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Abstract

Removing undesired reflections from images taken

through the glass is of great importance in computer vision.

It serves as a means to enhance the image quality for aes-

thetic purposes as well as to preprocess images in machine

learning and pattern recognition applications. We propose

a convex model to suppress the reflection from a single in-

put image. Our model implies a partial differential equa-

tion with gradient thresholding, which is solved efficiently

using Discrete Cosine Transform. Extensive experiments

on synthetic and real-world images demonstrate that our

approach achieves desirable reflection suppression results

and dramatically reduces the execution time.

1. Introduction

Images taken through glass usually contain unpleasant

reflections. It is highly desirable if such reflections can

be removed. In particular, with the advent of the popu-

larity of portable digital devices such as smartphones and

tablets, a lot of such images are taken in everyday life. A

fast-response and user-friendly image reflection suppres-

sion technology is of great practical significance so that

such images can be processed on portable devices in sec-

onds with the best dereflected results produced in real-time

according to a user’s visual perception.

Given an input reflection-contaminated image Y, tradi-

tional approaches that attempt to remove the reflection fo-

cus on separating the image into the transmission layer T

(the true background) and the reflection layer R [3], i.e.,

the following assumption is made

Y = T+R, (1)

where T and R are unknowns. This problem is highly ill-

posed since the number of unknowns is twice the number of

conditions. Multiple ways of separation are possible. Dif-

ferent priors and assumptions have been introduced to nar-
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(1a) Original Image (1b) Dereflected Image

Figure 1: (1a): A real-world image taken through the window

on a train. Notice the reflection of the seat and the lights in the

train. (1b): The result after the reflection suppression by our pro-

posed method. Image size: 1080 × 1440. Execution time: 1.15s.

https://github.com/yyhz76/reflectSuppress

row down the range of valid solutions, despite specific lim-

itations therein. Instead of separating the image into two

layers, suppressing the reflection in a single input image,

as proposed in Arvanitopoulos et al. [2], is more practical.

In most cases, people are more interested in the transmis-

sion layer of an image. Also, perfect layer separation of

a single image is in general difficult. The separated layers

using existing approaches more or less contain misclassi-

fied information, especially when the reflection is sharp and

strong, which might yield dark dereflected outputs. This is

caused by the removal of a large portion of the energy which

concentrates in the reflection layer (See Sec. 3).

Most image reflection removal approaches so far empha-

size the performance in the aspects of the quality of the

dereflection. In addition, they can only handle relatively

small-sized images and are often computationally ineffi-

cient. With the rapid development of portable device tech-

nologies, megapixel smartphone images are very common

nowadays. Therefore, the efficiency of such methods also

needs to be improved to handle large images. We propose

an image reflection suppression approach that is highly ef-

ficient, which is able to process large smartphone images

in seconds, yet can achieve competitive dereflection quality

compared to state-of-the-art approaches. Fig. 1 is an exam-

ple of our approach applying on a smartphone image.
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1.1. Related Work

Prior research in image reflection removal can be catego-

rized by the number of input images. One branch relies on

multiple input images that are closely related to each other.

The other branch only has one image as input.

1.1.1 Multiple Image Reflection Removal

The multiple images used for reflection removal are usu-

ally related to each other in certain aspects. For example,

Schechner et al. [16], Farid and Adelson [5], Kong et al. [9]

separate transmission and reflection layers by taking images

of objects at different angles through polarizers. Agrawal

et al. [1] use images taken with and without flash to re-

duce reflection. Approaches based on different character-

istics of fields in transmission and reflection layers are also

proposed [6–8, 11, 18, 23]. Xue et al. [23] utilize the differ-

ence of motion fields to separate layers. Li and Brown [11]

use SIFT-flow to align multiple images and separate lay-

ers according to the variation of gradient fields across im-

ages. Similarly, Han and Sim [8] extend this idea and com-

pute gradient reliability at each pixel and recover the trans-

mission gradients by solving a low-rank matrix completion

problem. Reflection removal using multiple images gener-

ally achieves better performance than that using a single im-

age since information across images can be exploited to im-

prove layer separation results. However, these approaches

usually requires special settings such as images taken from

certain angles and locations, or special devices such as po-

larizers and flashes, which significantly limit their practical-

ity.

