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Abstract

In this paper, we investigate a novel deep-model reusing

task. Our goal is to train a lightweight and versatile student

model, without human-labelled annotations, that amalga-

mates the knowledge and masters the expertise of two pre-

trained teacher models working on heterogeneous prob-

lems, one on scene parsing and the other on depth estima-

tion. To this end, we propose an innovative training strat-

egy that learns the parameters of the student intertwined

with the teachers, achieved by “projecting” its amalga-

mated features onto each teacher’s domain and comput-

ing the loss. We also introduce two options to general-

ize the proposed training strategy to handle three or more

tasks simultaneously. The proposed scheme yields very en-

couraging results. As demonstrated on several benchmarks,

the trained student model achieves results even superior to

those of the teachers in their own expertise domains and on

par with the state-of-the-art fully supervised models relying

on human-labelled annotations.

1. Introduction

Deep learning has accomplished unprecedentedly en-

couraging results in almost every dimension of computer vi-

sion applications. The state-of-the-art performances, how-

ever, often come at the price of the huge amount of anno-

tated data trained on clusters for days or even weeks. In

many cases, it is extremely cumbersome to conduct the

training on personal workstations with one or two GPU

cards, not to mention the infeasibility in the absence of

training annotations.

This dilemma has been in part alleviated by the fact that

many trained deep models have been released online by de-

velopers, enabling their direct deployment by the commu-

nity. As such, a series of work has been conducted to inves-

tigate reusing pre-trained deep models. Examples include

the seminal work of knowledge distilling [11], which learns

a compact student model using the soft targets obtained

from the teachers. The more recent work of [39] makes one

step further by training a student with faster optimization

and enhanced performance. Despite the very promising re-

sults achieved, existing knowledge distilling methods focus

on training a student to handle the same task as a teacher

does or a group of homogeneous teachers do.

We propose in this paper to study a related yet new and

more challenging model reusing task. Unlike the conven-

tional setup of knowledge distilling where one teacher or

an ensemble of teachers working in the same domain, like

classification, are provided as input, the proposed task as-

sumes that we are given a number of task-wise heteroge-

neous teachers, each of which works on a different problem.

Our goal is then to train a versatile student model, with a

size smaller than the ensemble of the teachers, that amalga-

mates the knowledge and learns the expertise of all teachers,

again without accessing human-labelled annotations.

Towards this end, we look into two vital pixel-prediction

applications, scene parsing and depth estimation. We at-

tempt to learn a light student model that simultaneously

handle both tasks from two pre-trained teachers, each of

which specializes in one task only. Such a compact and

dual-task student model finds its crucial importance in au-

tonomous driving and robotics, where the model to be de-

ployed should, on the one hand, be sufficiently lightweight

to run on the edge side, and on the other hand, produce accu-

rate segmentation and depth estimation for self-navigation.

To amalgamate knowledge from the two teachers in

different domains, we introduce an innovative block-wise

training strategy. By feeding unlabelled images to the teach-

ers and the student, we learn the amalgamated features
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within each block of the student intertwined with the teach-

ers. Specifically, we “project” the amalgamated features

onto each of the teachers’ domains to derive the transferred

features, which then replace the features in the correspond-

ing block of the teacher network for computing the loss.

As the first attempt along this line, we assume for now that

teacher models share the same architecture. This may sound

a strong assumption but in fact not, as the encoder-decoder-

like architecture has been showing state-of-the-art perfor-

mance in many vision applications.

We also show that the proposed amalgamation method

can be readily generalized for training students with three or

more heterogeneous-task teachers. We introduce two such

multi-teacher amalgamation strategies, one offline and one

online, and demonstrate them with a third task of surface

normal estimation.

The proposed training strategy for knowledge amalga-

mation yields truly promising results. As demonstrated on

several benchmarks, the student model ends up with not

only a compact size, but also desirable performances su-

perior to those of the teachers on their own domains, in-

dicating the knowledge aggregated from the heterogeneous

domains may benefit each other’s task. Without accessing

human-labelled annotations, the student model achieves re-

sults on par with the fully supervised state-of-the-art models

trained with labelled annotations.

