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Abstract

We propose an adversarial contextual model for detect-

ing moving objects in images. A deep neural network is

trained to predict the optical flow in a region using infor-

mation from everywhere else but that region (context), while

another network attempts to make such context as uninfor-

mative as possible. The result is a model where hypotheses

naturally compete with no need for explicit regularization

or hyper-parameter tuning. Although our method requires

no supervision whatsoever, it outperforms several methods

that are pre-trained on large annotated datasets. Our model

can be thought of as a generalization of classical varia-

tional generative region-based segmentation, but in a way

that avoids explicit regularization or solution of partial dif-

ferential equations at run-time. We publicly release all our

code and trained networks.1

1. Introduction

Consider Fig. 1: Even relatively simple objects, when

moving in the scene, cause complex discontinuous changes

in the image. Being able to rapidly detect independently

moving objects in a wide variety of scenes from images is

functional to the survival of animals and autonomous vehi-

cles alike. We wish to endow artificial systems with simi-

lar capabilities, without the need to pre-condition or learn

similar-looking backgrounds. This problem relates to mo-

tion segmentation, foreground/background separation, vi-

sual attention, video object segmentation as we discuss in

Sect. 3. For now, we use the words “object” or “foreground”

informally2 to mean (possibly multiple) connected regions

of the image domain, to be distinguished from their sur-

rounding, which we call “background” or “context,” accord-

ing to some criterion.

Since objects exist in the scene, not in the image, a

method to infer them from the latter rests on an operational

1http://rpg.ifi.uzh.ch/unsupervised_detection.html

*These two authors contributed equally. Correspondence to

yanchao.yang@cs.ucla.edu and loquercio@ifi.uzh.ch
2The precise meaning of these terms will be formalized in Sect. 2.

Figure 1: An encounter between a hawk and a drone (top). The

latter will not survive without being aware of the attack. Detecting

moving objects is crucial to the survival of animal and artificial

systems alike. Note that the optical flow (middle row) is quite di-

verse within the region where the hawk projects: It changes both

in space and time. Grouping this into a moving object (bottom

row) is our goal in this work. Note the object is detected by our

algorithm across multiple scales, partial occlusions from the view-

point, and complex boundaries.

definition based on measurable image correlates. We call

moving objects regions of the image whose motion can-

not be explained by that of their surroundings. In other

words, the motion of the background is uninformative of

the motion of the foreground and vice-versa. The “informa-

tion separation” can be quantified by the information reduc-

tion rate (IRR) between the two as defined in Sect. 2. This

naturally translates into an adversarial inference criterion

that has close connections with classical variational region-

based segmentation, but with a twist: Instead of learning a

generative model of a region that explains the image in that

region as well as possible, our approach yields a model that

tries to explain it as poorly as possible using measurements

from everywhere else but that region.

In generative model-based segmentation, one can always

explain the image with a trivial model, the image itself. To

avoid that, one has to impose model complexity bounds,

bottlenecks or regularization. Our model does not have ac-

cess to trivial solutions, as it is forced to predict a region

without looking at it. What we learn instead is a contex-

tual adversarial model, without the need for explicit reg-

ularization, where foreground and background hypotheses
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compete to explain the data with no pre-training nor (hy-

per)parameter selection. In this sense, our approach relates

to adversarial learning and self-supervision as discussed in

Sect. 3.

The result is a completely unsupervised method, un-

like many recent approaches that are called unsupervised

but still require supervised pre-training on massive labeled

datasets and can perform poorly in contexts that are not well

represented in the training set. Despite the complete lack of

supervision, our method performs competitively even com-

pared with those that use supervised pre-training (Sect. 4).

Summary of Contributions

Our method captures the desirable features of variational

region-based segmentation: Robustness, lack of thresholds

or tunable parameters, no need for training. However,

it does not require solving a partial differential equation

(PDE) at run-time, nor to pick regularizers or Lagrange

multipliers, nor to restrict the model to one that is simple-

enough to be tractable analytically. It also exploits the

power of modern deep learning methods: It uses deep neu-

ral networks as the model class, optimizes it efficiently with

stochastic gradient descent (SGD), and can be computed ef-

ficiently at run time. However, it requires no supervision

whatsoever.

