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Abstract

Single image de-raining is an extremely challenging

problem since the rainy image may contain rain streaks

which may vary in size, direction and density. Previous ap-

proaches have attempted to address this problem by lever-

aging some prior information to remove rain streaks from

a single image. One of the major limitations of these ap-

proaches is that they do not consider the location informa-

tion of rain drops in the image. The proposed Uncertainty

guided Multi-scale Residual Learning (UMRL) network at-

tempts to address this issue by learning the rain content

at different scales and using them to estimate the final de-

rained output. In addition, we introduce a technique which

guides the network to learn the network weights based on

the confidence measure about the estimate. Furthermore,

we introduce a new training and testing procedure based

on the notion of cycle spinning to improve the final de-

raining performance. Extensive experiments on synthetic

and real datasets to demonstrate that the proposed method

achieves significant improvements over the recent state-of-

the-art methods.

1. Introduction

Many practical computer vision-based systems such as

surveillance and autonomous driving often require process-

ing and analysis of videos and images captured under ad-

verse weather conditions such as rain, snow, haze etc. These

weather-based conditions adversely affect the visual quality

of images and as a result often degrade the performance of

vision systems. Hence, it is important to develop algorithms

that can automatically remove these artifacts before they are

fed to a vision-based system for further processing.

In this paper, we address the problem of removing rain

streaks from a single rainy image. Rain streak removal or

image de-raining is a difficult problem since a rainy image

may contain rain streaks which may vary in size, direction

(a) (b) (c)

(d) (e) (f)
Figure 1: Sample image de-raining results. (a) Rainy im-

age. (b) De-rained using DID-MDN [35] where zoomed in

part shows the blurry effects on face and various rain streaks

near the elbow. (c) De-rained using UMRL. (d) Rainy im-

age. (e) De-rained using Fu et al. [8] where zoomed in part

shows under de-raining of the image. (f) De-rained using

UMRL, zoomed in highlighted parts show the clear differ-

ences between UMRL and other compared methods.

and density. A number of different techniques have been

developed in the literature to address this problem. These

algorithms can be clustered into two main groups - (i) video

based algorithms [36, 9, 25, 20, 16], and (ii) single image-

based algorithms [35, 8, 18, 31, 37]. Algorithms corre-

sponding to the first category assume temporal consistency

among the image frames, and use this assumption for de-

raining. On the other hand, single image de-raining meth-

ods attempt to use some prior information to remove rain

components from a single image [18, 13, 37, 35]. Priors

such as sparsity [33, 21] and low-rank representation [4]

have been used in the literature. In particular, the method

proposed by Fu et al. [8] uses a priori image domain knowl-

edge by focusing on high frequency details during training

to improve the de-raining performance. However, it was

shown in [35], that this method tends to remove some im-
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portant parts in the de-rained image (see Figure 1(e)). Simi-

larly, a recent work by Zhang and Patel [35] uses the image-

level priors to estimate the rain density information which is

then used for de-raining. Although their approach provides

the state-of-the-art results, they estimate image level priors

which do not consider the location information of rain drops

in the image. As a result, their algorithm tends to introduce

some artifacts in the final de-rained images. These artifacts

can be clearly seen from the de-rained results shown in Fig-

ure 1(b).

In this paper we take a different approach to image de-

raining where we make use of the observation that rain

streak density and direction does not change drastically with

different scales. Rather than relying on the rain density in-

formation (i.e. heavy, medium or light) present in the rainy

image [35], we develop a method in which the rain streak

location information is taken in to consideration in a multi-

scale fashion to improve the de-raining performance. While

providing the estimated rain content (i.e. residual map) to

the subsequent layers of the network, we may end-up propa-

gating the errors in estimations. To block the flow of incor-

rect estimation in rain streaks, we estimate an uncertainty

metric along with the rain streak information. We use an

Unet architecture with skip connections [24] as our base

network. The proposed network learns the residue at each

level in the decoder of Unet with an uncertainty map, which

indicates how confident the network is about the rain con-

tent it learned. Say there are L layers in the decoder net-

work, the uncertainty map generated at layer “l” is given to

layer “l + 1” so that the subsequent layers of “l” can dis-

card the rain content learned by layer “l” if the confidence

value is low in the uncertainty map.