Our contribution is therefore an innovative knowledge

amalgamation strategy for training a compact yet versatile

student using heterogeneous-task teachers specializing in

different domains. We start with the tasks of scene parsing

and depth estimation, and show that the proposed strategy

can be seamlessly extended to multiple tasks. Results on

several benchmarks demonstrate the learned student is com-

petent to handle all the tasks of the teachers with superior

and state-of-the-art results, but comes with a lightweight

size.

2. Related Work

We give a brief review here of the recent advances in

scene parsing and depth estimation. We also discuss a re-

lated but different task, knowledge distillation, that aims to

train a student model handling the same task as the teacher

does.

Scene Parsing. Convolutional neural networks (CNNs)

have recently achieved state-of-the-art scene parsing per-

formances and have become the mainstream model. Many

variants have been proposed based on CNNs. For exam-

ple, PSPNet [40] takes advantage of pyramid pooling oper-

ation to acquire multi-scale features, RefineNet [18] utilizes

a multi-path structure to exploit features at multiple levels,

and FinerNet [38] cascades a series of networks to produce

parsing maps with different granularities. SegNet [1], on the

other hand, employs an encoder-decoder architecture fol-

lowed by a final pixelwise classification layer. Other models

like the mask-based networks of [9, 26, 27] and the GAN-

based ones of [14, 22, 35] have also produced very promis-

ing scene parsing results.

In our implementation, we have chosen SegNet as our

scene-parsing teacher model due to its robust and state-of-

the-art performance. However, the training strategy pro-

posed in Sec. 5 is not limited to SegNet only, and other

encoder-decoder scene parsers can be adopted as well.

Depth Estimation. Earlier depth estimation meth-

ods [29, 30, 31] rely on handcrafted features and graph-

ical models. For example, the approach of [30] focuses

on outdoor scenes and formulates the depth estimation as a

Markov Random Field (MRF) labeling problem, where fea-

tures are handcrafted. More recent approaches [16, 17, 19]

apply CNNs to learn discriminant features automatically,

having accomplished very encouraging results. For exam-

ple, [5] introduces a multi-scale deep network, which first

predicts a coarse global output followed by finer ones.

The approaches of [7, 25] handle depth estimation with

other vision tasks like segmentation and surface normal pre-

diction. The work of [36], on the other hand, proposes

a multi-task prediction and distillation network (PAD-Net)

structure for joint depth estimation and scene parsing in aim

to improve both tasks. Unlike existing approaches, the one

proposed in this paper aims to train a student model by

learning from two pre-trained teachers working in different

domains, without manually-labelled annotations.

Knowledge Distillation. Existing knowledge distilla-

tion methods focus on learning a student model from a

teacher or a set of homogeneous teachers working on the

same problem. The learned student model is expected to

handle the same task as the teacher does, yet comes in a

smaller size and preserves the teachers’ performance. The

work of [11] shows knowledge distilling yields promising

results with a regularized teacher model or an ensemble of

teachers, when applied to classification tasks. [28] extends

this idea to enable the training of a student that is deeper

and thinner than the teacher by using both the outputs and

the intermediate representations of the teacher.

Similar to knowledge distillation, [6] proposes a multi-

teacher single-student knowledge concentration method to

classify 100K object categories. The work of [32] proposes

to train a student classifier that handles the comprehensive

classification problem by learning from multiple teachers

working on different classes.

Apart from classification, knowledge distillation has

been utilized in other tasks [2, 13, 36]. The work of [2]

resolves knowledge distilling on object detection and learns

a better student model. The approach of [13] focuses on

sequence-level knowledge distillation and has achieved en-

couraging results on speech applications.