While our approach has close relations to both classical

region-based variational segmentation and generative mod-

els, as well as modern deep learning-based self-supervision,

discussed in detail in Sect. 3, to the best of our knowledge,

it is the first adversarial contextual model to detect moving

objects in images. It achieves better or similar performance

compare to unsupervised methods on the three most com-

mon benchmarks, and it even edges out methods that rely

on supervised pre-training, as described in Sect. 4. On one

of the considered benchmarks, it outperforms all methods

using supervision, which illustrates the generalizability of

our approach. In Sect. 5 we describe typical failure modes

and discuss limitations of our method.

2. Method

We call “moving object(s)” or “foreground” any region

of an image whose motion is unexplainable from the con-

text. A “region of an image” Ω is a compact and multiply-

connected subset of the domain of the image, discretized

into a lattice D. “Context” or “background” is the comple-

ment of the foreground in the image domain, Ωc “ DzΩ.

Given a measured image I and/or its optical flow to the next

(or previous) image u, foreground and background are un-

certain, and therefore treated as random variables. A ran-

dom variable u1 is “unexplainable” from (or “uninformed”

by) another u2 if their mutual information Ipu1;u2q is zero,

that is if their joint distribution equals the product of the

marginals, P pu1, u2q “ P pu1qP pu2q.

More specifically, the optical flow u : D1 Ñ R
2 maps

the domain of an image I1 : D1 Ñ R
3
` onto the domain D2

of I2, so that if xi P D1, then xi ` ui P D2, where ui “
upxiq up to a discretization into the lattice and cropping of

the boundary. Ideally, if the brightness constancy constraint

equation that defines optical flow was satisfied, we would

have I1 “ I2 ˝ u point-wise.

If we consider the flow at two locations i, j, we can for-

malize the notion of foreground as a region Ω that is unin-

formed by the background:

#

Ipui, uj |Iq ą 0, i, j P Ω

Ipui, uj |Iq “ 0, i P Ω, j P DzΩ.
(1)

As one would expect, based on this definition, if the domain

of an object is included in another, then they inform each

other (see appendix [40]).

2.1. Loss function

We now operationalize the definition of foreground into

a criterion to infer it. We use the information reduction rate

(IRR) γ, which takes two subsets x,y Ă D as input and

returns a non-negative scalar:

γpx|y; Iq “
Ipux, uy|Iq

Hpux|Iq
“ 1 ´

Hpux|uy, Iq

Hpux|Iq
(2)

where H denotes (Shannon) entropy. It is zero when the

two variables are independent, but the normalization pre-

vents the trivial solution (empty set).3 As proven in the ap-

pendix [40], objects as we defined them are the regions that

minimize the following loss function

LpΩ; Iq “ γpΩ|Ωc; Iq ` γpΩc|Ω; Iq. (3)

Note that L does not have a complexity term, or regular-

izer, as one would expect in most region-based segmenta-

tion methods. This is a key strength of our approach, that

involves no modeling hyperparameters, as we elaborate on

in Sect. 3.

Tame as it may look, (3) is intractable in general. For

simplicity we indicate the flow inside the region(s) Ω (fore-

ground) with uin “ tui, i P Ωu, and similarly for uout, the

flow in the background Ωc. The only term that matters in

the IRR is the ratio Hpuin|uout, Iq{Hpuin|Iq, which is

ş

logP puin|uout, IqdP puin|uout, Iq
ş

logP puin|IqdP puin|Iq
(4)

that measures the information transfer from the background

to the foreground. This is minimized when knowledge of

3A small constant 0 ă ǫ ! 1 is added to the denominator to avoid

singularities, and whenever x ‰ H, Hpux|Iq " ǫ, thus we will omit ǫ

from now on.
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Figure 2: During training, our method entails two modules. One is the generator (G) which produces a mask of the object by looking at

the image and the associated optical flow. The other module is the inpainter (I) which tries to inpaint back the optical flow masked out by

the corresponding mask. Both modules employ the encoder-decoder structure with skip connections. However, the inpainter (I) is equipped

with two separate encoding branches. See Sect. 4.1 for network details.
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Figure 3: The two diagrams illustrate the learning process of the mask generator (G), after the inpainter (I) has learned how to accurately

inpaint a masked flow. The upper diagram shows a poorly trained mask generator which does not precisely detect the object. Due to the

imprecise detection, the inpainter can observe part of the object’s flow, and perform an accurate reconstruction. At the same time, the

inpainter partially observes the background’s flow in the complementary mask. Consequently, it can precisely predict missing parts of the

background’s flow. In contrast, the lower diagram shows a fully trained mask generator which can precisely tell apart the object from the

background. In this case, the inpainter observes the flow only outside the object and has no information to predict the flow inside it. At

initialization time the inpainter does not know the conditionals to inpaint masked flows. Therefore, we propose to train both the generator

and the inpainter jointly in an adversarial manner (see Sect. 2).

the background flow is sufficient to predict the foreground.

