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Abstract

We propose an adversarial contextual model for detect-

ing moving objects in images. A deep neural network is

trained to predict the optical flow in a region using infor-

mation from everywhere else but that region (context), while

another network attempts to make such context as uninfor-

mative as possible. The result is a model where hypotheses

naturally compete with no need for explicit regularization

or hyper-parameter tuning. Although our method requires

no supervision whatsoever, it outperforms several methods

that are pre-trained on large annotated datasets. Our model

can be thought of as a generalization of classical varia-

tional generative region-based segmentation, but in a way

that avoids explicit regularization or solution of partial dif-

ferential equations at run-time. We publicly release all our

code and trained networks.1

1. Introduction

Consider Fig. 1: Even relatively simple objects, when

moving in the scene, cause complex discontinuous changes

in the image. Being able to rapidly detect independently

moving objects in a wide variety of scenes from images is

functional to the survival of animals and autonomous vehi-

cles alike. We wish to endow artificial systems with simi-

lar capabilities, without the need to pre-condition or learn

similar-looking backgrounds. This problem relates to mo-

tion segmentation, foreground/background separation, vi-

sual attention, video object segmentation as we discuss in

Sect. 3. For now, we use the words “object” or “foreground”

informally2 to mean (possibly multiple) connected regions

of the image domain, to be distinguished from their sur-

rounding, which we call “background” or “context,” accord-

ing to some criterion.

Since objects exist in the scene, not in the image, a

method to infer them from the latter rests on an operational

1http://rpg.ifi.uzh.ch/unsupervised_detection.html

*These two authors contributed equally. Correspondence to

yanchao.yang@cs.ucla.edu and loquercio@ifi.uzh.ch
2The precise meaning of these terms will be formalized in Sect. 2.

Figure 1: An encounter between a hawk and a drone (top). The

latter will not survive without being aware of the attack. Detecting

moving objects is crucial to the survival of animal and artificial

systems alike. Note that the optical flow (middle row) is quite di-

verse within the region where the hawk projects: It changes both

in space and time. Grouping this into a moving object (bottom

row) is our goal in this work. Note the object is detected by our

algorithm across multiple scales, partial occlusions from the view-

point, and complex boundaries.

definition based on measurable image correlates. We call

moving objects regions of the image whose motion can-

not be explained by that of their surroundings. In other

words, the motion of the background is uninformative of

the motion of the foreground and vice-versa. The “informa-

tion separation” can be quantified by the information reduc-

tion rate (IRR) between the two as defined in Sect. 2. This

naturally translates into an adversarial inference criterion

that has close connections with classical variational region-

based segmentation, but with a twist: Instead of learning a

generative model of a region that explains the image in that

region as well as possible, our approach yields a model that

tries to explain it as poorly as possible using measurements

from everywhere else but that region.

In generative model-based segmentation, one can always

explain the image with a trivial model, the image itself. To

avoid that, one has to impose model complexity bounds,

bottlenecks or regularization. Our model does not have ac-

cess to trivial solutions, as it is forced to predict a region

without looking at it. What we learn instead is a contex-

tual adversarial model, without the need for explicit reg-

ularization, where foreground and background hypotheses
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compete to explain the data with no pre-training nor (hy-

per)parameter selection. In this sense, our approach relates

to adversarial learning and self-supervision as discussed in

Sect. 3.

The result is a completely unsupervised method, un-

like many recent approaches that are called unsupervised

but still require supervised pre-training on massive labeled

datasets and can perform poorly in contexts that are not well

represented in the training set. Despite the complete lack of

supervision, our method performs competitively even com-

pared with those that use supervised pre-training (Sect. 4).

Summary of Contributions

Our method captures the desirable features of variational

region-based segmentation: Robustness, lack of thresholds

or tunable parameters, no need for training. However,

it does not require solving a partial differential equation

(PDE) at run-time, nor to pick regularizers or Lagrange

multipliers, nor to restrict the model to one that is simple-

enough to be tractable analytically. It also exploits the

power of modern deep learning methods: It uses deep neu-

ral networks as the model class, optimizes it efficiently with

stochastic gradient descent (SGD), and can be computed ef-

ficiently at run time. However, it requires no supervision

whatsoever.

