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Abstract

We consider the challenging problem of inferring a hid-

den moving scene from faint shadows cast on a diffuse sur-

face. Recent work in passive non-line-of-sight (NLoS) imag-

ing has shown that the presence of occluding objects in

between the scene and the diffuse surface significantly im-

proves the conditioning of the problem [2]. However, that

work assumes that the shape of the occluder is known a

priori. In this paper, we relax this often impractical as-

sumption, extending the range of applications for passive

occluder-based NLoS imaging systems.

We formulate the task of jointly recovering the unknown

scene and unknown occluder as a blind deconvolution prob-

lem, for which we propose a simple but effective two-step

algorithm. At the first step, the algorithm exploits motion in

the scene in order to obtain an estimate of the occluder. In

particular, it exploits the fact that motion in realistic scenes

is typically sparse. The second step is more standard: using

regularization, we deconvolve by the occluder estimate to

solve for the hidden scene.

We demonstrate the effectiveness of our method with sim-

ulations and experiments in a variety of settings.

1. Introduction

Imaging scenes that are not directly visible, also called

non-line-of-sight (NLoS) imaging, is a difficult and often

ill-posed problem. Recently, it has become an area of active

study, with broad applications including search-and-rescue,

anti-terrorism, and traffic [3, 4, 2].

Past methods that rely on human-visible light to image

hidden scenes can be divided into one of two categories.

Active methods introduce light into the scene and make use

of known or measured properties of the introduced light,

such as time of return, to image the hidden scene [28, 23, 27,

10]. Passive methods, on the other hand, rely exclusively on

ambient light from the scene, such as secondary reflections

on the observation plane, to infer the contents of the hidden

scene [25, 4, 2]. Both of these types of methods generally

Figure 1: This figure shows a hypothetical scenario to which

our method could be applied. On the left, we can see a door,

but we don’t know anything about what’s in the room it

leads to (shown on the right). Using the method we present

in this paper, an onlooker could try to reconstruct an image

of the room by observing the door, perhaps by using the oc-

clusion provided by the chair and the motion provided by

the person. This is true even though neither the chair nor

the person is visible to the onlooker!

presume that there is something directly visible to both the

observer and the hidden scene (see Fig. 1). In this work, we

refer to this visible area as the observation plane.

Passive methods suffer from the fact that in real-world

settings, only a two-dimensional surface can be observed

(see e.g. Fig. 1), but the scene producing those observa-

tions is three-dimensional. Hence, the problem is inher-

ently ill-posed. Past methods have resolved this issue by

either assuming the scene lies on a lower-dimensional man-

ifold, thereby only reconstructing only a lower-dimensional

projection of the scene [25, 4], or making use of a strong

spatial prior over realistic scenes when reconstructing [2].

Our method falls into the former category, as we assume

that both the scene and occluder lie on parallel, flat planes.

This allows us to model the shadows cast on the observation

planes as a simple convolution of these two planes.

Although there has by now been plenty of previous work

demonstrating that it is possible to use the presence of an oc-
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cluder to infer the structure of a hidden scene [25, 4, 24, 2],

this work, to our knowledge, is the first to do so in a blind

manner, meaning that we know nothing a priori about the

structure of the occluder. Past work that exploits occlusion

either uses scene calibration to get a precise picture of the

occluder before the system can work [24, 2, 21] or is limited

to situations in which the occluder has some basic, com-

mon shape, like a pinhole, pinspeck, or edge [25, 4]. The

blind nature of this problem compounds the already daunt-

ing challenge of non-line-of-sight imaging. However, we

hope that this will make our method widely applicable in

situations where occluders are complex but pre-calibration

is not an option, such as traffic or search and rescue [3].

2. Background

This work draws inspiration from past work belonging

to two broad categories: the first is NLoS imaging, particu-

larly occlusion-based NLoS imaging, and the second is past

work in blind deconvolution. To our knowledge, this work

is the first to synthesize these two well-studied areas of re-

search into an algorithm that does something novel: get-

ting a two-dimensional view of a hidden scene, with only

minimal assumptions about the hidden scene and unknown

occluder.

2.1. Non-line-of-sight imaging

2.1.1 Active methods

Past work in active NLoS imaging has demonstrated the

possibility of resolving structure in hidden scenes using

time-of-flight (ToF) cameras [28, 23, 13, 10], including

counting people [27], inferring size and motion of ob-

jects [12, 19, 9], and object tracking in 2D space [14].