To enable computation, we have to make draconian, yet

common, assumptions on the underlying probability model,

namely that

P puin “ x|Iq 9 exp

ˆ

´
}x}2

σ2

˙

(5)

P puin “ x|uout “ y, Iq 9 exp

ˆ

´
}x ´ φpΩ, y, Iq}2

σ2

˙

where φpΩ, y, Iq “
ş

uindP puin|uout, Iq is the conditional

mean given the image and the complementary observation.

Here we assume φpΩ,H, Iq “ 0, since given a single image

the most probable guess of the flow is zeros. With these

assumptions, (4) can be simplified, to

ş

}uin ´ φpΩ, uout, Iq}2dP puin|uout, Iq
ş

}uin}2dP puin|Iq
«

«

řN
i“1

}ui
in ´ φpΩ, ui

out, Iq}2
řN

i“1
}ui

in}2
(6)
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where N “ |D| is the cardinality of D, or the number of

flow samples available. Finally, our loss (3) to be minimized

can be approximated as

LpΩ; Iq “ 1 ´

řN
i“1

}ui
in ´ φpΩ, ui

out, Iq}2
řN

i“1
}ui

in}2 ` ǫ

` 1 ´

řN
i“1

}ui
out ´ φpΩc, ui

in, Iq}2
řN

i“1
}ui

out}2 ` ǫ
. (7)

In order to minimize this loss, we have to choose a repre-

sentation for the unknown region Ω and for the function φ.

2.2. Function class

The region Ω that minimizes (7) belongs to the power

set of D, that is the set of all possible subsets of the image

domain, which has exponential complexity.4 We represent

it with the indicator function

χ : D Ñ t0, 1u

i ÞÑ 1 if i P Ω; 0 otherwise (8)

so that the flow inside the region Ω can be written as ui
in “

χui, and outside as ui
out “ p1 ´ χqui.

Similarly, the function φ is non-linear, non-local, and

high-dimensional, as it has to predict the flow in a region

of the image of varying size and shape, given the flow in a

different region. In other words, φ has to capture the context

of a region to recover its flow.

Characteristically for the ages, we choose both φ and χ

to be in the parametric function class of deep convolutional

neural networks, as shown in Fig. 2, the specifics of which

are in Sect. 4.1. We indicate the parameters with w, and the

corresponding functions φw1
and χw2

. Accordingly, after

discarding the constants, the negative loss (7) can be written

as a function of the parameters

Lpw1, w2; Iq “

ř

i

}χw2
pui ´ φw1

pχw2
, ui

out, Iqq}2

ř

i

}ui
in}2

`

ř

i

}p1 ´ χw2
qpui ´ φw1

p1 ´ χw2
, ui

in, Iq}2

ř

i

}ui
out}2

(9)

φw1
is called the inpainter network, and must be chosen to

minimize the loss above. At the same time, the region Ω,

represented by the parameters w2 of its indicator function

χw2
called mask generator network, should be chosen so

that uout is as uninformative as possible of uin, and there-

fore the same loss is maximized with respect to w2. This

naturally gives rise to a minimax problem:

ŵ “ argmin
w1

max
w2

Lpw1, w2; Iq. (10)

4In the continuum, it belongs to the infinite-dimensional set of compact

and multiply-connected regions of the unit square.

This loss has interesting connections to classical region-

based segmentation, but with a twist as we discuss next.

3. Related Work

To understand the relation of our approach to classical

methods, consider the simplest model for region-based seg-

mentation [8]

LpΩ, ci, coq “

ż

Ω

|uinpxq ´ ci|
2dx`

ż

Ωc

|uoutpxq ´ co|2dx

(11)

typically combined with a regularizing term, for instance

the length of the boundary of Ω. This is a convex infinite-

dimensional optimization problem that can be solved by nu-

merically integrating a partial differential equation (PDE).