Another important contribution of our work is that we

propose to incorporate the cycle spinning framework of

Coifman and Donoho [5] into our de-raining method. Cycle

spinning was originally proposed to remove the artifacts in-

troduced by orthogonal wavelets in image de-noising. Simi-

lar to wavelets, deep learning-based methods also introduce

some artifacts near the edges of the de-rained images (see

Figure 1). In cycle spinning, the data is first shifted by some

amount, the shifted data are then de-noised, the de-noised

data are then un-shifted, and finally the un-shifted data are

averaged to obtain the final de-noised result. Cycle spinning

has been successfully applied to reduce the artifacts intro-

duced near the edges in many applications including image

de-blurring [6] and de-noising [5], [2]. Hence, we adopt it in

our de-raining framework. In fact, we show that cycle spin-

ning is a generic method that can be used to improve the

performance of any deep learning-based image de-raining

method.

Figure 1 (c) and (f) present sample results from our Un-

certainty guided Multi-scale Residual Learning using cycle

spinning (UMRL) network, where one can clearly see that

UMRL is able to remove the noise artifacts and provides

better results as compared to [35] and [8].

To summarize, this paper makes the following contribu-

tions:

• A novel method called UMRL is proposed which gen-

erates the rain streak content at each location of the

image along with the uncertainty map that guides the

subsequent layers about the rain streak information at

each location.

• We incorporate cycle spinning in both training and

testing phases of our network to improve the final de-

raining performance.

• We run extensive experiments to show the performance

of UMRL against the several recent state-of the-art ap-

proaches on both synthetic and real rainy images. Fur-

thermore, an ablation study is conducted to demon-

strate the effectiveness of different parts of the pro-

posed UMRL network.

2. Background and Related Work

An observed rainy image y can be modeled as the super-

position of a rain component (i.e. residual map) r with a

clean image x as follows

y = x+ r. (1)

Given y the goal of image de-raining is to estimate x. This

can be done by first estimating the residual map r and then

subtracting it from the observed image y. Various methods

have been proposed in the literature for image de-raining

[13, 3, 21, 10, 18] including dictionary learning-based [1],

Gaussian mixture-model (GMM) based [23], and low-rank

representation based [19] methods. In recent years, deep

learning-based single image de-raining methods have also

been proposed in the literature. Fu et al. [7] proposed

a convolutional neural network (CNN) based approach in

which they directly learn the mapping relationship between

rainy and clean image detail layers from data. Zhang et

al. [34] proposed a generative adversarial network (GAN)

based method for image de-raining. Furthermore, to mini-

mize the artifacts introduced by GANs and ensure better vi-

sual quality, a new refined loss function was also introduced

in [34]. Fu et al. [8] presented an end-to-end deep learning

framework for removing rain from individual images using

a deep detail network which directly reduces the mapping

range from input to output. Zhang and Patel [35] proposed

a density-aware multi-stream densely connected CNN for

joint rain density estimation and de-raining. Their network

automatically determines the rain-density information and

then efficiently removes the corresponding rain-streaks us-

ing the estimated rain-density label. Note the methods pro-

posed in [8], and [35] showed the benefits of using multi-

scale networks for image de-raining. Recently, Wang et al.

28406



Figure 2: An overview of the proposed UMRL network. The aim of the UMRL network is to estimate the clean image given

the corresponding rainy image. To address that, UMRL learns the residual maps and computes the confidence maps to guide

the network. To achieve this, we introduce RN and CN networks and feed their outputs to the subsequent layers.

[28] proposed a hierarchical approach based on estimating

different frequency details of an image to get the de-rained

image. The method proposed by Qian et al. [22] gener-

ates attentive maps using the recurrent neural networks, and

then uses the features from different scales to compute the

loss for removing the rain drops on glasses. Note that this

method was specifically designed for removing rain drops

from a glass rather than removing rain streaks from an im-

age. [27, 30, 17] illustrated the importance of attention

based methods in low-level vision tasks. In a recent work

[17], Li et al. proposed a convolutional and recurrent neural

network-based method for single image de-raining which

makes use of the contextual information for rain removal. It

was observed in [35], that some of the recent deep learning-

based methods tend to under de-rain or over de-rain the im-

age if the rain condition present in the rainy image is not

properly considered during training.

