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Abstract

Instance-level human analysis is common in real-life sce-

narios and has multiple manifestations, such as human part

segmentation, dense pose estimation, human-object inter-

actions, etc. Models need to distinguish different human

instances in the image panel and learn rich features to rep-

resent the details of each instance. In this paper, we present

an end-to-end pipeline for solving the instance-level human

analysis, named Parsing R-CNN. It processes a set of human

instances simultaneously through comprehensive consider-

ing the characteristics of region-based approach and the

appearance of a human, thus allowing representing the de-

tails of instances.

Parsing R-CNN is very flexible and efficient, which is

applicable to many issues in human instance analysis. Our

approach outperforms all state-of-the-art methods on CIHP

(Crowd Instance-level Human Parsing), MHP v2.0 (Multi-

Human Parsing) and DensePose-COCO datasets. Based on

the proposed Parsing R-CNN, we reach the 1st place in the

COCO 2018 Challenge DensePose Estimation task. Code

and models are publicly available1.

1. Introduction

Human part segmentation [14, 26, 29, 40, 49], dense pose

estimation [16] and human-object interactions [9, 13, 21]

are the most fundamental and critical tasks in analyzing

human in the wild. These tasks require human details at

the instance level, which involve several perceptual tasks

including detection, segmentation, estimation, i.e. There is

a commonality between them, which can be regarded as an

instance-level human analysis task.

Due to the successful development of convolutional neu-

ral networks [11, 23, 25, 37, 42, 45], great progress has been

made in instance-level human analysis, especially in human

part segmentation and dense pose estimation. Several re-

lated works [29, 49] follow the two stages pipeline, Mask

R-CNN [17], which detects human in the image panel and

1https://github.com/soeaver/Parsing-R-CNN
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Figure 1. Example tasks of instance-level human analysis. (a)

and (b) are samples for dense pose estimation. (c) and (d) are

samples for human part segmentation.

predicts a class-aware mask in parallel with several convolu-

tional layers. This method has achieved great success and

wide application in instance segmentation [7, 17, 35, 47].

However, there are still several deficiencies in extending to

the instance-level human analysis. One of the most impor-

tant problems is that the design of the mask branch is used to

predict a class-agnostic instance mask [17], but the instance-

level human analysis requires more detailed features, which

can not be well solved by existing methods. Besides, human

analysis needs to correlate geometric and semantic relations

between human parts / dense points, which is also missing.

Therefore, in order to solve these problems, we propose Pars-

ing R-CNN, which provides a concise and effective scheme

for the instance-level human analysis tasks. This scheme can

be successfully applied to the human part segmentation and

dense pose estimation (Figure 1).

Our research explores the problem of instance-level hu-

man analysis from four aspects. First, to enhance feature

semantic information and maintain feature resolution, pro-

posals separation sampling is adopted. Human instances
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Figure 2. Parsing R-CNN pipeline. We adopt FPN backbone and RoIAlign operation, parsing branch is used for instance-level human

analysis.

often occupy a relatively large proportion in images [33].

Therefore, RoIPool [10] operations are often performed on

the coarser-resolution feature maps [32]. But this will lose

a lot of details of the instance. In this work, we adopt the

proposals separation sampling strategy, which using pyramid

features at RPN [38] phase, but the RoIPool only performed

on the finest level.

Second, to obtain more detailed information to distinguish

different human parts or dense points in the instance, we

enlarge the RoI resolution of the parsing branch. Human

analysis tasks generally distinguish between dozens or even

dozens of categories. It is necessary and effective to enlarge

the resolution of the feature map.

Third, we propose a geometric and context encoding mod-

ule to enlarge receptive field and capture the relationship be-

tween different parts of the human body. It is a lightweight

component consisting of two parts. The first part is used to

obtain multi-level receptive field and context information,

and the second part is used to learn geometric correlation.

With this module, class-aware masks with better quality are

produced.

Finally, we analyze how to improve the performance of

Parsing R-CNN efficiently by increasing the capacity of

parsing branch. Based on this, we propose an appropriate

branch composition scheme with high accuracy and small

computational overhead.