In particular, Pandharkar et al. [19] used ToF cameras to

resolve moving scenes in a partially uncalibrated setting,

and Velten et al. [26] used them to recover 3D structure

from behind corners. Thrampoulidis et al. [24] showed that

occluder-based imaging could be applied to the active set-

ting, as well.

2.1.2 Passive methods

Recently there has been a surge of interest in occluder-based

imaging methods. Torralba and Freeman [25] were among

the first to notice that objects the environment could form

“accidental” cameras, making resolving hidden structure

simpler. In particular, they used the fact that many common

objects behave approximately like pinspecks or pinholes.

Additionally, in 2019, Saunders et al. [21] used pinspeck

occluders to resolve 2D scenes.

Occluder-based methods have also been used to see

around corners [4] and infer light fields [2]. Coded-aperture

Figure 2: Left: a real-world scenario with a moving scene,

an occluder, and an observation wall. Right: our model of

the scenario.

photography [16, 31, 20] can also be thought of as a kind of

occluder-based imaging.

2.2. Blind deconvolution

Past work in the field of blind deconvolution has largely

focused on image deblurring [17, 6, 15, 5], although there

has also been work applied to communication [7], and con-

trol systems [1]. Recently, interest in blind deconvolution

for image deblurring has been revived by Fergus et al. in [8].

Past approaches to blind deconvolution have generally

made use of local search methods, including total vari-

ation minimization [6] and alternating projections [29].

There has also been past work in multi-frame blind decon-

volution with applications to deblurring astronomical im-

ages [22, 11, 18].

3. Scenario

3.1. Setup

Our model of the scenario consists of three elements:

a hidden moving scene, an occluder, and the observation

plane. We model each of these elements as parallel 2D

planes. See Fig. 2 for an illustration.

The hidden scene is presumed to be a collection of dif-

fuse reflectors, shining light uniformly in all directions and

towards the occluder and observation plane. The hidden

scene is also presumed to contain some motion. The un-

known occluder is presumed to be a set of perfectly opaque

objects lying on a common plane. We assume the hid-

den scene, unknown occluder, and observation planes to

each be a substantial distance apart, relative to their sizes.

This allows us to invoke paraxial imaging assumptions, like

in [30, 4].

The observation plane is presumed to be perfectly Lam-

bertian. In simulations, we also presume the observation

plane to be white and uniform, and that all of the light reach-

ing the observation plane comes from the scene; in exper-
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iment, we use mean-subtraction to account for non-white,

non-uniform observations with ambient “nuisance” light

sources, a method also employed in other work (e.g. [4]).

This allows us to apply our method to most realistic sce-

narios with minimal adaptations to the core algorithm. We

explore the effect of other deviations from the idealized sce-

nario we present here in Section 6.

3.2. Light Propagation

The assumptions we describe in Subsection 3.1 imply

that translating a light source in the scene will correspond

to a simple translation of the shadow it casts on the observa-

tion plane in the opposite direction. For a more detailed ex-

planation of why that is, and how that model deviates from

reality when those assumptions are violated, see Section 6.

We model the propagation of light through the system

as a 2D convolution of the scene with the occluder. This

follows from the fact that a translation of an impulse light

source will simply translate the shadow cast by the occluder,

and from the fact that the observed light can be modeled

as a linear combination of light emanating from different

sources in the scene. See e.g. [30], who use the same

convolution-based model of light propagation that we do. In

Section 6, we go into some detail on how robust this model

is, and in Section 7 we present the results of experiments,

including real-world experiments.

In the simulations presented in this paper, we assume that

we see the full convolution of the scene and the occluder

on the wall. If the scene is a plane of size xs × ys and

the occluder a plane of size xocc × yocc, this corresponds to

an observation of (xs + 2xocc) × (ys + 2yocc). However,

in practical settings, it may not be possible to see the full

convolution of the scene and occluder on the wall. In the

experimental case, therefore, we express the size of the ob-

served part of the wall as xobs × yobs. It is easy to adapt

our algorithm to the case when only part of the convolution

between scene and occluder is visible, as explained in Sec-

tions 4 and 5. But of course, the larger xobs and yobs are, the

more information about the hidden scene will be available,

and the better the reconstructions will be.

4. Occluder Estimation

Our blind deconvolution algorithm consists of two steps.