Unlike knowledge distilling methods aiming to train
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Figure 1. The proposed knowledge amalgamation approach for semantic segmentation and depth estimation with the encoder-decoder

network. The branch out takes place in the decoder part of the target network.

a student model that works on the same problem as the

teacher does, the proposed knowledge amalgamation meth-

ods learn a student model that acquires the super knowledge

of all the heterogeneous-task teachers, each of which spe-

cializes in a different domain. Once trained, the student is

therefore competent to simultaneously handle various tasks

covering the expertise of all teachers.

3. Problem Definition

The problem we address here is to learn a compact

student model, which we call TargetNet, without human-

labeled annotations, that amalgamates knowledge and thus

simultaneously handles several different tasks by learning

from two or more teachers, each of which specializes in

only one task. Specifically, we focus on two important

pixel-prediction tasks, depth estimation and scene parsing,

and describe the proposed strategy for knowledge amalga-

mation in Sec. 5. We also show that the proposed training

strategy can be readily extended to train a student that han-

dles three or even more tasks jointly.

For the rest of this paper, we take a block to be the

part of a network bounded by two pooling layers, meaning

that in each network all the features maps within a block

have the same resolution. We use I to denote an input

image, and use Fn
s and Fn

d to respectively denote the fea-

ture maps in the n-th block of the pre-trained segmentation

teacher network (SegNet) and the depth prediction teacher

network (DepthNet); we also let S denote the final pre-

diction of SegNet and D denote that of DepthNet, and let

Si and Di denote the respective predictions at pixel i. In

demonstrating the feasibility of amalgamation from more

than two teachers, we look at a third pixel-wise prediction

task, surface normal estimation, for which a surface-normal

teacher network (NormNet) is pre-trained. We use M to de-

note its predicted normal map with Mi being its i-th pixel

estimation.

4. Pre-Trained Teacher Networks

We describe here the pre-trained teacher networks, Seg-

Net, DepthNet, and NormNet, based on which we train our

student model, TargetNet.

Admittedly, we assume for now that the teacher net-

works share the same encoder-decoder architecture, but not

restricted to any specific design. This assumption might

sound somehow strong but in fact not, as many state-of-the-

art pixel-prediction models deploy the encoder-decoder ar-

chitecture. Knowledge amalgamation from multiple teach-

ers with arbitrary architectures is left for future work.

Scene Parsing Teacher (SegNet). The goal of scene

parsing is to assign a label denoting a category to each pixel

of an image. In our case, we adopt the state-of-the-art Seg-

Net [1], which has a encoder-decoder architecture, as the

scene parsing teacher. The pixel-wise loss function is taken

to be

Lseg(S
gt, S∗) =

1

N

∑

i

ℓ(S∗

i , S
gt
i ) + λR(θ), (1)
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where S∗

i is the prediction for pixel i, Sgt
i is the ground truth

, ℓ(·) is the cross-entropy loss, N is the total pixel number of

the input image, and R is the L2-norm regularization term.

Since we do not have access to the human-labeled an-

notations, we take the prediction Si, converted from S∗

i by

one-hot coding, as the supervision for training the Target-

Net.

Depth Estimation Teacher (DepthNet). As another

well-studied pixel-level task, depth estimation aims to pre-

dict for each pixel a value denoting the depth of an object

with respective to the camera. The major difference be-

tween scene parsing and depth estimation is, therefore, the

output of the former task is a discrete label while that of the

latter is a continuous and positive number.

We transfer depth estimation to a classification problem,

which has been proved to be effective [23], by quantizing

the depth values to Nd bins, each of which has a length

of l. For each bin b, the network predicts p(b|x(i)) =
expri /

∑
b exp

ri,b , the probability of having an object at

the center of that bin, where ri,b is the response of network

at pixel i and bin b. The continuous depth value Di is then

computed as:

Di =

Nd∑

b=1

b× l × p(b|x(i)). (2)

The loss function for depth estimation is computed taken to

be:

Ldepth(D
gt, D) =

1

N

∑

i

(di)
2 −

1

2N2
(
∑

i

di)
2, (3)

where d = Dgt − D, and N is the total number of valid

pixels (we mask out pixels where the ground truth is miss-

ing). The prediction of the DepthNet, D, is utilized as the

supervision to train the TargetNet.