With the proposed Parsing R-CNN, we achieve state-of-

the-art performance on several datasets [14, 49]. For human

part segmentation, Parsing R-CNN outperforms all known

top-down or bottom-up methods both on CIHP [14] (Crowd

Instance-level Human Parsing) and MHP v2.0 [49] (Multi-

Human Parsing) datasets. For dense pose estimation, Parsing

R-CNN achieves 64.1% mAP on COCO DensePose [16] test

dataset, winning the 1st place in COCO 2018 Challenge

DensePose task by a very large margin.

Parsing R-CNN is general and not limited to human part

segmentation and dense pose estimation. We do not see any

reason preventing it from finding broader applications in

other human analysis tasks, such as human-object interac-

tions, etc.

2. Related Work

Region-based Approach. The region-based approach [10,

11, 12, 17, 19, 32, 38] is very important in object detection,

which has high accuracy and good expansibility. Gener-

ally speaking, the region-based approach generates a series

of candidate object regions [38, 43, 50], then performs ob-

ject classification and bounding-box regression in parallel

within each candidate region. RoIPool and Region Pro-

posal Network (RPN) are proposed by Fast R-CNN [10] and

Faster R-CNN [38] respectively, which enable end-to-end

learning and greatly improve speed and accuracy. Mask

R-CNN [17] is an important milestone that successfully ex-

tends the region-based approach to instance segmentation

and pose estimation, which has become an advanced pipeline

in visual recognition. Mask R-CNN is flexible and robust to

many follow-up improvements, and can be extended to more

visual tasks [2, 3, 13, 16, 22, 39].

Human Part Segmentation. Human part segmentation is a

core task of human analysis, which has been extensively stud-

ied in recent years [30, 31, 34]. Recently, Zhao et al. [49]

put forward the MHP v2.0 (Multi-Human Parsing) dataset,

which contains 25,403 elaborately annotated images with

58 fine-grained semantic category labels. Gong et al. [14]

present another large-scale dataset called Crowd Instance-

level Human Parsing (CIHP) dataset, which has 38,280

diverse human images. Each image in CIHP is labeled

with pixel-wise annotations on 20 categories and instance-

level identification. These datasets have greatly promoted
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the research of human part segmentation, and considerable

progress has been made.

On the other hand, Zhao et al. [49] propose the Nested

Adversarial Network (NAN) for human part segmentation,

which consists of three GAN-like sub-nets, respectively per-

forming semantic saliency prediction, instance-agnostic pars-

ing and instance-aware clustering. Gong et al. [14] design a

detection-free Part Grouping Network (PGN) for instance-

level human part segmentation. Although these works have

achieved good performance, the segmentation result has

great room for improvement and lack of an efficient region-

based pipeline to unify the solution of instance-level human

analysis.

Dense Pose Estimation. Guler et al. [16] propose an inno-

vative dataset for instance-level human analysis, DensePose-

COCO, a large-scale ground-truth dataset with image-to-

surface correspondences manually annotated on 50k COCO

images. Dense pose estimation can be understood as provid-

ing a refined version of human part segmentation (human

part segmentation is crucial for dense pose estimation) and

pose estimation, where one predicts continuous part labels of

each human body. They also present the DensePose-RCNN,

which combines the Dense Regression approach with the

Mask-RCNN [17] architecture. Cross-cascading architec-

ture is applied to the system that further improves accuracy.

DensePose-RCNN gives a concise pipeline for dense pose

estimation with good accuracy. However, many problems

in the task are not discussed, such as the scale of human

instance, the feature resolution and so on.

We consider that we can not treat human part segmenta-

tion and dense pose estimation in isolation. They are both

specific tasks of instance-level human analysis and have a

lot of commonalities. Therefore, based on the successful

region-based approach, we propose Parsing R-CNN, a uni-

fied solution for instance-level human analysis.