While our approach has close relations to both classical

region-based variational segmentation and generative mod-

els, as well as modern deep learning-based self-supervision,

discussed in detail in Sect. 3, to the best of our knowledge,

it is the first adversarial contextual model to detect moving

objects in images. It achieves better or similar performance

compare to unsupervised methods on the three most com-

mon benchmarks, and it even edges out methods that rely

on supervised pre-training, as described in Sect. 4. On one

of the considered benchmarks, it outperforms all methods

using supervision, which illustrates the generalizability of

our approach. In Sect. 5 we describe typical failure modes

and discuss limitations of our method.

2. Method

We call “moving object(s)” or “foreground” any region

of an image whose motion is unexplainable from the con-

text. A “region of an image” Ω is a compact and multiply-

connected subset of the domain of the image, discretized

into a lattice D. “Context” or “background” is the comple-

ment of the foreground in the image domain, Ωc “ DzΩ.

Given a measured image I and/or its optical flow to the next

(or previous) image u, foreground and background are un-

certain, and therefore treated as random variables. A ran-

dom variable u1 is “unexplainable” from (or “uninformed”

by) another u2 if their mutual information Ipu1;u2q is zero,

that is if their joint distribution equals the product of the

marginals, P pu1, u2q “ P pu1qP pu2q.

More specifically, the optical flow u : D1 Ñ R
2 maps

the domain of an image I1 : D1 Ñ R
3
` onto the domain D2

of I2, so that if xi P D1, then xi ` ui P D2, where ui “
upxiq up to a discretization into the lattice and cropping of

the boundary. Ideally, if the brightness constancy constraint

equation that defines optical flow was satisfied, we would

have I1 “ I2 ˝ u point-wise.

If we consider the flow at two locations i, j, we can for-

malize the notion of foreground as a region Ω that is unin-

formed by the background:

#

Ipui, uj |Iq ą 0, i, j P Ω

Ipui, uj |Iq “ 0, i P Ω, j P DzΩ.
(1)

As one would expect, based on this definition, if the domain

of an object is included in another, then they inform each

other (see appendix [40]).

2.1. Loss function

We now operationalize the definition of foreground into

a criterion to infer it. We use the information reduction rate

(IRR) γ, which takes two subsets x,y Ă D as input and

returns a non-negative scalar:

γpx|y; Iq “
Ipux, uy|Iq

Hpux|Iq
“ 1 ´

Hpux|uy, Iq

Hpux|Iq
(2)

where H denotes (Shannon) entropy. It is zero when the

two variables are independent, but the normalization pre-

vents the trivial solution (empty set).3 As proven in the ap-

pendix [40], objects as we defined them are the regions that

minimize the following loss function

LpΩ; Iq “ γpΩ|Ωc; Iq ` γpΩc|Ω; Iq. (3)

Note that L does not have a complexity term, or regular-

izer, as one would expect in most region-based segmenta-

tion methods. This is a key strength of our approach, that

involves no modeling hyperparameters, as we elaborate on

in Sect. 3.

Tame as it may look, (3) is intractable in general. For

simplicity we indicate the flow inside the region(s) Ω (fore-

ground) with uin “ tui, i P Ωu, and similarly for uout, the

flow in the background Ωc. The only term that matters in

the IRR is the ratio Hpuin|uout, Iq{Hpuin|Iq, which is

ş

logP puin|uout, IqdP puin|uout, Iq
ş

logP puin|IqdP puin|Iq
(4)

that measures the information transfer from the background

to the foreground. This is minimized when knowledge of

3A small constant 0 ă ǫ ! 1 is added to the denominator to avoid

singularities, and whenever x ‰ H, Hpux|Iq " ǫ, thus we will omit ǫ

from now on.