Surface-Normal Prediction Teacher (NormNet).

Given an input image, the goal of surface normal prediction

is to estimate a surface-normal vector (x, y, z) for each

pixel. The loss function to train a surface-normal-prediction

teacher network (NormNet) is taken to be

Lnorm(M
gt,M) = −

1

N

∑

i

Mi ·M
gt
i = −

1

N
M ·M gt, (4)

where M , M gt are respectively the prediction of NormNet

and the ground truth, and Mi, M
gt
i are those at pixel i.

5. Proposed Method

In this section, we describe the proposed approach to

learning a compact student network, TargetNet. We intro-

duce a novel strategy that trains the student intertwined with

the teachers. At the heart of our approach is a block-wise

learning method shown in Fig. 1 that learns the parameters

of the student network, by “projecting” the amalgamated

knowledge of the student to each teacher’s expertise domain

for computing the loss and updating the parameters, as de-

picted in Fig. 2

In what follows, we start from the amalgamation of the

SegNet and DepthNet, and then extend to the amalgamation

of multiple networks including surface normal prediction

networks (NormNet).

5.1. Learning from Two Teachers

Given the two pre-trained teacher networks, SegNet and

DepthNet described in Sec. 4, we train a compact student

model of a similar encoder-decoder architecture, except that

the decoder part eventually comprises two streams, one for

each task as shown in Fig. 1. In principle, all standard back-

bone CNNs like AlexNet [15], VGG [34] and ResNet [10]

can be employed for constructing such encoder-decoder ar-

chitecture. In our implementation, we choose the one of

VGG, as done for [1].

We aim to learn a student model small enough in size

so that it is deployable on edge systems, but not smaller as

it is expected to master the expertise of both teachers. To

this end, for each block of the TargetNet, we take its feature

maps to be of the same size as those in the corresponding

block of the teachers.

The encoder and the decoder of TargetNet play different

roles in the tasks of joint parsing and depth estimation. The

encoder part works as a feature extractor to derive discrimi-

nant features for both tasks. The decoder, on the hand other,

is expected to “project” or transfer the learned features into

each task domain so that they can be activated in different

ways for the specific task flow.

Despite the TargetNet eventually has two output streams,

it is initialized with the same encoder-decoder architecture

as those of the teachers. We then train the TargetNet and

finally branch out the two streams for the two tasks, after

which the initial decoder blocks following the branch-out

are removed. The overall training process is summarized as

follows:

• Step 1: Initialize TargetNet with the same architecture

as those of the teachers, as described in 5.1.1.

• Step 2: Train each block of TargetNet intertwined

with the teachers, shown in Fig. 2 and described in

Sec. 5.1.2.

• Step 3: Decide where to branch out on TargetNet, as

described in Sec. 5.1.3.

• Step 4: Take the corresponding blocks from the teach-

ers as the branched-out blocks of the student; remove

all the initial blocks following the block where the last

branch out takes place; fine-tune TargetNet.
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Figure 2. The proposed knowledge amalgamation module within block n of TargetNet. This operation is repeated for every block.

In what follows, we describe the architecture of the stu-

dent network, its loss function and training strategy, as well

as the branch out strategy.

5.1.1 TargetNet Architecture

The TargetNet is initialized with the same encoder-decoder

architecture as those of the teachers, where the structures

of the encoder and the decoder are symmetric, as shown in

Fig. 1. Each block in the encoder comprises 2 or 3 convo-

lutional layers with 3× 3 kernel size, followed with a 2× 2
non-overlapping max pooling layer, while in the decoder a

pooling layer is replaced by an up-sampling one.