The first step estimates the 2D occluder from the observa-

tion movie and is the primary contribution of this paper. We

describe this step in this section. In Section 5, we describe

the more standard second step, which recovers the movie

using the estimated occluder.

4.1. Preliminaries

Let Y = {Y [0], . . . , Y [T ]} be the observed video, with

each Y [t] corresponding to a video frame. Let Ȳ =
1
T

∑

t Y [t] be the “average frame” of the video, i.e., the

frame such that each of its pixels is equal to the tempo-

ral average of that pixel across the entire video. Also,

consider: (a) the mean-subtracted video Yµ = {Y [0] −
Ȳ , . . . , Y [T ] − Ȳ }, i.e., the video of differences from the

mean of the original video; (b) the difference video YD =
{Y [1] − Y [0], . . . , Y [T ] − Y [T − 1]}, i.e., the discrete

temporal derivative of the observed video. Similarly, let

X = {X[0], . . . , X[T ]} be the ground-truth video of the

scene, and let Xµ and XD be the mean-subtracted ground-

truth video of the scene and the discrete temporal derivative

of the ground-truth video, respectively. Xµ and XD are de-

fined relative to X in the same way as above.

At this point, note the subtle but important difference be-

tween the mean-subtracted video and the difference video,

which will play different roles in the algorithm. We use the

observed difference video to estimate the occluder, and we

use the observed mean-subtracted video when reconstruct-

ing the moving scene. What makes the difference video

preferable for occluder estimation is the fact that most real-

istic moving scenes have just a few moving objects in them;

thus each frame of the difference video is sparse.1

Finally, we let A be the occluder. Each element of the

occluder is either 0 or 1, with 1 being no occlusion, 0 being

occlusion.

As explained in Section 3, we can express the observa-

tion as the convolution of the scene and the occluder2. Thus,

for all 0 ≤ t ≤ T ,

Y [t] = A ∗X[t], Yµ[t] = A ∗Xµ[t], YD[t] = A ∗XD[t].
(1)

Given Y (and by extension Yµ and YD), our goal is to

learn both X and A. We will exploit the fact that each of the

XD[t] is sparse and the fact that A is binary-valued. Next,

we describe an algorithm that uses YD[t] to infer an estimate

of A, which we denote Â.

4.2. Algorithm Description

Informally, we estimate the occluder by successively

multiplying together randomly-chosen difference frames of

the observation video with each other. Before doing so, we

want to shift them such that their dot product is maximized.

1The sparsity of the difference video is necessary for our algorithm to

work. Note, however that taking temporal derivatives amplifies the noise

relative to the signal. Therefore, in situations in which the mean-subtracted

ground-truth video is sparse, it is preferable to use the mean-subtracted

observation video instead of the difference observation video for the task

of occluder estimation. Sparse mean-subtracted ground-truth video would

occur for example when most of the light in the scene is being emitted by

a single source.

2In the case that the observation is in color, Equation 1 will be true for

each color channel individually. Then, we can run the same algorithm as

otherwise, but choosing at each step a single color channel of each differ-

ence frame.
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We can efficiently compute the set of all possible dot prod-

ucts of two frames, up to shifts, by computing the corre-

lation between the two frames. Thanks to the sparsity of

the difference frames, the aggregated overlap between the

random difference frames that we choose will likely corre-

spond to the shape of the occluder.

The algorithm’s pseudocode is given as Algorithm 1.

Therein and onwards, we use superscripts (such as Xi,j) to

denote a single pixel of an image or a single entry of a ma-

trix, and single bars (such as |X|) to denote the elementwise

absolute value of a matrix. Note that the occluder estimate

Â evolves over the course of the algorithm. For the reader’s

convenience, we provide a detailed illustration of the first

two rounds of the algorithm in Fig. 3.

Our algorithm consists of three steps which we repeat

until a maximum iteration count is reached. First, there is a

pre-processing step, the goal of which is to select observed

difference frames corresponding to sparse ground-truth dif-

ference frames. In particular, Algorithm 1 performs the pre-

processing step by randomly selecting frames. We have em-

pirically observed that this simple solution produces satis-

factory results.

Next comes the alignment step. In the first iteration, we

randomly select an absolute difference frame to be our first

estimate of the occluder Â1. At each iteration k = 2, . . .
that follows, we treat Âk−1 as a video frame which we align

with a randomly selected new frame to obtain a refined es-

timate of the occluder Âk.