880



Figure 2: During training, our method entails two modules. One is the generator (G) which produces a mask of the object by looking at

the image and the associated optical flow. The other module is the inpainter (I) which tries to inpaint back the optical flow masked out by

the corresponding mask. Both modules employ the encoder-decoder structure with skip connections. However, the inpainter (I) is equipped

with two separate encoding branches. See Sect. 4.1 for network details.

Let me 

have a try 

foreground path 

background path 

Part of the  

dog/background 

is observed. 

Easy! 

Good 

reconstruction! 

t

Now I 

know how 

to do it! 

foreground path 

background path 

 

Have no clue 

where the 

dog/bkgd moves. 

Difficult… 

Bad 

reconstruction! 

t+1 

Figure 3: The two diagrams illustrate the learning process of the mask generator (G), after the inpainter (I) has learned how to accurately

inpaint a masked flow. The upper diagram shows a poorly trained mask generator which does not precisely detect the object. Due to the

imprecise detection, the inpainter can observe part of the object’s flow, and perform an accurate reconstruction. At the same time, the

inpainter partially observes the background’s flow in the complementary mask. Consequently, it can precisely predict missing parts of the

background’s flow. In contrast, the lower diagram shows a fully trained mask generator which can precisely tell apart the object from the

background. In this case, the inpainter observes the flow only outside the object and has no information to predict the flow inside it. At

initialization time the inpainter does not know the conditionals to inpaint masked flows. Therefore, we propose to train both the generator

and the inpainter jointly in an adversarial manner (see Sect. 2).

the background flow is sufficient to predict the foreground.

To enable computation, we have to make draconian, yet

common, assumptions on the underlying probability model,

namely that

P puin “ x|Iq 9 exp

ˆ

´
}x}2

σ2

˙

(5)

P puin “ x|uout “ y, Iq 9 exp

ˆ

´
}x ´ φpΩ, y, Iq}2

σ2

˙

where φpΩ, y, Iq “
ş

uindP puin|uout, Iq is the conditional

mean given the image and the complementary observation.

Here we assume φpΩ,H, Iq “ 0, since given a single image

the most probable guess of the flow is zeros. With these

assumptions, (4) can be simplified, to

ş

}uin ´ φpΩ, uout, Iq}2dP puin|uout, Iq
ş

}uin}2dP puin|Iq
«

«

řN
i“1

}ui
in ´ φpΩ, ui

out, Iq}2
řN

i“1
}ui

in}2
(6)
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where N “ |D| is the cardinality of D, or the number of

flow samples available. Finally, our loss (3) to be minimized

can be approximated as

LpΩ; Iq “ 1 ´

řN
i“1

}ui
in ´ φpΩ, ui

out, Iq}2
řN

i“1
}ui

in}2 ` ǫ

` 1 ´

řN
i“1

}ui
out ´ φpΩc, ui

in, Iq}2
řN

i“1
}ui

out}2 ` ǫ
. (7)

In order to minimize this loss, we have to choose a repre-

sentation for the unknown region Ω and for the function φ.

2.2. Function class

The region Ω that minimizes (7) belongs to the power

set of D, that is the set of all possible subsets of the image

domain, which has exponential complexity.4 We represent

it with the indicator function

χ : D Ñ t0, 1u

i ÞÑ 1 if i P Ω; 0 otherwise (8)

so that the flow inside the region Ω can be written as ui
in “

χui, and outside as ui
out “ p1 ´ χqui.

Similarly, the function φ is non-linear, non-local, and

high-dimensional, as it has to predict the flow in a region

of the image of varying size and shape, given the flow in a

different region. In other words, φ has to capture the context

of a region to recover its flow.