3. Parsing R-CNN

Our goal is to leverage a unified pipeline for instance-

level human analysis, which can achieve good performance

in both human part segmentation, dense pose estimation and

has the high scalability to other similar tasks [13, 39]. Like

Mask R-CNN, the proposed Parsing R-CNN is conceptually

simple, an additional parsing branch is used to generate

the output of instance-level human analysis, as shown in

Figure 2. In this section, we will introduce the motivation

and content of Parsing R-CNN in detail.

3.1. Proposals Separation Sampling

In FPN [32] and Mask R-CNN [17], the assignment strat-

egy is adopted to collect the RoIs (Regions of Interest) and

assign them to the corresponding feature pyramid according

to the scale of RoIs. Formally, large RoIs will be assigned to

Figure 3. Scale of instances relative to the image (Relative Scale)

vs fraction of instances in the dataset (CDF).

the coarser-resolution feature maps. This strategy is effective

and efficient in object detection and instance segmentation.

However, we find that this strategy is not the optimal solution

in instance-level human analysis. Due to a small size human

instance has less appearance information, only large size

instances will be annotated. As shown in Figure 3, less than

20% of object instances in COCO dataset occupy more than

10% scale of the image, but this ratio is about 74% and 86%

in CIHP and MHP v2.0 datasets respectively. According to

the assignment strategy proposed by FPN, the most human

instances will be assigned to the coarser-resolution feature

maps. Instance-level human analysis often requires precise

identification of some details of the human body, such as

glasses and watches, or pixel areas of the left and right hand.

But the coarser-resolution feature maps cannot provide more

instance details, which is very harmful to human analysis.

To address this, we propose the proposals separation sam-

pling (PSS) strategy that extracts features with details while

preserves a multi-scale feature representation [28, 32, 36].

Our proposed change is simple: the bbox branch still adopts

the scale assign strategy on the feature pyramid (P2-P5) ac-

cording to FPN [32], but the RoIPool/RoIAlign operation of

parsing branch is only performed on the finest scale feature

map of P2, as shown in Figure 2. In this way, we argue

that object detection benefits from the pyramid represen-

tation while preserving human body details by extracting

feature from the finest-resolution feature maps at parsing

branch. With PSS, we observe that there has been a signif-

icant improvement in human part segmentation and dense

pose estimation.

3.2. Enlarging RoI Resolution

In some early region-based approaches, in order to make

full use of the pre-train parameters, RoIPool operation con-

verts an RoI into a small feature map with a fixed spatial

extent of 7×7 [10, 17, 32] (or 14×14 followed by a convolu-

tional layer with stride=2). This setup has been inherited in
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Figure 4. The proposed Geometric and Context Encoding (GCE)

module. GAP denotes the global average pooling operator.

subsequent work and has proved its efficiency. Mask R-CNN

uses 14×14 scale RoIs in mask branch to generate segmen-

tation masks, and the DensePose-RCNN [16] uses the same

settings in the uv branch. But the most human instances

occupy a large proportion of the feature maps, and too small

RoI will lose a lot of detail. For example, a 160×64 size

human body whose size on P2 is 40×16, and scaling to

14×14 will undoubtedly reduce the prediction accuracy. In

the tasks of object detection and instance segmentation, it

is not very necessary to accurately predict the details of the

instance. But in the instance-level human analysis, this will

cause severe accuracy degradation.

In this work, we present the most simple and intuitive

method: enlarging RoI resolution (ERR). We employ 32×32

RoI in parsing branch, which increases the computational

cost of the branch, but improves the accuracy significantly.

To address the training time and memory overhead associated

with ERR, we decoupled the batch size of instance-level

human analysis tasks from the detection task to a fixed value

(e.g. 32) and find that this greatly increases the training

speed and does not lead to accuracy degradation.

3.3. Geometric and Context Encoding

In previous works, the design of each branch is very suc-

cinct. A tiny FCN [37] is applied on the pooled feature

grid for predicting pixel-wise masks of instances. However,

using a tiny FCN in the parsing branch of instance-level

human analysis will have three obvious drawbacks. First,

the scale of different human parts varies greatly, which re-

quires the feature maps capturing multi-scale information.