1.1.2 Single Image Reflection Removal

On the other hand, several approaches have also been at-

tempted to remove reflection from a single input image. Al-

though a single input image is more likely to be encountered

in everyday life, it is in fact more challenging than multiple

image cases due to the lack of additional inter-image infor-

mation. Existing approaches rely on different prior assump-

tions on transmission and reflection layers. Levin and Weiss

[10] employ the gradient sparsity prior with user assisted

labels to distinguish between layers. Li and Brown [12] ex-

ploit the relative smoothness of different layers to separate

them using a probabilistic framework. Shih et al. [17] ex-

plore the removal of reflection from double-pane glass with

ghosting artifacts. Wan et al. [19] utilize multi-scale depth

of field to classify edges into different layers.

Instead of separating layers, Arvanitopoulos et al. [2]

propose to suppress the reflection in a single input image us-

ing Laplacian-based data fidelity term and gradient sparsity

prior, which achieves desirable quality of dereflection but

is not quite efficient due to the fact that their model is non-

convex and a large number of iterations is needed to achieve

desirable result. Other latest methods include deep learning

strategies (Fan et al. [4]), and nonlocal similar patch search

(Wan et al. [20]). However, either extra network training

time or external image datasets are required.

1.2. Our Contribution

In this paper, we propose an approach for single image

reflection suppression that achieves desirable performance

in terms of both efficiency and dereflection quality. Our

contribution is summarized as follows, which contribute to

the high efficiency of our approach:

• Our proposed model is convex. The solution is guar-

anteed to be the global optimal of the model.

• The optimal solution is in closed form and doesn’t rely

on iterative algorithms. It is obtained through solving

a partial differential equation, which can be done effi-

ciently using Discrete Cosine Transform.

• Our method doesn’t require any external dataset or

training time as in the aforementioned neural network

approaches.

2. Our Proposed Model

2.1. Notations

Throughout the paper, we use bold letters such as T, Y,

K,f to denote matrices. Plain letters with subscripts Tm,n

denotes the element of T at the intersection of the m-th row

and the n-th column. Elementwise multiplication between

matrices is denoted by ◦ and convolution is denoted by ∗.

2.2. Model Formulation

Our proposed model relies on the assumption that the

camera focuses on the transmission layer (i.e., the objects

behind the glass) so that sharp edges appear mostly in this

layer. On the other hand, the reflection layer (i.e., the reflec-

tion off the surface of the glass) is less in focus so that edges

in this layer are mostly weaker than those in the transmis-

sion layer. This is often true in real world scenarios since the

distance from the camera to the object in focus is different

from that to the glass. We formally express our assumption

using the following equation, as mentioned in [2]:

Y = wT+ (1− w)(κ ∗R), (2)

where Y is the input camera image, T is the transmission

layer and R is the reflection layer. w is a parameter that

measures the weight between the two layers. κ is a Gaussian

blurring kernel.

Our proposed model is inspired from [2], where the

original model minimizes the data fidelity term ‖L(T) −
L(Y)‖2

2
which is the difference on the edges between the
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(2a) Transmission layer

a

(2b) Reflection layer

a

(2c) Synthetic blend,

w = 0.7, σ = 2

(2d) [2], λ = 0.05.

Execution time: 382s

(2e) Proposed, h = 0.11.

Execution time: 0.63s

Figure 2: Comparison of the proposed model with [2] on a 2D synthetic toy example. The proposed model removes the reflection layer

content (i.e., the letter ‘R’) more thoroughly. It also retains more transmission layer texture content. The execution time (averaged over 20

repeated runs) of the proposed model is about 600 times faster than [2]. Image size 800× 800. Texture images from [21].