3. Proposed Method

Unlike many deep learning-based methods that directly

estimate the de-rained image from the noisy observation,

we take a different approach in which we first estimate the

rain streak component r̂ (i.e. residual map) and then use it

to estimate the de-rained image as x̂ = y − r̂. We define ĉ

as the confidence score which is an uncertainty map about

the estimation of r̂. The confidence score at each pixel is a

measure of how much the network is certain about the resid-

ual value computed at each pixel. Qian et al. [22] estimate

an attentive map based on the rainy image using a recur-

rent network and then use it as a location-based information

to the de-raining network. In contrast, our method com-

bines the residual and confidence information judiciously

and uses them as input to subsequent layers at higher scales.

In this way, it passes the location-based rain information to

the rest of the network. We estimate the residual map and

its corresponding uncertainty map at three different scales,

{r̂×1, ĉ×1} (at the original input size), {r̂×2, ĉ×2} (at 0.5

scale of input size), and {r̂×4, ĉ×4} (at 0.25 scale of input

size).

(a) (b)

(c) (d)
Figure 3: (a) Input rainy image, y. (b), (c), and (d) are the

residual maps r×1, r×2, r×4 at scales 1.0, 0.5 and 0.25,

respectively. Note that the residual maps at different scales

have the same direction and density.

Let r×2 (0.5 scale size of r) and r×4 (0.25 scale size

of r) be the residual maps at different scales. As can be

seen from Figure 3, the residual maps r×1, r×2, and r×4

have the same direction and density at each location of

the image. To estimate these residual maps, we start with

the Unet architecture [24] as the base network. We use

the convolutional block (ConvBlock as shown in Figure

4(a)) as the building block of our base network. The base

network can be described as follows:

ConvBlock(3,32)-AvgPool-ConvBlock(32,32)-AvgPool-

Convblock(32,32)-AvgPool-ConvBlock(32,32)-AvgPool-

ConvBlock(32,32)-UpSample-ConvBlock(64,32)-

UpSample-ConvBlock(67,32)-UpSample-

ConvBlock(67,16)-ConvBlock(16,16)-Conv2d(3× 3),
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where AvgPool is the average pooling layer, UpSample

is the upsampling convolution layer, and ConvBlock(i, j)
indicates ConvBlock with i input channels and j output

channels. A Refinement Network(RFN) is used at the

end of Unet to produce de-rained image. The Refinement

Network(RFN) consists of the following blocks

Conv2d(7× 7)-Conv2d(3× 3)-tanh(),

which takes y − r̂i as the input and generates x̂i (i.e. de-

rained image) as the output. Here, Conv2d(m × m) repre-

sents 2D convolution using the kernel of size m×m.

(a) (b) (c)
Figure 4: (a) Convolutional block (ConvBlock). BN

- batchnormalization, ReLU - Rectified Linear Units,

Conv2d(m × m) - convolutional layer with kernel of size

m × m. (b) Residual Network (RN). (c) Confidence map

Network (CN).

(a) (b) (c)

(d) (e) (f)
Figure 5: (a) Input rainy image, y. (b) De-rained image

using the base network. (c) De-rained using [35]. (d) De-

rained using the proposed UMRL method. (e) The residual

map. (f) The confidence map at scale 1.0(×1).

3.1. UMRL Network

Rainy streaks are high frequency components and exist-

ing de-raining methods either tend to remove high frequen-

cies that are not rain streaks or do not remove the rain near

high frequency components of the clean image like edges

as shown in the Figure 5. To address this issue, one can

use the information about the location in image where net-

work might go wrong in estimating the residual value. This

can be done by estimating a confidence value correspond-

ing to the estimated residual value and guide the network

to remove the artifacts, especially near the edges. For ex-

ample, we can observe clearly from Figure 5 that the resid-

ual map and its corresponding confidence map were able

to capture the regions where there is high probability of in-

correct estimates. We estimate the residual value and its

corresponding confidence map at different scales (1.0(×1),

0.5(×2) and 0.25(×4)) of the input size. This information

is then fed back to the subsequent layers so that the network

can learn the residual value at each location, given the com-

puted residual value and confidence value at a lower scale.