Figure 5. Visualization results with / without GCE module. The

1st row shows visualization results without GCE, and the 2nd shows

ones with GCE. The GCE module can refine segmentation results

of human instances (red circles).

Secondly, each human part is geometrically related, which

requires a non-local representation [1] . Third, 32×32 RoI

needs a large receptive field, and stacking four or eight 3×3

convolutional layers are not enough.

Atrous spatial pyramid pooling (ASPP) [4, 5, 6] is an

effective module in semantic segmentation, where parallel

atrous convolutional layers with different rates capture multi-

scale information. Recently, Wang et al. [44] present the

non-local operation and demonstrates outstanding perfor-

mance on several benchmarks. Non-local operation is able

to capture long-range dependencies which is of central im-

portance in deep neural networks. For instance-level human

analysis, we combine the advantages of ASPP and non-local,

propose the Geometric and Context Encoding (GCE) module

to replace FCN in parsing branch. As shown in Figure 5, the

proposed GCE module can encode the geometric and context

information of each instance, effectively distinguish differ-

ent parts of the human body. In the GCE module, the ASPP

part consists of one 1×1 convolution and three 3×3 convo-

lutions with rates = (6, 12, 18). The image-level features are

generated by global average pooling, which is followed by a

1×1 convolution, and then bilinearly upsample the feature

to the original 32×32 spatial dimension. The non-local part

adopts embedded Gaussian version, and a batch normaliza-

tion [23] layer is added to the last convolutional layer. All

the convolutional layers in GCE module have 256 channels.

See Figure 4.

3.4. Increasing Parsing Branch Capacity

In the design of neural network for visual task, we of-

ten divide the network into several parts according to the

characteristics of the features learned by different convolu-

tional layers. For example, the layers closer to the output
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mAPbbox mIoU AP
p

50 AP
p

vol PCP50

baseline 67.7 47.2 41.4 45.4 44.3

P2 only 66.4 47.7 42.6 45.8 45.1

PSS 67.5 48.2 42.9 46.0 45.5

Table 1. Ablation study on proposals separation sampling (PSS)

strategy.

fps mIoU AP
p

50 AP
p

vol PCP50

baseline (14×14) 10.4 48.2 42.9 46.0 45.5

ERR (32×32) 9.1 50.7 47.9 47.6 49.7

ERR (32×32), 100 RoIs 11.5 50.5 47.5 47.3 49.0

ERR (64×64) 5.6 51.5 49.0 47.9 50.8

Table 2. Ablation study on enlarging RoI resolution (ERR) oper-

ation, the numbers in brackets are the RoI scales.

mIoU AP
p

50 AP
p

vol PCP50

baseline 50.7 47.9 47.6 49.7

ASPP only 51.9 51.1 48.3 51.4

Non-local only 50.5 47.0 47.6 48.9

GCE 52.7 53.2 49.7 52.6

Table 3. Ablation study on Geometric and Context Encoding

(GCE) module.

strongly respond to entire objects while other neurons are

more likely to be activated by local texture and patterns. The

region-based approach handles each RoI in parallel, so the

branch of each task can be understood as an independent

neural network. Increasing capacity in different locations of

the network will bring different performance improvements.

For example, Dai et al. [8] consider that it is most efficient

to replace the standard convolutional layers with deformable

convolutional layers in the last stage of ResNet [18, 20] or

Aligned-Inception-ResNet. Wang et al. [44] suggest adding

non-local operation in the first three stages of the network to

achieve better results. In this work, we divide parsing branch

into three parts: before GCE, GCE module and after GCE

respectively. Through experiments we find that it is most

efficient to increasing parsing branch capacity after GCE. Al-

though GCE module can learn multi-scale information and

geometric relations, we conjecture that the features learned

by GCE need to be further refined to represent instance-level

human information, such as human part segmentation and

dense pose estimation.

4. Experiments

In this section, we compare the performance of Parsing

R-CNN on three datasets, two human part segmentation

datasets, and one dense pose estimation dataset.