output and input images (See Eq.(6) in [2]). The edge infor-

mation of an image is obtained by applying the Laplacian

operator L(·) . In addition, an l0 prior of the image gradient

‖∇T‖0 is added to the objective function. It encourages

smoothing of the image while maintaining the continuity

of large structures. The Laplacian-based data fidelity term

better enforces consistency in structures of fine details in

the transmission layer compared to a more straightforward

data fidelity term1 ‖T − Y‖2
2
. The model in [2] removes

more gradients as the regularization parameter λ increases,

which is the consequence of using the l0 prior. Essentially,

it sets a threshold on the gradients of the input image and

removes the gradients whose magnitudes are larger than the

given threshold. The gradient-thresholding step appears as

a closed-form solution in each iteration of their algorithm

(See Eq.(12) in [2]). Similarly, we fuse this idea into our

model formulation, but in a different way. Rather than

solving the minimization problem and threshold the gradi-

ent from the solution, we adopt the idea from [13, 14] and

put the gradient-thresholding step directly into the objective

function. We hence propose the following model:

min
T

1

2
‖L(T)− div(δh(∇Y))‖2

2
+

ε

2
‖T−Y‖2

2
, (3)

where

L(Y) = ∇xx(Y) +∇yy(Y), (4)

δh(Xi,j) =







Xi,j , if ‖Xi,j‖2 ≥ h

0, otherwise

. (5)

The data fidelity term ‖L(T)−div(δh(∇Y))‖2
2

imposes the

gradient-thresholding step on the input image Y before tak-

ing the divergence of ∇Y. The gradients whose magnitudes

are less than h will become zero. Since the data fidelity term

1The data fidelity term ‖T − Y‖2
2

combined with the l0 prior is used

in image smoothing. A detailed discussion can be found in [22].

only contains a second order term of the variable T, the sec-

ond term ε
2
‖T−Y‖2

2
is added to guarantee the uniqueness

of the solution (see Sec. 2.3 for details), where ε is taken to

be a very small value so as not to affect the performance of

the data fidelity term.

Fig. 2 is a toy example demonstrating the effect of our

proposed model on synthetic images. We created the trans-

mission layer (Fig. 2a) consisting of a letter ‘T’ and back-

ground wooden grain texture. The reflection layer (Fig. 2b)

consists of a letter ‘R’ and the background sand beach tex-

ture. These two layers are then blended (Fig. 2c) accord-

ing to Eq.(2) with blending weight w = 0.7 and the stan-

dard deviation of the Gaussian blurring kernel κ is set to

σ = 2. We compare the result of [2] (Fig. 2d) with our

proposed model (Fig. 2e). As can be seen, our proposed

model outperforms [2] both in the quality of dereflection

and the execution time. Our proposed method removes the

letter ‘R’ in the reflection layer while largely preserves the

wooden grains in the transmission layer. In contrast, the ap-

proach in [2] doesn’t remove the letter ‘R’ as thoroughly as

ours and a lot more wooden grains are lost. Further increas-

ing the parameter λ in [2] will remove more of the letter

‘R’ but at the same time even more wooden grains will be

lost as well. In addition, the execution time of our proposed

model is much faster than the approach in [2].

2.3. Solving the Model

Unlike the model proposed in [2] which is non-convex

due to the presence of the ‖·‖0 term, our proposed model (3)

is convex with respect to the target variable T. Therefore,

the optimal solution can be obtained by solving a system of

equations, which guarantees the optimality of the solution

and contributes to the fast execution time compared to iter-

ative methods that are common among existing approaches

(See Sec. 3 for details).

The gradient of the objective function (3) is given by

∇T = L
(

L(T)− div
(

δh(∇Y)
)

)

+ ε(T−Y). (6)
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Let the gradient be zero, we obtain the following equation
(

L2 + ε
)

T = L
(

div(δh(∇Y))
)

+ εY. (7)

This equation is a variation of 2D Poisson’s equation. We

associate it with Neumann boundary condition since we

assume a mirror extension at the boundary of the image,

which implies zero gradient on the boundary. This bound-

ary value problem can hence be solved via Discrete Cosine

Transform (DCT). Let Fc,F
−1

c denote the two dimensional

DCT and its inverse. We introduce the following result

Theorem 2.1. The discretization of 2D Poisson’s equation

L(T) = f (8)

with Neumann boundary condition on an M × N grid is

solved by

Tm,n = F−1

c

(

[Fc(f)]m,n

Km,n

)

, (9)

where T,f ,K ∈ R
M×N . Km,n = 2

(

cos
(mπ

M

)

+

cos
(nπ

N

)

− 2

)

. 0 ≤ m ≤ M − 1, 0 ≤ n ≤ N − 1.