The result enjoys significant robustness to noise, provided

the underlying scene has piecewise constant radiance and

is measured by image irradiance, to which it is related

by a simple “signal-plus-noise” model. Not many scenes

of interest have piecewise constant radiance, although this

method has enjoyed a long career in medical image anal-

ysis. If we enrich the model by replacing the constants

ci with smooth functions, φipxq, we obtain the celebrated

Mumford-Shah functional [25], also optimized by inte-

grating a PDE. Since smooth functions are an infinite-

dimensional space, regularization is needed, which opens

the Pandora box of regularization criteria, not to mention

hyperparameters: Too much regularization and details are

missed; too little and the model gets stuck in noise-induced

minima. A modern version of this program would replace

φpxq with a parametrized model φwpxq, for instance a deep

neural network with weights w pre-trained on a dataset D.

In this case, the loss is a function of w, with natural model

complexity bounds. Evaluating φw at a point inside, x P Ω,

requires knowledge of the entire function u inside Ω, which

we indicate with φwpx, uinq:

ż

Ω

|uinpxq´φwpx, uinq|2dx`

ż

Ωc

|uoutpxq´φwpx, uoutq|2dx.

(12)

Here, a network can just map φwpx, uinq “ uin providing

a trivial solution, avoided by introducing (architectural or

information) bottlenecks, akin to explicit regularizers. We

turn the table around and use the outside to predict the inside

and vice-versa:

ż

Ω

|uinpxq´φwpx, uoutq|2dx`

ż

Ωc

|uoutpxq´φwpx, uinq|2dx

(13)

After normalization and discretization, this leads to our loss

function (7). The two regions compete: for one to grow, the

other has to shrink. In this sense, our approach relates to

region competition methods, and specifically Motion Com-

petition [12], but also to adversarial training, since we can

882



think of φ as the “discriminator” presented in a classifica-

tion problem (GAN [1]), reflected in the loss function we

use. This also relates to what is called “self-supervised

learning,” a misnomer since there is no supervision, just

a loss function that does not involve externally annotated

data. Several variants of our approach can be constructed by

using different norms, or correspondingly different models

for the joint and marginal distributions (5).

More broadly, the ability to detect independently moving

objects is primal, so there is a long history of motion-based

segmentation, or moving object detection. Early attempts

to explicitly model occlusions include the layer model [38]

with piecewise affine regions, with computational complex-

ity improvements using graph-based methods [30] and vari-

ational inference [11, 6, 32, 43] to jointly optimize for mo-

tion estimation and segmentation; [26] use of long-term

temporal consistency and color constancy, making however

the optimization more difficult and sensitive to parameter

choices. Similar ideas were applied to motion detection in

crowds [5], traffic monitoring [4] and medical image anal-

ysis [14]. Our work also related to the literature on visual

attention [16, 7].

More recent data-driven methods [36, 35, 9, 31] learn

discriminative spatio-temporal features and differ mainly

for the type of inputs and architectures. Inputs can be ei-

ther image pairs [31, 9] or image plus dense optical flow

[36, 35]. Architectures can be either time-independent [35],

or with recurrent memory [36, 31]. Overall, those methods

outperform traditional ones on benchmark datasets [26, 29],

but at the cost of requiring a large amount of labeled training

data and with evidence of poor generalization to previously

unseen data.

It must be noted that, unlike in Machine Learning at

large, it is customary in video object segmentation to call

“unsupervised” methods that do rely on massive amounts

of manually annotated data, so long as they do not require

manual annotation at run-time. We adopt the broader use of

the term where unsupervised means that there is no super-

vision of any kind both at training and test time.

Like classical variational methods, our approach does

not need any annotated training data. However, like modern

learning methods, our approach learns a contextual model,

which would be impossible to engineer given the complex-

ity of image formation and scene dynamics.

4. Experiments

We compare our approach to a set of state-of-the-art

baselines on the task of video object segmentation to evalu-

ate the accuracy of detection. We first present experiments

on a controlled toy-example, where the assumptions of our

model are perfectly satisfied. The aim of this experiment is

to get a sense of the capabilities of the presented approach in

ideal conditions. In the second set of experiments, we evalu-

ate the effectiveness of the proposed model on three public,

widely used datasets: Densely Annotated VIdeo Segmen-

tation (DAVIS) [29], Freiburg-Berkeley Motion Segmenta-

tion (FBMS59) [26], and SegTrackV2 [37]. Provided the

high degree of appearance and resolution differences be-

tween them, these datasets represent a challenging bench-

mark for any moving object segmentation method. While

the DAVIS dataset has always a single object per scene,

FBMS and SegTrackV2 scenes can contain multiple objects

per frame. We show that our method not only outperforms

the unsupervised approaches, but even edges out other su-

pervised algorithms that, in contrast to ours, have access

to a large amount of labeled data with precise manual seg-

mentation at training time. For quantitative evaluation, we

employ the most common metric for video object segmen-

tation , i.e. the mean Jaccard score, a.k.a. intersection-over-

union score, J . Given space constraints, we add additional

evaluation metrics in the appendix [40].