Characteristically for the ages, we choose both φ and χ

to be in the parametric function class of deep convolutional

neural networks, as shown in Fig. 2, the specifics of which

are in Sect. 4.1. We indicate the parameters with w, and the

corresponding functions φw1
and χw2

. Accordingly, after

discarding the constants, the negative loss (7) can be written

as a function of the parameters

Lpw1, w2; Iq “

ř

i

}χw2
pui ´ φw1

pχw2
, ui

out, Iqq}2

ř

i

}ui
in}2

`

ř

i

}p1 ´ χw2
qpui ´ φw1

p1 ´ χw2
, ui

in, Iq}2

ř

i

}ui
out}2

(9)

φw1
is called the inpainter network, and must be chosen to

minimize the loss above. At the same time, the region Ω,

represented by the parameters w2 of its indicator function

χw2
called mask generator network, should be chosen so

that uout is as uninformative as possible of uin, and there-

fore the same loss is maximized with respect to w2. This

naturally gives rise to a minimax problem:

ŵ “ argmin
w1

max
w2

Lpw1, w2; Iq. (10)

4In the continuum, it belongs to the infinite-dimensional set of compact

and multiply-connected regions of the unit square.

This loss has interesting connections to classical region-

based segmentation, but with a twist as we discuss next.

3. Related Work

To understand the relation of our approach to classical

methods, consider the simplest model for region-based seg-

mentation [8]

LpΩ, ci, coq “

ż

Ω

|uinpxq ´ ci|
2dx`

ż

Ωc

|uoutpxq ´ co|2dx

(11)

typically combined with a regularizing term, for instance

the length of the boundary of Ω. This is a convex infinite-

dimensional optimization problem that can be solved by nu-

merically integrating a partial differential equation (PDE).

The result enjoys significant robustness to noise, provided

the underlying scene has piecewise constant radiance and

is measured by image irradiance, to which it is related

by a simple “signal-plus-noise” model. Not many scenes

of interest have piecewise constant radiance, although this

method has enjoyed a long career in medical image anal-

ysis. If we enrich the model by replacing the constants

ci with smooth functions, φipxq, we obtain the celebrated

Mumford-Shah functional [25], also optimized by inte-

grating a PDE. Since smooth functions are an infinite-

dimensional space, regularization is needed, which opens

the Pandora box of regularization criteria, not to mention

hyperparameters: Too much regularization and details are

missed; too little and the model gets stuck in noise-induced

minima. A modern version of this program would replace

φpxq with a parametrized model φwpxq, for instance a deep

neural network with weights w pre-trained on a dataset D.

In this case, the loss is a function of w, with natural model

complexity bounds. Evaluating φw at a point inside, x P Ω,

requires knowledge of the entire function u inside Ω, which

we indicate with φwpx, uinq:

ż

Ω

|uinpxq´φwpx, uinq|2dx`

ż

Ωc

|uoutpxq´φwpx, uoutq|2dx.

(12)

Here, a network can just map φwpx, uinq “ uin providing

a trivial solution, avoided by introducing (architectural or

information) bottlenecks, akin to explicit regularizers. We

turn the table around and use the outside to predict the inside

and vice-versa:

ż

Ω

|uinpxq´φwpx, uoutq|2dx`

ż

Ωc

|uoutpxq´φwpx, uinq|2dx

(13)

After normalization and discretization, this leads to our loss

function (7). The two regions compete: for one to grow, the

other has to shrink. In this sense, our approach relates to

region competition methods, and specifically Motion Com-

petition [12], but also to adversarial training, since we can
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think of φ as the “discriminator” presented in a classifica-

tion problem (GAN [1]), reflected in the loss function we

use. This also relates to what is called “self-supervised

learning,” a misnomer since there is no supervision, just

a loss function that does not involve externally annotated

data. Several variants of our approach can be constructed by

using different norms, or correspondingly different models

for the joint and marginal distributions (5).

More broadly, the ability to detect independently moving

objects is primal, so there is a long history of motion-based

segmentation, or moving object detection. Early attempts

to explicitly model occlusions include the layer model [38]

with piecewise affine regions, with computational complex-

ity improvements using graph-based methods [30] and vari-

ational inference [11, 6, 32, 43] to jointly optimize for mo-

tion estimation and segmentation; [26] use of long-term

temporal consistency and color constancy, making however

the optimization more difficult and sensitive to parameter

choices. Similar ideas were applied to motion detection in

crowds [5], traffic monitoring [4] and medical image anal-

ysis [14]. Our work also related to the literature on visual

attention [16, 7].