See [15] for a proof of this conclusion. Essentially it

says that after taking DCT, the left side of Eq.(8) becomes

elementwise multiplication, i.e., Fc(L(T)) = K ◦ Fc(T)
so the above conclusion follows. It is worth mentioning

that the solution (9) has a singularity at (m,n) = (0, 0). To

guarantee a unique solution, extra condition (for example,

the value at T0,0) must be specified beforehand.

We apply Theorem 2.1 to solve Eq.(7). Notice that after

taking DCT on both sides, the equation becomes

(K ◦K+ εE) ◦ Fc(T) = Fc(P), (10)

where P ∈ R
M×N denotes the right hand side of Eq.(7) and

E ∈ R
M×N is a matrix of all 1’s. Therefore, the solution to

Eq.(7) is

Tm,n = F−1

c

(

[Fc(P)]m,n

K2
m,n + ε

)

, (11)

where Km,n is the same as in Theorem 2.1. The unique-

ness of the solution is automatically guaranteed because of

the presence of ε in the denominator, which is the conse-

quence of adding the ε
2

term in Eq.(3). Our algorithm is

summarized as follows:

Algorithm 1 Image Reflection Suppression via Gradient

Thresholding and Solving PDE

Input: Y, h, ε

return Tm,n = F−1

c

(

[Fc(P)]m,n

K2
m,n + ε

)

.

Output: T

3. Experiments

All experiments are implemented using MATLAB 2017a

on a PC with 8-core Intel i7-8550U 1.80GHz CPU and 16

GB memory. We compare our method with state-of-the-art

approaches Arvanitopoulos et al. [2], Li and Brown [12]

and Wan et al. [19]. These approaches are implemented

using the original MATLAB source code provided from

the authors. These approaches are selected for comparison

since only a single image is required as the input. Other

single image reflection removal approaches mentioned in

Sec. 1.1.2 either require external image datasets [4, 20] or

additional conditions (user labels [10], double-pane glass

and ghosting cues [17]). We use PSNR and SSIM (adopted

in [2]) together with execution time as metrics to evaluate

the performance of the selected approaches. The execution

times reported throughout this paper are all averaged over

20 repeated runs.

The parameter h in (3) represents the level of the gradi-

ent thresholding. The gradients whose magnitudes are less

than h will be smoothed out. Fig. 3 shows the effect of in-

creasing h. The larger h is, the more reflection components

and transmission layer details are removed. Similar to the

regularization parameter λ in [2]’s approach, the value of h

that produces the best visual result depends on the strength

of the reflection in each input image since the best visual

result is a balance between the preservation of transmission

details and the suppression of reflection. Typically, h val-

ues within the interval [0.01, 0.1] yield desirable results. As

will be demonstrated below, finding the best parameter h

for each image is almost instantaneous.

3.1. Synthetic Images

We blend two pairs of images of size 512 × 512 pixels

in Fig. 4 according to the assumption (2), where Ti and

Ri, i = 1, 2 represent transmission and reflection layers,

respectively. The variance of the Gaussian blurring kernel

κ is fixed to σ = 4 and two blending weights w = 0.7, 0.5
are used. For parameters in other models, we use the default

values as reported in their papers (λ = 100 in [12], λ = 0.4
in [19], λ = 0.002 in [2]). In our proposed model, we fix

h = 0.03 and ε = 10−6.

The images before and after the reflection suppression

are demonstrated in Fig. 5. The method of Li and Brown

[12] tends to produce dark images with false colors. This

is partially due to the fact that the energy from the reflec-

tion layer accounts for a large portion in our synthetic im-

ages. Removing the reflection ends up with significant en-

ergy loss and hence produces dark outputs. The method

of Wan et al. [19] removes most of the reflection but over-

smoothes transmission layer details (For example, top edge

of Lena’s hat in the mirror, bottom edge of the green pep-

per, especially in w = 0.5 cases (See Fig. 5h and Fig. 5r)).