4.1. Implementation and Networks Details

Generator, G: Depicted on the left of Fig. 3, the gener-

ator architecture is a shrunk version of SegNet [2]. Its en-

coder part consists of 5 convolutional layers each followed

by batch normalization, reducing the input image to 1

4
of its

original dimensions. The encoder is followed by a set of 4

atrous convolutions with increasing radius (2,4,8,16). The

decoder part consists of 5 convolutional layers, that, with

upsampling, generate an output with the same size of the

input image. As in SegNet [2], a final softmax layer gen-

erates the probabilities for each pixel to be foreground or

background. The generator input consists of an RGB image

It and the optical flow ut:t`δT between It and It`δT , to in-

troduce more variations in the optical flows conditioned on

image It. At training time, δT is randomly sampled from

the uniform distribution U “ r´5, 5s, with δT ‰ 0. The op-

tical flow ut:t`δT is generated with the pretrained PWC net-

work [33], given its state-of-the-art accuracy and efficiency.

The generator network has a total of 3.4M parameters.

Inpainter, I: We adapt the architecture of CPN [41] to

build our inpainter network. Its structure is depicted on the

right of Fig. 3. The input to this network consists of the in-

put image It and the flow masked according to the generator

output, χu, the latter concatenated with χ, to make the in-

painter aware of the region to look for context. Differently

from the CPN, these two branches are balanced, and have

the same number of parameters. The encoded features are

then concatenated and passed to the CPN decoder, that out-

puts an optical flow û “ φpχ, p1´χqu, Itq of the same size

of the input image, whose inside is going to be used for the

difference between uin and the recovered flow inside. Sim-

ilarly, we can run the same procedure for the complement

part. Our inpainter network has a total of 1.5M parameters.

At test time, only the generator G is used. Given It
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DAVIS [29] FBMS59 [26] SegTrackV2 [37]

J Ò 92.5 88.5 92.1

Table 1: Performance under ideal conditions: When the

assumptions made by our model are fully satisfied, our ap-

proach can successfully detect moving objects.. Indeed, our

model reaches near maximum Jaccard score in all consid-

ered datasets.

and ut:t`δT , it outputs a probability for each pixel to be

foreground or background, PtpδT q. To encourage temporal

consistency, we compute the temporal average:

Pt “
δT“5
ÿ

δT“´5,‰0

PtpδT q (14)

The final mask χ is generated with a CRF [21] post-

processing step on the final Pt. More details about the post-

processing can be found in the appendix.

4.2. Experiments in Ideal Conditions

Our method relies on basic, fundamental assumptions:

The optical flow of the foreground and of the back-

ground are independent. To get a sense of the capa-

bilities of our approach in ideal conditions, we artifi-

cially produce datasets where this assumption is fully sat-

isfied. The datasets are generated as a modification of

DAVIS2016 [29], FMBS [26], and SegTrackV2 [37]. While

images are kept unchanged, ground truth masks are used to

artificially perturb the optical flow generated by PWC [33]

such that foreground and background are statistically inde-

pendent. More specifically, a different (constant) optical

flow field is sampled from a uniform distribution indepen-

dently at each frame, and associated to the foreground and

the background, respectively. More details about the gener-

ation of those datasets and the visual results can be found

in the Appendix. As it is possible to observe in Table 1,

our method reaches very high performance in all consid-

ered datasets. This confirms the validity of our algorithm

and that our loss function (10) is a valid and tractable ap-

proximation of the functional (3).

4.3. Performance on Video Object Segmentation

As previously stated, we use the term Unsupervised with

a different meaning with respect to its definition in liter-

ature of video object segmentation. In our definition and

for what follows, the supervision refers to the algorithm’s

usage of ground truth object annotations at training time.