In order to better understand the details of the align-

ment procedure and the reason why it yields an estimate

of the occluder, it is instructive to consider the simple ex-

ample of “ideally sparse” frames. Suppose we had a dif-

ference ground-truth frame that was a perfect impulse at

(i1, j1), i.e., XD[1]i,j = δ(i − i1, j − j1), where δ is the

2D Kronecker-δ function. Then, clearly, YD[1] is nothing

but a shift of the occluder A by (i1, j1). In this ideal case,

we immediately obtain a good picture of the occluder just

by looking at a single difference observation frame. Un-

fortunately, in practice ground-truth video frames are only

approximately sparse. We therefore model the difference

observation frames as noisy shifts of the occluder. In par-

ticular, for two such frames let YD[1]i,j = Ai−i1,j−j1 + n1

and YD[2]i,j = Ai−i2,j−j2 + n2, where n1 and n2 denote

noise. The goal of the alignment step is to create “aligned”

versions of YD[1] and YD[2], which we will call ZD[1] and

ZD[2], and for which:

ZD[1]i,j = YD[1]i,j = Ai−i1,j−j1 + ñ1, (2)

ZD[2]i,j = YD[2]i−(i2−i1),j−(j2−j1) = Ai−i1,j−j1 + ñ2.

This is achieved in Algorithm 1 by cross-correlating YD[1]
and YD[2], finding where the max of the correlation occurs

and appropriately shifting the original frames. This will ap-

Figure 3: A worked example of initialization of Algo-

rithm 1, followed by a single pass through the for-loop.

Continued in Fig. 4.

Figure 4: A worked example of Algorithm 1.

proximately minimize the noise terms ñ1 and ñ2. See also

Figure 3.

The goal of the third step is to reduce the noise terms

in (2) and improve the estimate of the hidden A matrix.

The simplest de-noising rule would be to return the average

of ZD[1] and ZD[2]. We have found instead that perform-

ing the average on the logarithms of the absolute values of

the frames performs better. This explains the “geometric-

mean” step in Algorithm 1.

Running the full occluder-estimation algorithm by sam-

pling 100 frames takes a few minutes on a laptop.

4.3. Comparison to other methods

It is instructive to describe the differences between our

application and that of most of the previous literature

in blind deconvolution. Past work in blind deconvolu-
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Algorithm 1 Our algorithm for estimating the occluder.

Set t to a random integer in [0, T ]. Set Â1 = |YD[t]|.
for k in [2,NumIter] do

Set tk to a random integer in [0, T ].
Compute C = Âk−1 ∗ |YD[tk]|.
Find (i, j) := argmaxi,jC

i,j , where by convention we take C0,0 to be the central element of Ci,j .

Let Si,j(|YD[tk]|) be |YD[tk]| shifted horizontally by i pixels and vertically by j pixels.

Âk := (Âk−1)
(k−1/k) · (|YD[tk]|)

(1/k).

⊲ In the line above, the superscripts denote elementwise exponentiation.

Crop the zero-valued entries of the resulting Âk until it is the same shape as Âk−1.

end

tion has largely focused on applications in image deblur-

ring [17, 6, 15, 5]. Typically, this means that, given a single

blurry image taken with a shaky camera, we would like to

express the blurry image as the convolution of an unknown

sharp image and an unknown blur kernel.

This problem differs from ours in three ways. First, un-

like in our problem, one can assume that the unknown blur

kernel is not only sparse but localized to a small region.

Second, in our problem, we have additional information

about the occluder: in particular, we assume it to be binary-

valued. Finally, in our problem, we have many frames, each

of which is a different (unknown) sparse kernel convolved

with the occluder, which gives us much more information

to work with.

The first difference means we have many more poten-

tial degrees of freedom to handle in our reconstruction

algorithm; local search algorithms, used for deblurring

in [6, 29], encounter difficulties when the potential size of

the kernel is greatly increased. This makes it challenging to

directly port blind-deconvolution algorithms used for image

deblurring to our application.

Moreover, the many extra frames we have give us more

information to work with. In particular, each frame shows

us the occluder convolved by a different sparse kernel. This

gives us many different “views” of the same occluder; it

seems natural that as the length of the video goes to infin-

ity, we should, in principle, be able to precisely character-

ize the shape of the occluder, even in the presence of arbi-

trary finite noise. How this intuition should extend to actual

videos with a fixed number of frames is unclear, of course,

but the nature of the problem (a fixed occluder with a non-

fixed moving scene) lends itself naturally to an approach in

which we estimate the occluder first, and then attempt de-

convolution by the occluder estimate to recover the scene,

rather than vice-versa.