More recent data-driven methods [36, 35, 9, 31] learn

discriminative spatio-temporal features and differ mainly

for the type of inputs and architectures. Inputs can be ei-

ther image pairs [31, 9] or image plus dense optical flow

[36, 35]. Architectures can be either time-independent [35],

or with recurrent memory [36, 31]. Overall, those methods

outperform traditional ones on benchmark datasets [26, 29],

but at the cost of requiring a large amount of labeled training

data and with evidence of poor generalization to previously

unseen data.

It must be noted that, unlike in Machine Learning at

large, it is customary in video object segmentation to call

“unsupervised” methods that do rely on massive amounts

of manually annotated data, so long as they do not require

manual annotation at run-time. We adopt the broader use of

the term where unsupervised means that there is no super-

vision of any kind both at training and test time.

Like classical variational methods, our approach does

not need any annotated training data. However, like modern

learning methods, our approach learns a contextual model,

which would be impossible to engineer given the complex-

ity of image formation and scene dynamics.

4. Experiments

We compare our approach to a set of state-of-the-art

baselines on the task of video object segmentation to evalu-

ate the accuracy of detection. We first present experiments

on a controlled toy-example, where the assumptions of our

model are perfectly satisfied. The aim of this experiment is

to get a sense of the capabilities of the presented approach in

ideal conditions. In the second set of experiments, we evalu-

ate the effectiveness of the proposed model on three public,

widely used datasets: Densely Annotated VIdeo Segmen-

tation (DAVIS) [29], Freiburg-Berkeley Motion Segmenta-

tion (FBMS59) [26], and SegTrackV2 [37]. Provided the

high degree of appearance and resolution differences be-

tween them, these datasets represent a challenging bench-

mark for any moving object segmentation method. While

the DAVIS dataset has always a single object per scene,

FBMS and SegTrackV2 scenes can contain multiple objects

per frame. We show that our method not only outperforms

the unsupervised approaches, but even edges out other su-

pervised algorithms that, in contrast to ours, have access

to a large amount of labeled data with precise manual seg-

mentation at training time. For quantitative evaluation, we

employ the most common metric for video object segmen-

tation , i.e. the mean Jaccard score, a.k.a. intersection-over-

union score, J . Given space constraints, we add additional

evaluation metrics in the appendix [40].

4.1. Implementation and Networks Details

Generator, G: Depicted on the left of Fig. 3, the gener-

ator architecture is a shrunk version of SegNet [2]. Its en-

coder part consists of 5 convolutional layers each followed

by batch normalization, reducing the input image to 1

4
of its

original dimensions. The encoder is followed by a set of 4

atrous convolutions with increasing radius (2,4,8,16). The

decoder part consists of 5 convolutional layers, that, with

upsampling, generate an output with the same size of the

input image. As in SegNet [2], a final softmax layer gen-

erates the probabilities for each pixel to be foreground or

background. The generator input consists of an RGB image

It and the optical flow ut:t`δT between It and It`δT , to in-

troduce more variations in the optical flows conditioned on

image It. At training time, δT is randomly sampled from

the uniform distribution U “ r´5, 5s, with δT ‰ 0. The op-

tical flow ut:t`δT is generated with the pretrained PWC net-

work [33], given its state-of-the-art accuracy and efficiency.

The generator network has a total of 3.4M parameters.

Inpainter, I: We adapt the architecture of CPN [41] to

build our inpainter network. Its structure is depicted on the

right of Fig. 3. The input to this network consists of the in-

put image It and the flow masked according to the generator

output, χu, the latter concatenated with χ, to make the in-

painter aware of the region to look for context. Differently

from the CPN, these two branches are balanced, and have

the same number of parameters. The encoded features are

then concatenated and passed to the CPN decoder, that out-

puts an optical flow û “ φpχ, p1´χqu, Itq of the same size

of the input image, whose inside is going to be used for the

difference between uin and the recovered flow inside. Sim-

ilarly, we can run the same procedure for the complement

part. Our inpainter network has a total of 1.5M parameters.

At test time, only the generator G is used. Given It
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