3.1.1 Residual and Confidence Map Networks

Feature maps at different scales such as ×2 and ×4 are

given as input to the Residual Network (RN) to estimate

the residual map at the corresponding scale as shown in

the Figure 2. RN consists of the following sequence of

convolutional layers,

Convblock(64,32)-Convblock(32,32)-Convblock(32,3)

as shown in Figure 4(b). We use the estimated residual

map and the feature maps as input to the Confidence map

Network (CN) to compute the confidence measure at every

pixel, which indicates how sure the network is about the

residual value at each pixel. CN consists of the following

sequence of convolutional layers,

Convblock(67,16)-Convblock(16,16)-Convblock(16,3)

as shown in the Figure 4(c). Given the estimated residual

map and the corresponding feature maps as input to the con-

fidence map network, it estimates ĉ×4 and ĉ×2. The element

wise product of r̂i and ĉi is computed, and up-sampled to

pass it as an input to the subsequent layer of the UMRL net-

work as shown in Figure 2 for i ∈ {×2,×4}. Given the

output residual map r×1 and the feature maps of the final

layer of UMRL as input to CN, we get ĉ×1. We compute

the de-rained image at different scale as

x̂i = RFN(yi − r̂i), (2)

where RFN is the Refinement Network, yi and x̂i are the

input rainy image and the output de-rained image at scales,

i ∈ {×1(1.0),×2(0.5),×4(0.25)}. We use the confidence

guided loss and the preceptual loss to train our network.

3.1.2 Loss for UMRL

We use the confidence to guide the residual learning in the

training stage of UMRL network. We define the confidence

guided loss as,

Ll =
∑

i∈{×1,×2,×4}

‖(ci ⊙ x̂i)− (ci ⊙ xi)‖1,

Lc =
∑

i∈{×1,×2,×4}

(

∑

j

∑

k

log(cijk)
)

,

Lu = Ll − λ1Lc,

(3)
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where ⊙ is the element wise product. Here, Ll tries to min-

imize the L1-norm between x̂i and xi and also the value of

cijk . On the other hand, Lc tries to increase cijk by mak-

ing it close to 1. A trivial solution for Ll can be seen as

cijk = 0 ∀ i, j, k. To avoid this, we construct Lu as a lin-

ear combination of Ll and Lc, where Lc acts as a regular-

izer to avoid the trivial solution. Similar loss has been used

for classification and regression tasks in methods [14, 15].

However, to the best of our knowledge ours is the first at-

tempt to use this kind of loss in image restoration tasks. In-

spired by the importance of the perceptual loss in many im-

age restoration tasks [11, 33], we use it to further improve

the visual quality of the de-rained images. The perceptual

loss is feature based loss, and in our case, extracted features

from layer relu1 2 of pretrained network VGG-16[26], and

computed perceptual loss similar to method proposed in

[12, 32]. Let F (.) denote the features obtained using the

VGG16 model [26], then the perceptual loss is defined as

follows

Lp =
1

NHW

∑

i

∑

j

∑

k

‖F (x̂1)
i,j,k−F (x1)

i,j,k‖2
2
, (4)

where N is the number of channels of F (.), H is the height

and W is the width of feature maps. The overall loss used

to train the UMRL network is,

L = Ll − λ1Lc + λ2Lp, (5)

where λ1 and λ2 are two parameters.

Figure 6: The idea behind cycle spinning using the UMRL

network.

3.2. Cycle Spinning

As discussed earlier, cycle spinning was originally pro-

posed to minimize the artifacts near the edges introduced by

the orthogonal wavelets when de-noising images [5]. In this

work, we adapt this idea to further improve the de-raining

performance of UMRL. Figure 6 gives an overview of cy-

cle spinning using UMRL. Let Tcs(., p, q) be the function

to shift an image cyclically by p rows and q columns. Given

an image of size m × n, we shift the image cyclically in

steps of p rows and q columns to get the shifted images as

shown in the Figure 6. We then de-rain the shifted images

using the UMRL network, inverse shift and average them

to get the final de-rained image during testing. Figure 7

shows an example of cyclically spun input images and the

corresponding de-rained images. By applying cycle spin-

ning to our method, we are able to remove some artifacts

introduced by the original UMRL network. In particular, as

will be shown later, cycle spinning can be applied to any

CNN-based de-raining method to further improve its per-

formance.