Before settling on the method we used in this paper, we

tried a variety of other methods, all of which failed. We tried

a root-finding approach to the blind-deconvolution problem,

a phase-retrieval-based approach (using ADMM), and we

tried a simple gradient descent over the scene and the oc-

cluder jointly. For more details on these other approaches

we tried, and why we believe they failed, please read our

supplementary materials. We recommend that any reader

hoping to improve upon our result should read the supple-

ment to avoid repeating our mistakes.

5. Scene Reconstruction

This section describes our method for reconstructing the

moving scene, given an estimate of the occluder. In general,

we reconstruct the moving scene from the mean-subtracted

observation movie Yµ
3.

To perform the reconstruction, we first formulate the

matrix Â, which describes the linear transformation corre-

sponding to convolution by the estimated occluder Â. If Yµ

is of size xobs × yobs, and the part of the scene containing

movement is of size xs × ys, then by necessity, Â will be a

matrix of size (xobsyobs)× (xsys)
4.

Once we’ve formulated the forward model Â, we can

reconstruct the moving scene simply by inverting Â with

regularization:

X̂µ = λ(ÂT
Â+ λI)−1

Â
TYµ (3)

Note that in Equation 3, X̂µ and Yµ have both been flat-

tened into vectors; that is, instead of being matrices of size

(xs, ys) and (xobs, yobs), respectively, they are vectors of

size xsys and xobsyobs.

If we are reconstructing an RGB image, we do the cal-

culation of Equation 3 for each of the three color channels

individually, and then assemble them into a single image.

3If the observation plane is perfectly white and uniform, and there are

no “nuisance light” sources from anywhere besides the scene, the raw ob-

servation movie may be used instead.
4In an experimental setting, it’s possible that the size of the moving

scene (xs, ys) will be unknown. In this case, we recommend tuning the

size of the scene by hand, erring on the side of larger (x̂s, ŷs). If the

chosen (x̂s, ŷs) are too small, the reconstruction will be overconstrained

and will produce nonsense; if, on the other hand, the chosen (x̂s, ŷs) are

too large, the expanded area will contain noise, but the subset of the scene

corresponding to the signal will remain intelligible.
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In Equation 3, the regularization parameter λ can be

tuned for optimal performance. We generally found that a

value of λ between 1 and 10 yielded the best reconstructions

in experimental settings.

6. Deviations

In Section 3, we described assumptions that we made

in order to guarantee that the observation would reflect the

convolution of the occluder with the scene. For clarity, we

repeat these assumptions here. First, we assume that the

scene, occluder, and observation lie on parallel 2D planes.

Second, we assume that the scene, occluder, and observa-

tion are far apart relative to their size. And third, we assume

that the observation plane is perfectly Lambertian, white, or

uniform.

Naturally, in most real-world settings, few, if any, of

these assumptions will hold. So is the algorithm we present

here useless in practice? No, in fact. If nothing else, in

Section 7, we present the results of our algorithm in ex-

perimental settings in which all of these assumptions are

violated, and these results demonstrate that our algorithm

can be used in real-world settings to approximately recover

hidden scenes and occluders.

We do, however, consider it instructive to describe in

more detail the distortions introduced by violating the afore-

mentioned assumptions.

6.1. Non-planar or non-parallel objects

Consider the following example of an incorrect planarity

assumption: suppose that we assume the occluder to be a

disk, but it is in fact a sphere.

As explained in Sec. 3, the observation is the convolu-

tion of the occluder with the scene because translating an

impulse light source in the scene corresponds to translating

its corresponding shadow on the observation. This will be

true if the occluder is a disk, but not if it is a sphere. In gen-

eral, the shadow of a parallel disk on the observation plane

will be a circle, but the shadow of a sphere will be an el-

lipse whose eccentricity will vary with the (x, y)-position

of the light source. Figure 5 illustrates this, and shows a

reconstruction of a simple scene using when incorrectly as-

suming the occluding sphere to be a disk.