Arvanitopoulos et al.’s approach [2] produces outputs that
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(3a) Input (3b) h = 0.01 (3c) h = 0.02 (3d) h = 0.03

Figure 3: The effect of increasing the threshold parameter h in the proposed reflection suppression model. Increasing the parameter

removes more reflection as well as some details from the transmission layer. Best viewed on screen.

(4a) T1 (4b) R1

(4c) T2 (4d) R2

Figure 4: Images used as transmission layers (T1,T2) and reflec-

tion layers (R1,R2) for the synthetic experiments. T1 is blended

with R1. T2 is blended with R2.

are the closest to our proposed method. However, as shown

in Table 1 and 2, our outputs achieve better performance

in terms of PSNR, SSIM and execution time in all cases.

Particularly, notice that the execution time of our method

outperforms all the others by a significant margin.

3.2. Real­World Images

The size of the real-world images used here are 1080 ×
1440 pixels. We captured these images directly using smart-

phone. Default parameter settings are used in the method of

Li and Brown [12]. As for the method of Arvanitopoulos

et al. [2], we tune the regularization parameter λ for each

input image to get the best visual result since the outcome

is much more sensitive to parameter tuning compared to Li

and Brown’s approach. In our proposed model (3), the pa-

rameter h is tuned for each input image for the same reason.

However, parameter tuning in our model is almost instanta-

neous, which will be demonstrated below. The parameter ε

is empirically fixed to 10−8.

Table 3 demonstrates the advantage of the proposed

model in terms of the execution time. It is much faster com-

pared to other state-of-the-art algorithms.2 Typically it only

takes less than 1.5 seconds to output the dereflected images.

Moreover, the dereflection quality also outperforms other

methods as demonstrated in Fig. 6 (Notice the difference

in the zoomed-in boxes). Our proposed method not only

suppresses the reflection satisfactorily but also maintains as

much transmission details as possible. Being fast and ef-

fective, our proposed method has the potential of being im-

plemented directly on portable devices such as smartphones

and tablets. The high efficiency makes it possible for a mo-

bile device user to adjust the parameter h easily (for ex-

ample, via moving a slider on the phone screen) to get an

immediate response and select the best dereflected image

according to the user’s visual perception (See Fig. 7).

However, our model also has limitation when the model

assumption (2) is violated. If the reflection layer contains

sharp edges, the corresponding gradients at the edge pixels

will be large. Therefore, increasing the threshold param-

eter h won’t removed these reflection edges before losing

some gentle transmission layer details. Failure cases are

shown in Fig. 8, where none of the methods in compari-

son completely removes the reflection. That being said, our

proposed method still retains more details even if edges in

the transmission layer are not sharp enough, for example, in

dark images like Fig. 8e.

4. Conclusion and Future Work

We proposed an efficient approach for single image re-

flection suppression. It is formulated as a convex problem,

which is solved via gradient thresholding and solving a vari-

ation of 2D Poisson’s equation using DCT. We validated

the effectiveness and efficiency of our approach through ex-

2At such picture size, the approach in Wan et al. [19] reports out-of-

memory error, indicating that it is not suitable for large-sized images.
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(5a) T1 +R1, w = 0.7 (5b) [12] (5c) [19] (5d) [2] (5e) Proposed

(5f) T1 +R1, w = 0.5 (5g) [12] (5h) [19] (5i) [2] (5j) Proposed

(5k) T2 +R2, w = 0.7 (5l) [12] (5m) [19] (5n) [2] (5o) Proposed

(5p) T2 +R2, w = 0.5 (5q) [12] (5r) [19] (5s) [2] (5t) Proposed

Figure 5: Comparison of reflection suppression on synthetic images. Column 1: Blended images. Column 2: Li and Brown [12]’s results.

Column 3: Wan et al. [19]’s results. Column 4: Arvanitopoulos [2]’s results. Column 5: our proposed results. Best viewed on screen.

