50.0%

LBP [6] 47.0% 39.6%

Color Texture [8] 30.3% 37.7%

CNN [42] 48.5% 45.5%

Auxiliary [26] 27.6% 28.4%

FaceDs [18] 28.5% 41.1%

Ours 31.5% 30.9%

Ours+ 18.7% 25.0%

5.5. Cross Testing

Cross testing aims to justify the generalization potential

of the concerned model. To testify the generalization ability

of our model, we also conduct this kind of cross testing. To

make it more specific, two testing settings are applied. The

first one is training model on the CASIA-MFSD dataset and

testing on the Replay-Attack dataset. The second one is

exchanging the training dataset and the testing dataset.

Results comparing with previous methods are shown in

Table 4. Our method without our own data beats most of

the traditional methods plus a CNN method. The perfor-

mance of our model is comparable with the latest results of

FaceDs [18], while slightly worse than those of Auxiliary

[26]. As we have mentioned before, additional information

like depth is employed to aid the classification, thus this

model is expected to achieve better performance than ours.

However, with our data, our model outperforms Auxiliary

[26] and achieves the best performance. This verifies that

the large amount of synthesized data indeed improves the

generalization potential of the model in the case of cross

testing.

6. Analysis

With the significant advance over the state-of-the-art per-

formance, we are obliged to understand more behind the

proposed model: is it robust enough to classify live and

spoof faces? What cues is it looking for to make the de-

cisions? Fortunately, with the attention mechanism in the

proposed model, we are able to conduct visualization ex-

periments and reveal more interesting findings as follows.

How does the model behave? Firstly, we aim to investigate

the behaviors of the derived model. For example, what is the

boundary of the two classes, i.e. spoof faces and live faces.

To this end, we conduct feature dimension reduction of face

features and plot them as scatter dots. We try to discover if

there are any patterns in the scatter plots.
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Figure 5. The 2D visualization of spoof faces and live faces. The dimension-reduced 2D face features are plotted in the left side. The

corresponding faces with the selected most important region are shown in the right side. Please zoom in to check details. Best viewed in

color.

Figure 6. The attended local regions by RAM on live faces (top)

and spoof faces (bottom), respectively. Please notice that the at-

tended regions are consistently in the center on live face images,

while are diverse on spoof face images, indicating cues such as

borders. Best viewed in color.

To better visualize the faces, t-SNE [28] is adopted as the

method of feature dimension reduction. Specifically, we use

the output Z ∈ R
2048×7×7 of the final convolutional layer

in TASM as features. The Grad-Gram [35] is applied to that

feature map Z to select the most important part Zp ∈ R
2048.

Then t-SNE projects high-dimension features Zp to two di-

mensions by best preserving the KL divergence distance.

The left side of Fig. 5 shows the plotted results, whereas 0
means spoof faces and 1 indicates live faces. The right side

shows the corresponding faces with the annotated receptive

field (indicated by a white box) of the selected most im-

portant region for dimension reduction. By observing this

figure, we have the following findings. 1) Though there are

few faces plotted together with different labels, in general

the faces are clearly separated. 2) Moreover, it is not diffi-

cult to find that there are clusters in each class. We further

find that these clusters exhibit similar cues. This finding is

more evident in spoof faces. For instance, as shown in the

zoomed-in part in Fig. 5, faces with evident display device

border are prone to be plotted together. 3) If we zoom in to

check the live faces, it is interesting that the selected most

important region of the close faces is also close spatially in

the image space. This proves the consistency of the model,

i.e. similar faces have similar important local regions. Over-

all, the faces of important areas are well classified in our

task, so the additional branch of region classification with

attention is important, and not affected by the overall spa-

tial distributions.

What kind of regions are attended? We are also curious

about the attended regions and why these regions are at-

tended. Fig. 6 shows the located four discriminative regions

by the Region Attention Module (RAM). Top and bottom

rows show the live faces and spoof faces, respectively.

The white boxes represent the position of initial regions

and the yellow boxes are the positions output by RAM. Ob-

viously, live faces are attended more with the regions near

the tip of the nose. However, for spoof faces, RAM is more

inclined to capture a variety of other clues, such as borders,

moire patterns, reflection artifacts, etc. This is consistent

with human perceptions, as human also rely on such a kind

of clues to make the decisions.

7. Conclusions

In this paper, we proposed a practical solution to build a

powerful and robust face anti-spoofing model. This model,

namely Spatio-Temporal Anti-Spoofing Network (STASN),

considers both global temporal and local spatial cues to dis-

tinguish live faces versus spoof faces. Specifically, STASN

was trained on a large amount of data collected using the

proposed data acquisition methods. The performances of

our model on public face anti-spoofing datasets demonstrate

its superiority over the state of the art. Our study shows

that the research of face anti-spoofing on a large amount of

training data is more practical for real-world applications, as

models trained on datasets which do not simulate the real-

world data well may be of less significance and impact in

practice.
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On the effectiveness of local binary patterns in face anti-

spoofing. In Proceedings of the 11th International Confer-

ence of the Biometrics Special Interes Group, number EPFL-

CONF-192369, 2012. 1, 5

[12] Tiago de Freitas Pereira, André Anjos, José Mario De Mar-

tino, and Sébastien Marcel. Lbp- top based countermeasure

against face spoofing attacks. In Asian Conference on Com-

puter Vision (ACCV), pages 121–132. Springer, 2012. 2

[13] Tiago de Freitas Pereira, André Anjos, José Mario De Mar-
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