We conduct knowledge amalgamation for each block of

TargetNet, by learning the parameters intertwined with the

teachers. Let Fn
u denote the amalgamated feature maps

at block n of TargetNet. We expect Fn
u to encode both

the parsing and depth information, obtained from the two

teachers. To allow the Fn
u to interact with the teachers and

to be updated, we introduce two channel-coding branches,

termed D-Channel Coding and S-Channel Coding, respec-

tively for depth estimation and scene parsing as depicted in

Fig. 2. Intuitively, Fn
u can be thought as a container of the

whole set of features, and can be projected or transformed

into the two task domains via the two channels. Here, we

use Fud and Fus to respectively denote the obtained features

after passing Fn
u through the D-Channel and S-Channel

Coding, in other words, the projected features in the two

task domains.

The architecture of the two channel coding is depicted

in Fig. 3. Modified from the channel attention module

by [12], it consists of a global pooling layer and two fully

connected layers, and is very light in size. In fact, it in-

creases the total number of parameters by less than 4% only,

leading to very low computation cost.

Figure 3. The architecture of the S-Channel Coding and D-

Channel Coding.

5.1.2 Loss Function and Training Strategy

To learn the amalgamated features Fn
u at the n-th block of

TargetNet, we feed the unlabelled samples into both teach-

ers and TargetNet, in which way we obtain the features of

two teachers and the initial ones of the Target. Let Fn
d , Fn

s

denote the obtained features at the n-th block of the teacher

networks, DepthNet and SegNet. One option to learn Fn
u is

to minimize the loss between its projected features Fn
ud, Fn

us

and the corresponding features Fn
d , Fn

s , as follows,

Lu = λ1||F
n
ud − Fn

d ||2 + λ2||F
n
us − Fn

s ||2, (5)

where λ1 and λ2 are weights that balance the depth estima-

tion and scene parsing. With this loss function, parameter

updates take place within block n and the connecting cod-

ing branches, during which process blocks 1 to n−1 remain

unchanged.

The loss function of Eq. (5) is intuitively straightforward.

However, using this loss to train each block in TargetNet

turns out to be time- and effort-consuming. This is because

for training each block, we have to adjust the weights λ1,

λ2 and the termination conditions, as the magnitudes of the

feature maps and convergence rates vary block by block.

We therefore turn to another alternative that learns the

features intertwined with the teachers, in aim to alleviate the

cumbersome tuning process. For amalgamation in block n,

we first obtain Fn
us by passing the amalgamated features Fn

u

through the S-channel coding. We then replace the features
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Fn
s at the n-th block of SegNet with Fn

us, and obtain the

consequent prediction Ŝ from the SegNet with Fn
us being its

features. This process is repeated in the same way to get the

predicted depth map D̂ from the DepthNet with Fn
ud being

its features.

In this way, we are able to write the loss as a function

comprising only the final predictions D̂, Ŝ and the predic-

tions by original teachers D,S, as follows,

Lu = λ1Ldepth(D, D̂) + λ2Lseg(S, Ŝ), (6)

where the λ1, λ2 are fixed for all the blocks in TargetNet

during training, and Ldepth(·) and Lseg(·) are respectively

those defined in Eqs. (3) and (1).

5.1.3 Branch Out

As scene parsing and depth estimation are two closely re-

lated tasks, it is non-trivial to decide where to branch out the

TargetNet into separate task-specific streams to achieve the

optimal performances on both tasks simultaneously. Unlike

conventional multi-branch models that choose to branch

out at the boarder of encoder and decoder, we explore an-

other option, which we find more effective. After train-

ing the N blocks of TargetNet using the loss function of

Eq. (6), we also acquire the final losses for each block

{L1

seg,L
2

seg, ...,L
N
seg} and {L1

depth,L
2

depth, ...,L
N
depth}. The

blocks for branching out, pseg and pdepth, are taken to be:

pseg = argmin
n

Ln
seg

pdepth = argmin
n

Ln
depth

(7)

where we set N/2 < n ≤ N to allow the branching out

takes place only within the decoder.