4.1. Implementation Details

We implement the Parsing R-CNN based on Pytorch on

a server with 8 NVIDIA Titan X GPUs. We adopt FPN

and RoIAlign in all architectures, each of which is trained

end-to-end. A mini-batch involves 2 images per GPU and

mIoU AP
p

50 AP
p

vol PCP50

baseline 52.7 53.2 49.7 52.6

4conv + GCE 52.8 54.9 50.5 54.2

GCE + 4conv (IPBC) 53.5 58.5 51.7 56.5

4conv + GCE + 4conv 53.1 58.8 51.6 56.7

Table 4. Ablation study on Increasing Parsing Branch Capacity

(IPBC) structure. 4conv denotes four convolutional layers with

3×3 kernels.

LR mIoU AP
p

50 AP
p

vol PCP50

ImageNet [41]

1x 53.5 58.5 51.7 56.5

2x 55.3 61.8 53.3 59.3

3x 56.3 63.7 53.9 60.1

COCO [33]

1x 55.9 63.1 53.5 60.4

2x 57.1 64.7 54.2 61.9

3x 57.5 65.4 54.6 62.6

Table 5. Results of different pretrained models and maximum

iterations on CIHP val.

and each image has 512 sampled RoIs for bbox branch and

32 sampled RoIs for parsing branch. We train using image

scales randomly sampled from [512, 864] pixels; inference

is on a single scale of 800 pixels. For CIHP dataset, we

train on train for 45k iterations, with a learning rate of

0.02 which is decreased by 10 at the 30k and 40k iteration.

For MHP v2.0 dataset, the max iteration is half as long

as the CIHP dataset with the learning rate change points

scaled proportionally. For DensePose-COCO, we train for

130k iterations, starting from a learning rate of 0.002 and

reducing it by 10 at 100k and 120k iterations. Other details

are identical as in Mask R-CNN [15, 17].

4.2. Experiments on Human Part Segmentation

Metrics and Baseline. We evaluate the performance of

human part segmentation from two scenarios. For seman-

tic segmentation, we follow [24] to generate multi-person

mask and adopt the standard mean intersection over union

(mIoU) [37] to evaluate the performance. For instance-level

performance, we use the Average Precision based on part

(APp) [49] for multi-human parsing evaluation, which uses

part-level pixel IoU of different semantic part categories

within a person instance to determine if one instance is a true

positive. We report the AP
p
50 and AP

p
vol. The former has a

IoU threshold equal to 0.5, and the latter is the mean of the

APp at IoU thresholds ranging from 0.1 to 0.9, in increments

of 0.1. In addition, we also report Percentage of Correctly

parsed semantic Parts (PCP) metric [49].

For a fair comparison, our baseline adopts ResNet-50-

FPN [18, 20, 32, 46] as backbone. The parsing branch

consists of a stack of eight 3×3 512-d convolutional lay-

ers, followed by a deconvolution [48] layer and 2× bilinear

upscaling. Following [17], the feature map resolution af-

ter RoIAlign is 14×14, so the output resolution is 56×56.

During training, we apply a per-pixel softmax [37] as the
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Baseline PSS ERR GCE IPBC 3x LR COCO mIoU AP
p

50 AP
p

vol PCP50

ResNet50

X 47.2 41.4 45.4 44.3

X X 48.2 42.9 46.0 45.5

X X X 50.7 47.9 47.6 49.7

X X X X 52.7 53.2 49.7 52.6

X X X X X 53.5 58.5 51.7 56.5

X X X X X X 56.3 63.7 53.9 60.1

X X X X X X X 57.5 65.4 54.6 62.6

∆ +10.3 +24.0 +9.2 +18.3

Table 6. Human part segmentation results on CIHP val. We adopt ResNet50-FPN as backbone, and gradually add Proposals separation

sampling (PSS), Enlarging RoI Resolution (ERR), Geometric and Context Encoding (GCE) and Increasing Parsing Branch Capacity (IPBC).

3x LR denotes that we increase the number of iterations to three times of standard. We also report the performance of pretraining the whole

model on COCO keypoint annotations (COCO).