Table 1: Comparison of PSNR and SSIM of reflection suppression methods on synthetic images in Fig. 5. Image size: 512× 512 pixels

Image Li and Brown [12] Wan et al. [19] Arvanitopoulos et al. [2] Proposed

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Fig. 5a 16.08 0.549 19.81 0.874 20.87 0.896 20.99 0.903

Fig. 5f 13.46 0.344 16.65 0.700 16.80 0.716 16.93 0.736

Fig. 5k 16.64 0.762 17.10 0.840 19.42 0.896 19.44 0.897

Fig. 5p 13.55 0.574 14.54 0.751 15.10 0.787 15.14 0.789

periments on synthetic and real-world images. It is able

to output desirable dereflected smartphone images in sec-

onds. However, single image reflection suppression remains

a challenging problem as there are still cases where current

approaches fail to completely remove the reflection. Future

work includes designing effective and efficient algorithms

to handle sharp and strong reflections for large images.
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(6a) Input 1 (6b) [12] (6c) [2],

λ = 0.01

(6d) Proposed,

h = 0.04

(6e) Input 2 (6f) [12] (6g) [2],

λ = 0.005

(6h) Proposed,

h = 0.033

(6i) Input 3 (6j) [12] (6k) [2],

λ = 0.01

(6l) Proposed,

h = 0.1

(6m) Input 4 (6n) [12] (6o) [2],

λ = 0.002

(6p) Proposed,

h = 0.03

Figure 6: Comparison of reflection suppression methods on real-world images taken at various scenes. The method of Li and Brown [12]

yields images that appear darker than the original input. Some reflection edges are not completely removed (e.g. upper left corner in Fig.

6f and Fig. 6j). The method of Arvanitopoulos et al. [2] achieves better color reproduction but suffers from some loss of details in the

transmission layer (e.g. the top corner of the building in Fig. 7c, the vegetation in Fig. 6g, the disk on the glass in Fig. 6o). Our Proposed

method retains the most transmission layer details with superior reflection layer suppression among these methods. Best viewed on screen.
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Table 2: Execution times (sec) of reflection suppression meth-

ods on synthetic images in Fig. 5. Image size: 512× 512 pixels

Image [12] [19] [2] Proposed

Fig. 5a 12.06 49.31 185.32 0.19

Fig. 5f 11.68 49.24 185.82 0.18

Fig. 5k 7.25 48.74 185.51 0.19

Fig. 5p 7.69 47.86 185.83 0.19

Table 3: Execution times (sec) of reflection suppression methods

on real-world images in Fig. 6. Image size: 1080× 1440 pixels

Image [12] [2] Proposed

Input 1 39.06 1044.28 1.46

Input 2 52.60 1086.05 1.36

Input 3 17.90 1032.28 1.40

Input 4 10.75 1100.73 1.15

(7a) h = 0.01 (7b) h = 0.03 (7c) h = 0.05

Figure 7: A slider demo simulated in MATLAB. As we move the slider to the right, the h value increases and the reflection is gradually

suppressed. The response time is less than 1.5 seconds for smartphone images of size 1080× 1440. Best viewed on screen.

(8a) Input 1 (8b) [12] (8c) [2],

λ = 0.002

(8d) Proposed,

h = 0.03

(8e) Input 2 (8f) [12] (8g) [2],

λ = 0.002

(8h) Proposed,

h = 0.03

Figure 8: Failure cases of our proposed method. Failure is likely to occur when edges in the reflection layer are sharp and strong. This

limitation is also observed in the other two methods. In Row 1, the reflection of the fluorescent lamps outside the room is almost as sharp

as the real ones inside, which makes it hard to distinguish between them. In Row 2, although our proposed method fails to completely

remove the reflection (the inside of a bus), it retains more transmission details than [2] as shown in the zoomed-in regions. The method

in [12] again produces dark outputs. Best viewed on screen.
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Single image reflection suppression. In IEEE Conference

on Computer Vision and Pattern Recognition (CVPR 2017),

number EPFL-CONF-227363, 2017. 1, 2, 3, 4, 5, 7, 8, 9

[3] H. Barrow and J. Tenenbaum. Recovering intrinsic scene

characteristics. Comput. Vis. Syst, 2, 1978. 1

[4] Q. Fan, J. Yang, G. Hua, B. Chen, and D. Wipf. A generic

deep architecture for single image reflection removal and im-

age smoothing. In Proceedings of the IEEE International

Conference on Computer Vision (ICCV), 2017. 2, 4

[5] H. Farid and E. H. Adelson. Separating reflections and light-

ing using independent components analysis. In Computer

Vision and Pattern Recognition, 1999. IEEE Computer Soci-

ety Conference on., volume 1, pages 262–267. IEEE, 1999.