Once the branch-out blocks pseg and pdepth are decided,

we remove those initial decoder blocks succeeding the last

branch-out block. In the example shown in Fig. 1, scene

parsing branches out later than depth estimation, and thus

all the initial blocks after pseg are removed. We then

take the corresponding decoder blocks of the teachers as

the branched-out blocks for TargetNet, as depicted by the

upper- and lower-green stream in Fig. 1. In this way, we de-

rive the final TargetNet architecture of one encoder and two

decoders sharing some blocks, and fine-tune this model.

5.2. Learning from More Teachers

In fact, the proposed training scheme is flexible and not

limited to amalgamating knowledge from two teachers only.

We show here two approaches, an offline approach and an

online one, to learn from three teachers. We take surface-

normal prediction, another widely studied pixel-prediction

task, as an example to illustrate the three-task amalgama-

tion. The proposed two approaches can be directly applied

to amalgamation from an arbitrary number of teachers.

TargetNet-2

n

u3
F

n

u2
F

n

s
F

n

d
F

n

m
F

Back

Propagation

Figure 4. Knowledge amalgamation with TargetNet-2 and Norm-

Net. The part in dash frame is from TargetNet-2 and keeps un-

changed during training TargetNet-3.

The offline approach for three-task amalgamation is

quite straightforward. The block-wise learning strategy de-

scribed in Sec. 5.1.2 can be readily generalized here. Now

instead of two coding channels we have three, wherein

the third one M-channel coding transfers the amalgamated

knowledge to the normal-prediction task. The loss function

is then taken to be

Lu3 = λ1Ldepth(D, D̂) + λ2Lseg(S, Ŝ),+λ3Lnorm(M, M̂),

(8)

where λ1, λ2 and λ3 are the balancing weights.

The online approach works in an incremental manner.

Assume we have already trained a TargetNet for parsing and

depth estimation, which we call TargetNet-2 now for clar-

ity. We would like the student to amalgamate the normal-

prediction knowledge as well, and we call this three-task

student TargetNet-3. The core idea of this online approach

is to treat TargetNet-2 itself as a pre-trained teacher, and

then conduct amalgamation of TargetNet-2 and NormNet in

the same way as done for the two-teacher amalgamation de-

scribed in Sec. 5.1.2. Let Fn
u2 denote the features at block n

of TargetNet-2, and let {Du, Su} denote its predictions of

depths and segmentation. Also, let Fn
u3 denote the features

to be learned at the n-th block of TargetNet-3.

We connect Fn
u3 and Fn

u2 via the U-channel coding as de-

picted in Fig. 4. On the normal-prediction side, we pass Fn
u3

through the M-channel coding to produce the projected fea-

tures Fn
m , replace the corresponding features of NormNet,

and obtain the norm prediction M̂ . On the TargetNet-2 side,

we project Fn
u3 through U-channel coding to obtain Fn

u2, re-

peat the same process and obtain predictions {Ŝu, D̂u}. The

loss function is then taken to be

Lu3 = λ1Lnorm(M̂,M) + λ2Lu2, (9)

where λ1 and λ2 are the weights. As shown in Fig. 4, we

freeze TargetNet-2 during this process since it is treated as
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Input SegNet Target-P GT-Parsing DepthNet Target-D GT-Depth

Figure 5. Qualitative results on scene parsing and depth estimation on NYUDv2. For both tasks, we compare the results of the teachers

with those of the student, with Target-P and Target-D denoting the results of the student on scene parsing and depth estimation respectively.

a teacher. Thus, Eq. (9) will update the parameters of U-

channel coding but not those within TargetNet-2.

6. Experiments and Results

Here we provide our experimental settings and results.

More results can be found in our supplementary material.