Baseline PSS ERR GCE IPBC 3x LR COCO mIoU AP
p

50 AP
p

vol PCP50

ResNet50

X 28.7 10.1 33.4 21.8

X X 29.8 10.6 33.8 22.2

X X X 32.3 14.0 34.1 27.4

X X X X 33.7 17.4 36.3 30.5

X X X X X 34.3 20.0 37.6 32.7

X X X X X X 36.2 24.5 39.5 37.2

X X X X X X X 37.0 26.6 40.3 40.0

∆ +8.3 +16.5 +7.1 +18.2

Table 7. Human part segmentation results on MHP v2.0 val, we adopt ResNet50-FPN as backbone.

multinomial cross-entropy loss.

Component Ablation Studies on CIHP. We investigate var-

ious options of the proposed Parsing R-CNN in Section 3.

In addition, we also study two other methods to improve

performance: increasing the number of iterations and COCO

pretraining. Our ablation study on CIHP [14] val from the

baseline gradually to all components incorporated is shown

in Table 6.

1) Proposals Separation Sampling. Proposals separation

sampling (PSS) strategy improves the mIoU about 1.0 than

the baseline. We also only adopt the P2 feature map both

for bbox branch and parsing branch, the mIoU is reduced

by 0.5 and bbox mAP is much worse. As shown in Table 1,

instance-level metrics are promoted to a certain extent with

PSS, which indicates that the proposed strategy is effective.

2) Enlarging RoI Resolution. In Table 2, we employ

32×32 and 64×64 RoI scales respectively, and find that

the performance can be significantly improved than the origi-

nal 14×14 scale. The ERR (32×32) yields 2.8 improvement

in terms of mIoU. For instance-level metrics, the improve-

ments are even greater: 5.0, 1.7, 4.4 respectively. Moreover,

the RoIs of paring branch is parallel, so the speed is reduced

by only 12%. And we can increase the inference speed by

reducing the number of RoIs. If we use 100 RoIs at in-

ference phase, the speed can be greatly improved and the

performance basically does not drop. Relative to 32×32, the

64×64 RoI scale can continue to improve the performance,

but considering speed / accuracy trade-offs we consider that

method mIoU AP
p

50 AP
p

vol PCP50

CIHP

PGN (R101)† [14] 55.8 – – –

CE2P (R101) [40] 63.7 – – –

Parsing R-CNN (R50) 57.5 65.4 54.6 62.6

Parsing R-CNN (X101) 59.8 69.1 55.9 66.2

Parsing R-CNN (X101)† 61.1 71.2 56.5 67.7

MHP

Mask R-CNN [17] – 14.9 33.8 25.1

MH-Parser [27] – 17.9 36.0 26.9

v2.0

NAN [49] – 25.1 41.7 32.2

CE2P (R101) [40] 41.8 33.3 42.2 –

Parsing R-CNN (R50) 37.0 26.6 40.3 40.0

Parsing R-CNN (X101) 40.3 30.2 41.8 44.2

Parsing R-CNN (X101)† 41.8 32.5 42.7 47.9

Table 8. Results of state-of-the-art methods on CIHP and MHP

v2.0 val. † denotes using test-time augmentation.

using ERR (32×32) is efficient.

3) Geometric and Context Encoding. GCE module is the

core component of Parsing R-CNN, which can significantly

improve the mIoU about 2.0 than stacking of eight 3×3

512-d convolutional layers, and it is even more lightweight.

With or without Non-local operation, the ASPP part can

still yield 1.2 improvement in terms of mIoU. But without

ASPP part, only Non-local operation will cause performance

degradation than the baseline. Results are shown In Table 3.