6.2. Nearby objects

Assuming that the scene, occluder, and observation are

far apart from each other relative to their size is common in

occluder-based imaging [30, 4], and is generally called the

far-field assumption. The benefit of making the assumption

is that it lets you ignore the effects of distance attenuation.

The ray optics model tells us that if a small, flat surface of

area dA is a distance r from a light source of intensity I ,

and the surface normal is at an angle of θ from the incident

light, then the contribution c of the light source to the light

intensity on the surface will go as:

c ∼ I
dA cos(θ)

r2
(4)

Suppose we have two parallel planes, p1 and p2, a dis-

tance z apart. In that case, we can use Eq. 4 to derive the

contribution of a light source of intensity I at (0, 0) on one

of the two planes to a small patch at (x, y) with area dA on

the other. In this case, the contribution simplifies to:

c ∼ I
zdA

(x2 + y2 + z2)3/2
(5)

Now we can see what is meant more precisely by the

scene, occluder, and observation being “far apart relative to

their size.” When z ≫
√

x2 + y2 for all (x, y) on either

plane, then Eq. 5 simplifies to c ∼ I dA
z2 , and the contribu-

tion of a source of light at any point on p1 to any point on

p2 will be the same, irrespective of their locations on ei-

ther plane. This is a necessary condition for a translation of

a light source in the scene to simply translate its observed

shadow, which is in turn a necessary condition for the ob-

servation plane to reflect the convolution of the scene and

occluder, as discussed in Section 3.

See Fig. 5 for a simulated reconstruction of a nearby

scene while incorrectly assuming it to be far away.

6.3. Imperfections on the observation plane

Most surfaces are not perfectly uniform and white. Sub-

tracting the mean frame from the observation video will

help to reduce the effects of imperfections on the observa-

tion plane, to an extent. Color variations on the observation

plane will still cause visible artifacts, however, because a

darker region of the observation plane will respond less to

overall increases in luminosity than a brighter region.

Non-Lambertian surfaces pose even more of a challenge.

If the observation plane is sufficiently non-Lambertian, then

the most important reflections off the surface will not be

diffuse, but will vary strongly as a function of the angle

of the incident light. This will confuse our algorithm, and

probably render its output useless. However, a sufficiently

non-Lambertian surface may also make the problem much

easier to solve, if the observation plane is mirror-like!

We don’t show a simulated example corresponding to

imperfections on the observation plane in Fig. 5, because

their effect isn’t much different from simple noise, which

we account for using regularization (as explained in Sec-

tion 5). However, in Section 7, we show experimental re-

sults for which the observation plane includes visible im-

perfections.
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Figure 5: An illustration of the effects of the planarity as-

sumption and the far-field assumption on the reconstruction.

The top row shows a sketch of the true setup; in all three

cases, the assumed setup is the one on the left. The mid-

dle row shows what reconstructions, generated using the ap-

proach described in Sec 5, of the leftmost image look like

when the assumptions used for that approach are violated.

The bottom row shows example impulse responses for each

of the three scenarios. All data shown here is simulated,

with no noise, to isolate the effect of each assumption.

7. Results

In this section we present a summary of our results, both

simulated and experimental. We show our reconstructions

of occluders, along with a few still frames of reconstructed

video. We leave the bulk of our results to the supplementary

materials, however, as reconstructions of moving scenes are

best seen in video form.

7.1. Simulations

In this section we show the result of simulations in an

ideal scenario (all of the assumptions explored in Section 6

are assumed to hold perfectly). The moving scene is the in-

troduction to a popular television show. The ground-truth

occluder was generated via a random correlated process.

The observation plane is assumed to display the full convo-

lution of the moving scene with the occluder, plus additive

IID Gaussian noise. The signal-to-noise ratio on the obser-

vation plane is 25 dB.

Figure 6 shows the result of occluder recovery, as well

as a recovered still frame from the moving scene.

7.2. Experiments and Comparisons to Past Work

There has been surprisingly little past work as of this

writing that does computational periscopy with the aim of

recovering a head-on (as opposed to top-down) full-color

Figure 6: The output of the occluder-recovery and scene-

reconstruction algorithms presented in Secs. 4 and 5, using

the difference frames of a simulated observation at 25dB.

See the supplementary materials for a full recovered video.

2D image of a scene in the passive setting (that is, without

making use of active, directed illumination). Until 2019, the

closest would have been the work of Bouman et al. in [4],

but the full-color reconstructions shown in that work focus

on 1D scene reconstructions, not 2D.