2

[6] K. Gai, Z. Shi, and C. Zhang. Blindly separating mixtures of

multiple layers with spatial shifts. In Computer Vision and

Pattern Recognition, 2008. CVPR 2008. IEEE Conference

on, pages 1–8. IEEE, 2008. 2

[7] X. Guo, X. Cao, and Y. Ma. Robust separation of reflec-

tion from multiple images. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

2187–2194, 2014. 2

[8] B.-J. Han and J.-Y. Sim. Reflection removal using low-rank

matrix completion. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2017.

2

[9] N. Kong, Y.-W. Tai, and J. S. Shin. A physically-based

approach to reflection separation: from physical modeling

to constrained optimization. IEEE transactions on pattern

analysis and machine intelligence, 36(2):209–221, 2014. 2

[10] A. Levin and Y. Weiss. User assisted separation of reflec-

tions from a single image using a sparsity prior. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 29(9),

2007. 2, 4

[11] Y. Li and M. S. Brown. Exploiting reflection change for auto-

matic reflection removal. In Computer Vision (ICCV), 2013

IEEE International Conference on, pages 2432–2439. IEEE,

2013. 2

[12] Y. Li and M. S. Brown. Single image layer separation using

relative smoothness. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 2752–

2759, 2014. 2, 4, 5, 7, 8, 9

[13] W. Ma, J. M. Morel, S. Osher, and A. Chien. An l1-based

variational model for retinex theory and its applications to

medical images. In CVPR, 2011. 3

[14] W. Ma and S. Osher. A tv bregman iterative model of retinex

theory. Inverse Problem and Imaging, 6(4):697–708, 2012.

3

[15] W. H. Press. Numerical recipes 3rd edition: The art of sci-

entific computing. Cambridge university press, 2007. 4

[16] Y. Y. Schechner, J. Shamir, and N. Kiryati. Polarization-

based decorrelation of transparent layers: The inclination an-

gle of an invisible surface. In Computer Vision, 1999. The

Proceedings of the Seventh IEEE International Conference

on, volume 2, pages 814–819. IEEE, 1999. 2

[17] Y. Shih, D. Krishnan, F. Durand, and W. T. Freeman. Re-

flection removal using ghosting cues. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 3193–3201, 2015. 2, 4

[18] C. Sun, S. Liu, T. Yang, B. Zeng, Z. Wang, and G. Liu. Auto-

matic reflection removal using gradient intensity and motion

cues. In Proceedings of the 2016 ACM on Multimedia Con-

ference, pages 466–470. ACM, 2016. 2

[19] R. Wan, B. Shi, T. A. Hwee, and A. C. Kot. Depth of

field guided reflection removal. In Image Processing (ICIP),

2016 IEEE International Conference on, pages 21–25. IEEE,

2016. 2, 4, 5, 7, 9

[20] R. Wan, B. Shi, A.-H. Tan, and A. C. Kot. Sparsity based re-

flection removal using external patch search. In Multimedia

and Expo (ICME), 2017 IEEE International Conference on,

pages 1500–1505. IEEE, 2017. 2, 4

[21] A. G. Weber. The usc-sipi image database version 5. USC-

SIPI Report, 315:1–24, 1997. 3

[22] L. Xu, C. Lu, Y. Xu, and J. Jia. Image smoothing via l0

gradient minimization. In ACM Transactions on Graphics

(TOG), volume 30, page 174. ACM, 2011. 3

[23] T. Xue, M. Rubinstein, C. Liu, and W. T. Freeman. A com-

putational approach for obstruction-free photography. ACM

Transactions on Graphics (TOG), 34(4):79, 2015. 2

8149