4) Increasing Parsing Branch Capacity. We divide the

parsing branch into three parts: before GCE, GCE module

and after GCE. As shown in Table 4, we find that the part

before GCE is not necessary. It is most efficient to increasing

parsing branch capacity after GCE, which significantly im-

proves the semantic segmentation and instance-level metrics
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Baseline PSS ERR GCE IPBC COCO AP AP50 AP75 APM APL

ResNet50

X 48.9 84.9 50.8 43.8 50.6

X X 50.9 86.1 53.4 46.4 52.4

X X X 53.4 86.7 57.0 49.2 54.8

X X X X 54.2 87.2 59.5 47.2 55.9

X X X X X 55.0 87.6 59.8 50.6 56.6

X X X X X X 58.3 90.1 66.9 51.8 61.9

∆ +9.4 +5.2 +16.1 +8.0 +11.3

ResNeXt101

X 55.5 89.1 60.8 50.7 56.8

X X X X X 59.1 91.0 69.4 53.9 63.1

X X X X X X 61.6 91.6 72.3 54.8 64.8

∆ +6.1 +2.5 +11.5 +4.1 +8.0

Table 9. Dense pose estimation results on DensePose-COCO val. We adopt ResNet50-FPN and ResNeXt101-32x8d-FPN as backbone

respectively. The baseline is DensePose-RCNN.

(+0.8, +5.3, +2.0, +3.9 respectively). Considering speed /

accuracy trade-offs, we adopt the GCE followed by four 3×3

512-d convolutional layers as parsing branch.

5) Increasing iterations and COCO pretraining. Increas-

ing iterations is a common method for improving perfor-

mance. As shown in Table 5, we investigate the results of

twice or three times as long as the standard schedule on CIHP

val and find the improvements are obvious. We further pre-

train the Parsing R-CNN models on the COCO keypoints

annotations2, and initialize the parsing branch with the pose

estimation weights. This strategy can further improve the

performance about 1.1 to 2.4 in terms of mIoU. Combining

these two methods, Parsing R-CNN yields 4.0 improvement

in terms of mIoU. And for instance-level metrics, the im-

provements are 6.9, 2.9, 6.1 respectively.

As shown in Table 6, with these proposed components,

the metrics of our Parsing R-CNN all exceed the baseline

by a big margin. For semantic segmentation, Parsing R-

CNN attains 57.6% mIoU which outperforms the baseline

by a massive 10.3 points. For instance-level metrics, the

improvement of Parsing R-CNN is more significant, which

improves AP
p
50 by 24.0 points, AP

p
vol by 9.2 points, and

PCP50 by 18.3 points.

Component Ablation Studies on MHP v2.0. We also grad-

ually add Proposals separation sampling (PSS), Enlarging

RoI Resolution (ERR), Geometric and Context Encoding

(GCE) and Increasing Parsing Branch Capacity (IPBC) for

ablation studies on MHP v2.0 [49] val, the results are

shown in Table 7. There are 59 semantic categories in the

MHP v2.0 dataset, and some of them are small-scale, so the

baseline is worse than CIHP dataset. Parsing R-CNN is also

significantly improving for MHP v2.0 dataset, which yields

10.3 improvement in terms of mIoU. For instance-level met-

rics, Parsing R-CNN improves AP
p
50 by 16.5 points, AP

p
vol

by 7.1 points, and PCP50 by 18.2 points.

2Parsing R-CNN (without ERR) achieves 66.2% AP on COCO val,

which yields 0.8 improvement than Mask R-CNN [17] with s1x LR.

Comparisons with State-of-the-Art Methods. Parsing R-

CNN significantly improves the performance of human part

segmentation. In order to further prove its effectiveness, we

compare the proposed Parsing R-CNN to the state-of-the-art

methods on CIHP and MHP v2.0 datasets, respectively.

For CIHP dataset, Parsing R-CNN uses ResNet-50-FPN

outperforms the PGN [14] which using ResNet-101 by 1.7

points in terms of mIoU (Table 8). It is worth noting that

PGN adopts multi-scale inputs and left-right flipped images

to improve performance, while the result of Parsing R-CNN

is without test-time augmentation. We also report the per-

formance of Parsing R-CNN using ResNeXt-101-32x8d-

FPN backbone, which attains 59.8% mIoU. Moreover, using

ResNeXt-101-32x8d-FPN we report the results with multi-

scale testing and horizontal flipping. This gives us a single

model result of 61.1% mIoU. Because PGN only reports the

Average Precision based on region (APr), we can not directly

compare the instance-level metrics. But by the result of se-

mantic segmentation, we can also infer that Parsing R-CNN

is superior to PGN on human parts segmentation task.