In 2019, however, Saunders et al. [21] showed that high-

fidelity 2D full-color images could be recovered using a pin-

speck occluder. Their experimental results differ from ours

in two important ways. Firstly, they presume knowledge of

the shape of the occluder (a pinspeck), though not its loca-

tion in three-dimensional space. This gives them full knowl-

edge of the imaging system, up to translation and scaling of

the output. Second, their results are gathered from a still

image with 3.5s of effective exposure time, whereas ours

are drawn from a 100-FPS video of a moving scene (al-

though the reconstruction shown is averaged over 5 frames

of the ground-truth video, representing about 0.05s of ex-

posure time). This implies a difference in signal strength.

Only results from LCD monitor scenes are shown in [21]; to

make it easy to compare our results with theirs, we include

scenes from a cartoon shown on an LCD monitor as well as

real-life scenes under heavy illumination in Figure 8.

As we can see in Figure 8, our monitor-based reconstruc-

tions are substantially lower-quality than those of [21]. We

believe that this difference in reconstruction quality is pri-

marily due to our system’s imperfect knowledge of the oc-

cluder’s form, which is a problem that the system of [21]

does not have. We believe that the difference in SNR be-

tween the two settings may play a minor role as well.

Figure 7 shows the result of occluder recovery along-
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Figure 7: The output of the occluder-recovery algorithm

presented in Section 4 in the experimental setting, along-

side the ground-truth occluder. This is the occluder recov-

ery used in the reconstruction shown in the second row of

Figure 8.

Figure 8: Still frames from reconstructed videos under a va-

riety of different experimental settings. Top row: the scene

is a cartoon video, playing on an LCD monitor. Middle

row: the scene is a moving man, illuminated by 200W of di-

rected lighting. Bottom: the results of Saunders et al. [21],

presented for comparison. The results of Saunders et al.

demonstrate the potential improvement over our result when

the form of the occluder is known. See Subsec. 7.2 for fur-

ther discussion.

side its ground-truth counterpart. This recovered occluder

is used for scene reconstruction in the live-action experi-

ment in Figure 8.

8. Conclusion

This work is the first, to our knowledge, to study blind,

fully uncalibrated non-line-of-sight imaging in the passive

setting and produce experimental results. We believe that

many of the most practical NLoS systems in the future will

be uncalibrated, because in a wide variety of settings, most

notably automatic driving systems in traffic, one cannot rely

on having detailed preknowledge of the surrounding envi-

ronment. Real-world scenes are constantly changing; we

believe that work on NLoS systems should reflect that real-

ity.

However, we believe that an enormous amount of

progress is still possible on this new problem. In particu-

lar, our results remain quite low-resolution, and to achieve

them we had to introduce a high level of illumination (about

200W of lighting over an area of 2-3m—we believe this is

comparable to a scene in direct sunlight with the observa-

tion in direct shadow, but at this moment the comparison re-

mains speculative, and this represents much stronger light-

ing than would be typical of an indoor scene). We hope

that future work will be able to solve the problem of blind

occluder-based imaging in real-world settings with much

dimmer lighting; indeed, we believe that such progress will

be necessary for these kinds of systems to prove useful in

practice.

Additionally, we note that our occluder-recovery al-

gorithm had more difficulty recovering more complex

occluders—which is unfortunate, since past work [30, 16]

shows more complex occluders to lead to more favorable

reconstructions in general. Whether or not this represents

a fundamental tradeoff, or whether future blind occluder-

recovery algorithms will be able to recover complex occlud-

ers as easily as simple ones, remains to be seen.

Moreover, the algorithm we present here could probably

be adapted to a wider variety of settings without too much

difficulty. In particular, it could be very interesting to see

our algorithm adapted to the setting in which the occluder

and observation plane are perpendicular (such as a tree cast-

ing shadows on the ground). Our algorithm as presented

won’t work in this case, but we don’t think that this natural

extension of the problem is any harder in principle.

It would also be very natural to extend this work to the

scenario where the scene is fixed, but the occluder is mov-

ing. We explored this possibility, but found it difficult to

get good results from the first step of the algorithm, i.e.

estimating the fixed scene. This fixed hidden scene in the

modified problem is substantially less constrained than the

fixed occluder in the original problem, since it can take on a

wide range of values across three color channels, making it

harder to infer. However, we consider this to be a promising

direction for future research.
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