In contrast, the literature usually defines methods as semi-

supervised, if at test time they assume the ground-truth seg-

mentation of the first frame to be known [3, 24]. This could

be posed as tracking problem [42] since the detection of the

target is human generated. Instead, here we focus on mov-

ing object detection and thus we compare our approach to

the methods that are usually referred to as “unsupervised” in

the video object segmentation domain. However we make

further differentiation on whether the ground truth object

segmentation is needed (supervised) or not (truly unsuper-

vised) during training.

In this section we compare our method with other 8

methods that represent the state of the art for moving ob-

ject segmentation. For comparison, we use the same metric

defined above, which is the Jaccard score J between the

real and predicted masks.

Table 2 shows the performance of our method

and the baseline methods on three popular datasets,

DAVIS2016 [29], FBMS59 [26] and SegTrackV2 [37]. Our

approach is top-two in each of the considered datasets, and

even outperforms baselines that need a large amount of la-

belled data at training time, i.e. FSEG [17].

As can be observed in Table 2, unsupervised baselines

typically perform well in one dataset but significantly worse

in others. For example, despite being the best performing

unsupervised method on DAVIS2016, the performance of

ARP [20] drops significantly in the FBMS59 [26] and Seg-

TrackV2 [26] datasets. ARP outperforms our method by

6.5% on DAVIS, however, our method outperforms ARP by

6.3% and 8.4%, on FBMS59 and SegTrackV2 respectively.

Similarly, NLC [15] and SAGE [39] are extremely competi-

tive in the Segtrack and FBMS59 benchmarks, respectively,

but not in others. NLC outperforms us on SegTrackV2 by

8.4%, however we outperform NLC by 29.8% and 24.7%,

on DAVIS and FBMS respectively.

It has been established that being second-best in multi-

ple benchmarks is more indicative of robust performance

than being best in one [27]. Indeed, existing unsupervised

approaches for moving object segmentation are typically

highly-engineered pipeline methods which are tuned on one

dataset but do not necessarily generalize to others. Also,

consisting of several computationally intensive steps, ex-

tant unsupervised methods are generally orders of magni-

tude slower than our method (Table 3).

Interestingly, a similar pattern is observable for super-

vised methods. And this is particularly evident on the

SegTrackV2 dataset [37], which is particularly challenging

since several frames have very low resolution and are mo-

tion blurred. Indeed, supervised methods have difficulties

with the covariate shift due to changes in the distribution be-

tween training and testing data. Generally, supervised meth-

ods alleviate this problem by pre-training on image segmen-

tation datasets, but this solution clearly does not scale to ev-

ery possible case. In contrast, our method can be finetuned

on any data without the need for the latter to be annotated.

As a result, our approach outperforms the majority of un-

supervised methods as well as all the supervised ones, in
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PDB [31] FSEG [17] LVO [36] ARP [20] FTS [28] NLC [15] SAGE [39] CUT [18] Ours

DAVIS2016 [29] J Ò 77.2 70.7 75.9 76.2 55.8 55.1 42.6 55.2 71.5

FBMS59 [26] J Ò 74.0 68.4 65.1 59.8 47.7 51.5 61.2 57.2 63.6

SegTrackV2 [37] J Ò 60.9 61.4 57.3 57.2 47.8 67.2 57.6 54.3 62.0

DNN-Based Yes Yes Yes No No No No No Yes

Pre-Training Required Yes Yes Yes No No No No No No

Table 2: Moving Object Segmentation Benchmarks: We compare our approach with 8 different baselines on the task

of moving object segmentation. In order to do so, we use three popular datasets, i.e. DAVIS2016 [29], FBMS59 [26],

and SegTrackV2 [37]. Methods in blue require ground truth annotations at training time and are pre-trained on image

segmentation datasets. In contrast, methods in red are unsupervised and not require any ground-truth annotation. Our

approach is top-two in all the considered benchmarks, comparing to the other unsupervised methods. Bold indicates best

among all methods, while Bold Red and red represent the best and second best for unsupervised methods, respectively.

terms of segmentation quality and training efficiency.

4.4. Qualitative experiments and Failure Cases

In Fig. 4 we show a qualitative comparison of the detec-

tion generated by our and others’ methods on the DAVIS

dataset. Our algorithm can segment precisely the moving

object regardless of cluttered background, occlusions, or

large depth discontinuities. The typical failure case of our

method is the detection of objects whose motion is due to

the primary object. An example is given in the last row of

Fig. 4, where the water moved by the surfer is also classified

as foreground by our algorithm.