For MHP v2.0 dataset, we also report the results of Pars-

ing R-CNN using ResNet-50-FPN and ResNeXt-101-32x8d-

FPN (with or without test-time augmentation) backbones. In

Table 8, compared with the previous state-of-the-art meth-

ods [17, 27, 49]3, Parsing R-CNN further improves results,

with a margin of 7.4 points AP
p
50, 1.0 points AP

p
vol and 15.7

points PCP50 over the best previous entry. Unfortunately, all

the methods do not give the metric of semantic segmentation.

4.3. Experiments on Dense Pose Estimation

Metrics and Baseline. Following [16], we adopt the Aver-

age Precision (AP) at a number of geodesic point similarity

(GPS) thresholds ranging from 0.5 to 0.95 as the evaluation

metric. The structure of baseline model is exactly the same

as the one of human part segmentation. We only replace the

3All the previous state-of-the-art methods only report the results evalu-

ated on MHP v2.0 test.
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Figure 6. Images in each row are visual results of Parsing R-CNN using ResNet50-FPN on CIHP val, MHP v2.0 val and DensePose-

COCO val, respectively.

AP AP50 AP75 APM APL

DensePose-RCNN 56 89 64 51 59

yuchen.ma 57 87 66 48 61

ML-LAB 57 89 64 51 59

Min-Byeonguk 58 89 66 50 61

Parsing R-CNN (ours) 64 92 75 57 67

Table 10. 2018 COCO Challenge results of Dense Pose Estima-

tion task on test.

per-pixel softmax loss with the dense pose estimation losses.

Component Ablation Studies on DensePose-COCO. Like

human part segmentation, we adopt the proposed Pars-

ing R-CNN for dense pose estimation. Corresponding re-

sults are shown in Table 9. We adopt ResNet50-FPN and

ResNeXt101-32x8d-FPN as backbone respectively. With

ResNet50-FPN, Parsing R-CNN outperforms the baseline

(DensePose-RCNN) by a good margin. Combining all

the proposed components, our method achieves 55.0% AP,

which yields 6.1 improvement than DensePose-RCNN. With

COCO pretraining, Parsing R-CNN further improves 3.3

points AP. Parsing R-CNN also shows significant improve-

ment of AP75 (50.8% vs 66.9%), which indicates that our

method is more accurate in points localization on the surface.

As shown in Table 9, our Parsing R-CNN still increases the

performance of dense pose estimation, when the model is

upgraded from ResNet50 to ResNeXt101-32x8d, showing

good generalization of the Parsing R-CNN framework.

COCO 2018 Challenge. With Parsing R-CNN, we par-

ticipated in the COCO 2018 DensePose Estimation Chal-

lenge, and reached the 1st place over all competitors. Ta-

ble 10 summarizes the entries from the leaderboard of COCO

2018 Challenge. Our entry only utilizes a single model

(ResNeXt101-32x8d), and attains 64.1% AP on DensePose-

COCO test which surpasses the 2nd place by 6 points.

Qualitative results are illustrated in Figure 6. Im-

ages in each row are visual results of Parsing R-CNN us-

ing ResNet50-FPN on CIHP val, MHP v2.0 val and

DensePose-COCO val, respectively.

5. Conclusion

We present a novel region-based approach Parsing R-

CNN for instance-level human analysis, which achieves

state-of-the-art results on several challenging benchmarks.

Our approach explores the problem of instance-level human

analysis from four aspects, and verified the effectiveness on

human part segmentation and dense pose estimation tasks.

Based on the proposed Parsing R-CNN, we reach the 1st

place in the COCO 2018 Challenge DensePose Estimation

task. In the future, we will extend Parsing R-CNN to more

applications of instance-level human analysis.
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