(a) (b) (c)

(d) (e) (f)
Figure 7: Cyclically spinned images with (a) p = 100,

q = 200, (b) p = 0, q = 200, and (c) p = 300,

q = 400. (d),(e),(f) are the corresponding de-rained images

using UMRL.

4. Experimental Results

In this section, we evaluate the performance of our

method on both synthetic and real images. Peak-Signal-

to-Noise Ratio (PSNR) and Structural Similarity index

(SSIM) [29] measures are used to compare the perfor-

mance of different methods on synthetic images. We vi-

sually inspect the performance of different methods on

real images, as we don’t have the ground truth clean im-

ages. The performance of the proposed UMRL method is

compared against several recent state-of-the-art algorithms

such as (a) Gaussian mixture model (GMM) based [18]

(CVPR16) (b) Fu et al.[7] CNN method (TIP’17), (c) Joint

Rain Detection and Removal (JORDER) [31](CVPR17),

(d) Deep detailed Network (DDN)[8] (CVPR’17) (e) Zhu

et al. [37] (JBO) (ICCV17) (f) Density-aware Image De-

raining method using a Multistream Dense Network (DID-

MDN) [35] (CVPR’18).

4.1. Training and Testing Details

The UMRL network is trained using the synthetic im-

age datasets created by the authors of [35, 34]. The dataset

in [35] consists of 12000 images with different rain levels

like low, medium and high. The dataset in [34] contains

700 training images. The (y, x) rainy-clean image pairs are

shifted randomly p rows and q columns using Tcs(., p, q)
to obtain ys, xs, respectively. The shifted pairs (ys, xs) are

used to train UMRL using the loss L. The Adam optimizer

with the batch size of 1 is used to train the network. Learn-

ing rate is set to 0.001 for first 10 epochs and 0.0001 for

the remaining epochs. During training initially λ1 and λ2

are set equal to 0.1 and 1.0, respectively, but when the mean

of all values in the confidences maps ĉ×1, ĉ×2 and ĉ×4

is greater than 0.8 then λ1 is set equal to 0.03. UMRL is

trained for 30 epochs that is a total of 30×12700 iterations.

Similar to the previous approaches [35], we evaluate the

performance of UMRL using the datasets Test-1 contain-

ing 1200 images from [35], and Test-2 containing 1000 im-

ages from [7]. We use the real-world rainy images pro-
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PSNR:15.3 SSIM: 0.71 PSNR:24.5 SSIM: 0.87 PSNR:26.9 SSIM: 0.92

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Figure 8: (a) Input rainy image. (b) De-rained image using

BN + RN. (c) De-rained using BN + RN + CN (UMRL).

(d),(e), and (f) are the corresponding confidence maps at

scales ×4,×2,×1. (g),(h), and (i) are the corresponding

normalized histograms, that is sum of all bin values is equal

to 1.

vided by Zhang et al.[34] and Yang et al. [31] for testing

UMRL based cycle spinning method. The testing images

are cyclically shifted in steps of 50 rows and 50 columns

using Tcs(., ., .) and fed as input to UMRL for de-raining,

further these de-rained images are inverse shifted and aver-

aged to get the final output.

PSNR:23.01 SSIM: 0.81 PSNR:25.69 SSIM: 0.88

(a) (b)
PSNR:26.31 SSIM: 0.90 PSNR:27.10 SSIM: 0.92

(c) (d)
Figure 9: De-rained images using (a) DDN [8], (b) DID-

MDN [35], (c) UMRL, and (d) UMRL + cycle spinning.

4.2. Ablation Study

We study the performance of each block’s contribution

to the UMRL network by conducting extensive experiments

on the test datasets. We start with the Unet-based base net-

work (BN) and then add one component at a time to see the

significance each component brings to the network in esti-

mating the final de-rained image. Table 1, shows the con-

tribution of each block on the UMRL network. Note that

BN and BN+RN are trained using a linear combination of

L1-norm and Lp as loss (L1+Lp). The UMRL is trained

using the overall loss, L. It can be seen from Table 1 that as

more components (i.e RN and CN) are being added to the

base network, the performance improves significantly. The

base network, BN itself produces poor results. However,

when RN is added to BN, the performance improves sig-

nificantly. In particular, BN+RN is already able to produce

results that are comparable to DID-MDN [35]. The com-

bination of BN, RN and CN (i.e UMRL) produces the best

results. Furthermore, by comparing the last two columns of

Table 1 we see that cycle spinning further improves the per-

formance of UMRL. Using cycle spinning, we are able to

gain the performance improvement of approximately 0.3 dB

on both datasets as it was able to remove the artifacts near

edges. From the Figure 9 by zooming-in, we can clearly

observe the cycle spinning is helping the method to remove

small rain streaks in the sky and on the edges of building.