6.1. Experimental Settings

Datasets. The NYUDv2 dataset [33] provides 1,449 la-

beled indoor-scene RGB images with both parsing anno-

tations and Kinect depths, and 407,024 unlabeled ones, of

which 10,000 are used to train TargetNet. Besides the scene

parsing and depth estimation task, we also train TargetNet-3

that conducts surface normal prediction on this dataset. The

surface normal ground truths are computed from the depth

maps using the neighboring pixels’ cross products.

Cityscapes [3] is a large-scale dataset for semantic urban

scene understanding. It provides RGB images and stereo

disparity ones, collected over 50 different cities spanning

several months, with overall 19 semantic classes being an-

notated. The finely annotated part consists of 2,975 images

for training, 500 for validation, and 1,525 for test. Disparity

images provided by Cityscape are used as depth maps, with

bilinear interpolation filling the holes.

Evaluation Metrics. To qualitatively evaluate the depth-

estimation performance, we use the standard metrics as

done in [5], including absolute relative difference (abs rel),

squared relative difference (sqr rel) and the percentage of

relative errors inside a certain threshold t.

For scene parsing, we use both the pixel-wise accuracy

(Pixel Acc.) and the mean Intersection over Union (mIoU).

For surface normal prediction, performance is measured

by the same matrix as [4]: the mean and median angle from

the groundtruth across all unmasked pixels, as well as the

percent of vectors whose angles fall within three thresholds.

Implementation Details. The proposed method is im-

plemented using TensorFlow with a NVIDIA M6000 with

24GB memory. We use the poly learning rate policy as done

in [20], and set the base learning rate to 0.005, the power to

0.9, and the weight decay to 4e − 6. We perform data aug-

mentation with random-size cropping to 640 × 400 for all

datasets. Due to limited physical memory on GPU cards

and to assure effectiveness, we set the batch size to be 8

during training. The encoder and decoder of TargetNet are

initialized with parameters pre-trained on ImageNet. In to-

tal 2 epochs are used for training each block of the Target

on both NYUDv2 and Cityscape.

6.2. Experimental Results

Performance on NYUDv2. We show in Tab. 1 the qual-

itative results of the TeacherNet (SegNet and DepthNet)

and those of the student network with different branch-

out blocks, denoted by Decoder b1-5, on the testset of

NYUDv2. For example, Decoder b1 corresponds to the

student network branched out at decoder block 1. Our fi-

nal TargetNet branches out depth estimation at block 4 and

scene parsing at block 5, which give us the best perfor-

mances for the two tasks. As can be seen, the student net-

works consistently outperform the teachers in terms of all

evaluation measures, which validates the effectiveness of

the proposed method. As for the network scale, the more

blocks of the features are amalgamated, the smaller Target-

Net is, which means that branching out at a later stage of the

decoder leads to smaller networks, as shown by the number

of parameters of Decoder b1-5. The final student network,

which branches out at blocks 4 and 5 respectively for depth

and scene, yields a size that is about half of the teachers.

The qualitative results are displayed in Fig. 5, where the

results of student, Target-P and Target-D, are more visually

plausible than those of the teacher networks.

For surface normal prediction, we train the TargetNet-
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Table 1. Comparative results of the teacher networks and the student with different branch-out blocks on the NYUDv2 dataset. Decoder bn

denotes the TargetNet that branches out at the block n of the decoder, and TeacherNet contains SegNet and DepthNet. The final student

network branches out the depth estimation at block 4, denoted by Target-D, and scene parsing at block 5 denoted by Target-P.

Method Params mean IoU Pixel Acc. abs rel sqr rel δ < 1.25 δ < 1.25
2

δ < 1.25
3

TeacherNet ∼55.6M 0.448 0.684 0.287 0.339 0.569 0.845 0.948

Decoder b1 ∼36.9M 0.447 0.684 0.276 0.312 0.383 0.753 0.939

Decoder b2 ∼31.0M 0.451 0.684 0.259 0.275 0.448 0.799 0.952

Decoder b3 ∼28.3M 0.451 0.684 0.260 0.277 0.448 0.796 0.951

Decoder b4 (Target-D) ∼28.0M 0.452 0.683 0.252 0.257 0.544 0.847 0.959

Decoder b5 (Target-P) ∼27.8M 0.458 0.687 0.256 0.266 0.459 0.810 0.956

Input Target-N GT-Norm

Figure 6. Qualitative results on surface normal prediction on

NYUDv2. The Target-N column corresponds to the results of the

proposed TargetNet-3.