4.5. Training and Runtime Analysis

The generator and inpainter network’s parameters are

trained at the same time by minimizing the functional (10).

The optimization time is approximately 6 hours on a sin-

gle GPU Nvidia Titan XP 1080i. Since both our generator

and inpainter networks are relatively small, we can afford

very fast training/finetuning times. This stands in contrast

to larger modules, e.g. PDB [31], that require up to 40 hrs

of training.

At test time, predictions Pt (defined in eq. 14) are gen-

erated at 3.15 FPS, or with an average time of 320ms per

frame, including the time to compute optical flow with

PWC [33]. Excluding the time to generate optical flow, our

model can generate predictions at 10.2 FPS, or 98ms per

frame. All previous timings do not include the CRF post-

processing step. Table 3 compares the inference time of our

method with respect to other unsupervised methods. Since

our method at test time requires only a pass through a rela-

tively shallow network, it is orders of magnitude faster than

other unsupervised approaches.

5. Discussion

Our definition of objects and the resulting inference cri-

terion are related to generative model-based segmentation

and region-based methods popular in the nineties. However,

there is an important difference: Instead of using the evi-

dence inside a region to infer a model of that region which is

as accurate as possible, we use evidence everywhere else but

that region to infer a model within the region, and we seek

the model to be as bad as possible. This relation, explored

in detail in Sect. 3, forces learning a contextual model of the

image, which is not otherwise the outcome of a generative

model in region-based segmentation. For instance, if we

choose a rich enough model class, we can trivially model

the appearance of an object inside an image region as the

image itself. This is not an option in our model: We can

only predict the inside of a region by looking outside of it.

This frees us from having to impose modeling assumptions

to avoid trivial solutions, but requires a much richer class of

function to harvest contextual information.

This naturally gives rise to an adversarial (min-max) op-

timization: An inpainter network, as a discriminator, tries

to hallucinate the flow inside from the outside, with the re-

construction error as a quality measure of the generator net-

work, which tries to force the inpainter network to do the

lousiest possible job.

The strengths of our approach relate to its ability to

learn complex relations between foreground and back-

ground without any annotation. This is made possible by

using modern deep neural network architectures like Seg-

Net [2] and CPN [41] as function approximators.

Not using ground-truth annotations can be seen as a

strength but also a limitation: If massive datasets are avail-

able, why not use them? In part because even massive is

not large enough: We have shown that models trained on

large amount of data still suffer performance drops when-

ever tested on a new benchmark significantly different from

the training ones. Moreover, our method does not require

any pre-training on large image segmentation datasets, and

it can adapt to any new data, since it does not require any su-

pervision. This adaptation ability is not only important for

computer vision tasks, but can also benefit other applica-

tions, e.g. robotic navigation [23, 13] or manipulation [19].

Another limitation of our approach is that, for the task of
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ARP [20] FTS [28] NLC [15] SAGE [39] CUT [18] Ours

Runtime(s) 74.5 0.5 11.0 0.88 103.0 0.098

DNN-based No No No No No Yes

Table 3: Run-time analysis: Our method is not only effective (top-two in each considered dataset), but also orders of

magnitude faster than other unsupervised methods. All timings are indicated without optical flow computation.

GT SFL[10] LMP[35] PDB[31] CVOS[34] FTS[28] ELM[22] Ours

Figure 4: Qualitative Results: We qualitatively compare the performance of our approach with several state-of-the-art

baselines as well as the Ground-Truth (GT) mask. Our prediction are robust to background clutter, large depth discontinuities

and occlusions. The last row shows a typical failure case of our method, i.e. objects which are moved by the primary objects

are detected as foreground (water is moved by the surfer in this case).

motion-based segmentation, we require the optical flow be-

tween subsequent frames. One could argue that optical flow

is costly, local, and error-prone. However, our method is

general and could be applied to other statistics than optical

flow. Such extensions are part of our future work agenda.

In addition, our approach does not fully exploit the inten-

sity image, although we use it as a conditioning factor for

the inpainter network. An optical flow or an image can be

ambiguous in some cases, but the combination of the two is

rarely insufficient for recognition [43]. Again, our frame-

work allows in theory exploitation of both, and in future

work we intend to expand in this direction.
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