Table 1: PSNR and SSIM (PSNR|SSIM) results corre-

sponding to the ablation study.
Dataset

Rainy

Image
DID-MDN [35] BN BN+RN BN+RN+CN (UMRL)

UMRL+

cycle spinning

Test-1 21.15|0.77 27.95|0.91 24.25|0.83 27.65|0.87 29.42|0.91 29.77|0.92

Test-2 19.31|0.77 26.08|0.90 23.32|0.83 25.88|0.87 26.47|0.91 26.67|0.92

We preformed similar experiments to see how much im-

provement cycle spinning brings over DDN [8] and DID-

MDN [35]. In general, we observe approximately 0.25 dB

gain in the performance with cycle spinning compared to

without cycle spinning as shown in Table 2.

Table 2: PSNR and SSIM (PSNR|SSIM) results corre-

sponding to the ablation study regarding the use of cycle

spinning.
Dataset

Rainy

Image
DDN [8]

DDN [8] +

cycle spinning
DID-MDN [35]

DID-MDN [35] +

cycle spinning
UMRL

UMRL+

cycle spinning

Test-1 21.15|0.77 27.33|0.90 27.52|0.91 27.95|0.91 28.19|0.91 29.42|0.91 29.77|0.92

Test-2 19.31|0.77 25.63|0.88 25.90|0.89 26.08|0.90 26.37|0.91 26.47|0.91 26.67|0.92

Figure 8 illustrates that confidence map is guiding the

network to learn the rain content at the edges and texture

regions clearly by imposing low confidence values. From

Figure 8 by looking at the histograms of confidence maps

at different scales, we can observe that as the scale is in-

creasing the confidence values are approaching 1 at most of

the pixels. This behavior is expected since at lower scales,

the rain streaks will be blurry (see Figure 3) and the net-

work is less confident about the values it estimates. This

explains why UMRL tries to increase the confidence value

by estimating accurate residual maps, in return CN is com-

puting and feeding back the possible areas where UMRL

goes wrong.

4.3. Results on Synthethic Test Images

The proposed UMRL method based on cycle spinning

is compared against the state-of-the-art algorithms qualita-

tively and quantitatively. Table 3 shows the quantitative per-

formance of our method. As it can be seen from this table,

our method clearly out-performs the present state-of-the-art

algorithms. Furthermore, we compare our method against a
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PSNR: 18.75

SSIM: 0.67

PSNR:20.02

SSIM: 0.74

PSNR: 26.12

SSIM:0.82

PSNR: 25.27

SSIM: 0.82

PSNR: 27.95

SSIM: 0.87

PSNR: Inf

SSIM: 1

PSNR: 14.25

SSIM: 0.59

PSNR:16.97

SSIM: 0.70

PSNR: 21.27

SSIM:0.78

PSNR: 25.39

SSIM: 0.88

PSNR: 26.57

SSIM: 0.9605

PSNR: Inf

SSIM: 1

PSNR: 16.26

SSIM: 0.60

PSNR:17.51

SSIM: 0.75

PSNR: 25.28

SSIM:0.83

PSNR: 29.63

SSIM: 0.97

PSNR: 30.51

SSIM: 0.98

PSNR: Inf

SSIM: 1

PSNR: 15.58

SSIM: 0.68

PSNR:16.54

SSIM: 0.78

PSNR: 23.12

SSIM:0.84

PSNR: 25.25

SSIM: 0.90

PSNR: 28.29

SSIM: 0.93

PSNR: Inf

SSIM: 1

PSNR:14.35

SSIM: 0.63

PSNR:15.75

SSIM: 0.71

PSNR:23.01

SSIM:0.79

PSNR: 27.52

SSIM:0.90

PSNR: 28.83

SSIM:0.92

PSNR: Inf

SSIM:1

PSNR:20.57
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PSNR:22.23

SSIM: 0.90

Fu et al.
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SSIM:0.93

DDN

[8](CVPR’17)

PSNR: 27.23

SSIM:0.95

DID-MDN

[35](CVPR’18)

PSNR: 28.21

SSIM:0.95

Ours

PSNR: Inf

SSIM:1

Ground Truth

Figure 10: De-rained results on synthetic datasets Test-1 and Test-2 consisting different rain levels (low, medium and heavy)

and different directions.