Table 2. Comparative results of the TeacherNet (SegNet, DepthNet

and NormNet), Target-2 and Target-3 on NYUDv2.

rel diff Angle Dist. With t
◦ Deg.

Method mIOU abs sqr Mean Median 11.25◦ 22.5◦ 30
◦

TeacherNet 0.448 0.287 0.339 37.88 36.96 0.236 0.450 0.567

TargetNet-2 0.458 0.252 0.257 − − − − −

TargetNet-3 0.459 0.243 0.255 35.45 34.88 0.237 0.448 0.585

Table 3. Comparative results of TargetNet and state-of-the-art

methods on scene parsing and depth estimation on NYUDv2.

Method Params mIOU PA abs rel sqr rel

Xu et al. [37] − − − 0.121 −

FCN-VGG16 [21] ∼134M 0.292 0.600 − −

RefineNet-L152 [24] ∼62M 0.444 − − −

RefineNet-101 [18] ∼118M 0.447 0.686 − −

Gupta et al. [8] − 0.286 0.603 − −

Arsalan et al. [23] − 0.392 0.686 0.200 0.301

PADNet-Alexnet [36] >50M 0.331 0.647 0.214 −

PADNet-ResNet [36] >80M 0.502 0.752 0.120 −

TargetNet ∼28M 0.459 0.688 0.124 0.203

3 described in Sec. 5.2 in the offline manner, and show the

results in Tab. 2. With the surface normal information amal-

gamated in TargetNet-3, the accuracies of scene parsing and

depth estimation increase even further and exceed those of

the TargetNet-2. In particular, compared to the enhance-

ment of scene parsing, that of depth estimation is more sig-

nificant due to its tight relationship with surface normal.

The visual results of the surface normal prediction are de-

picted in Fig. 6.

We also compare the performance of TargetNet with

those of the state-of-the-art models. The results are shown

in Tab. 3. TargetNet is trained with three tasks. With the

smallest size and no access to human-labelled annotations,

Table 4. Comparative results of the TeacherNet (SegNet and

DepthNet) and the student on the Cityscape dataset. Target-D and

Target-P denote the results of TargetNet for parsing and depth es-

timation respectively.

Method mean IOU Pixel Acc. abs rel sqr rel

TeacherNet 0.521 0.875 0.289 5.803

Target-P 0.535 0.882 0.240 3.872

Target-D 0.510 0.882 0.224 3.509

TargetNet yields results better than all but one compared

methods, PADNet-ResNet [36], for which the size is almost

three times as that of TargetNet.

Performance on Cityscape. We also conduct the pro-

posed knowledge amalgamation on the Cityscape dataset,

and show the quantitative results in Tab. 4. We carry out the

experiments in the same way as done for NYUDv2. Results

on this outdoor dataset further validate the effectiveness of

our approach, where the amalgamated network again both

surpasses the teachers on their own domains.

7. Conclusion

In this paper, we investigate a novel knowledge amalga-

mation task, which aims to learn a versatile student model

from pre-trained teachers specializing in different appli-

cation domains, without human-labelled annotations. We

start from a pair of teachers, one on scene parsing and the

other on depth estimation, and propose an innovative strat-

egy to learn the parameters of the student intertwined with

the teacher. We then present two options to generalize the

training strategy for more than two teachers. Experimen-

tal results on several benchmarks demonstrate that student

model, once learned, outperforms the teachers in their own

expertise domains. In our future work, we will explore

knowledge amalgamation from teachers with different ar-

chitectures, in which case the main challenge is to bridge

the semantic gaps between the feature maps of the teachers.
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