Table 3: PSNR and SSIM comparison of UMRL against state-of-art methods (PSNR|SSIM))

Dataset
Rainy

Image

GMM based

[18](CVPR’16)

Fu et al.

[7](TIP’17)

JORDER

[31](CVPR’17)

DDN

[8](CVPR’17)

JBO

[37](ICCV’17)

DID-MDN

[35](CVPR’18)

UMRL+

cycle spinning

Test-1 21.15|0.77 22.75|0.84 22.07|0.84 24.32|0.86 27.33|0.90 23.05|0.85 27.95|0.91 29.77|0.92

Test-2 19.31|0.77 22.60|0.81 19.73|0.83 22.26|0.84 25.63|0.88 22.45|0.84 26.08|0.90 26.67|0.92

recent ECCV’18 method called REcurrent SE Context Ag-

gregation Net (RESCAN) [17] using the Rain800 dataset

containing 100 images from [34]. The PSNR and SSIM val-

ues achieved by RESCAN [17] are 24.37 and 0.84, whereas

our method achieved 24.59 and 0.87, respectively.

Figure 10 shows the qualitative performance of differ-

ent methods on three sample images from Test-1 and Test-2

datasets. Though Fu et al. (TIP’17) [7] is able to remove

some rain streaks, it is unable to remove all the rain compo-

nents. DDN [8] is over de-raining on some images and on

others it is slightly under de-raining as shown in the third

column of Figure 10. DID-MDN [35] is over de-raining as
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Rainy Image Fu et al. DDN DID-MDN Ours

[7](TIP’17) [8](CVPR’17) [35](CVPR’18)

Figure 11: De-rained results on sample real-world images.

shown in the fourth column of Figure 10 where it removes

the texture on wooden wall, edges of the building in second

image. Furthermore, it blurs the edges of water tank in the

fourth image. By comparing third and fourth images of the

fourth column, we see that the outputs of DID-MDN [35]

has a small blurred version of the residual streaks in the sky

of those images. Visually we can see in the fifth column

of Figure 10, our method produces images without any ar-

tifacts. For example in (i) it is able to recover the texture

on wooden wall, in (ii) it is able to produce images with

clear sky in the third and fourth images of fifth column, and

in (iii) it is able to produce the sharp edges in second and

fourth images.

To de-rain an image of size 512×512, on average UMRL

takes about 0.05 seconds, and UMRL with cycle spinning

takes about 5.1 seconds.

4.4. Results on RealWorld Rainy Images

We conducted experiments on the real-world images pro-

vided by [34, 7, 35]. Results are shown in Figure 11. Sim-

ilar to the results obtained on synthetic images, we observe

the same trend of either over de-raining or under de-raining

by the other methods. On the other hand, our method is able

to remove rain streaks while preserving details of objects in

the resultant output images. For example, the background

and man’s face in the first image of the fifth column is more

clear than the outputs from other methods. Also, Trees and

plants in the second image of the fifth column, front man’s

face and t-shirt collar in the third image are visually more

clear than the results from other method. All of these exper-

iments clearly show that our method can handle different

levels of rain (low, medium and high) with different shapes

and scales. More results on synthetic and real-world images

are provided in the supplementary material.

5. Conclusion

We proposed a novel UMRL method based on cycle

spinning to address the single image de-raining problem.

In our approach, we introduced uncertainty guided residual

learning where the network tries to learn the residual maps

and the corresponding confidence maps at different scales

which were then fed back to the subsequent layers to guide

the network. In addition to UMRL, we analyzed the benefits

of using cycle spinning in de-raining using various recently

proposed deep de-raining networks. Extensive experiments

showed that UMRL is robust enough to handle different lev-

els of rain content for both synthetic and real-world rainy

images.
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