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Abstract

In this paper, we propose a new generative model for
multi-agent trajectory data, focusing on the case of multi-
player sports games. Our model leverages graph neu-
ral networks (GNNs) and variational recurrent neural net-
works (VRNNs) to achieve a permutation equivariant model
suitable for sports. On two challenging datasets (basketball
and soccer), we show that we are able to produce more ac-
curate forecasts than previous methods. We assess accuracy
using various metrics, such as log-likelihood and “best of
N loss, based on N different samples of the future. We
also measure the distribution of statistics of interest, such
as player location or velocity, and show that the distribu-
tion induced by our generative model better matches the
empirical distribution of the test set. Finally, we show that
our model can perform conditional prediction, which lets
us answer counterfactual questions such as “how will the
players move if A passes the ball to B instead of C?”

1. Introduction

Multi-agent systems are widespread in the real world. In
many applications, we would like to learn a model of the
interaction between the agents, which we can use to predict
plausible future behaviors. The challenges involve model-
ing the interactions in a parsimonious way, and coping with
the inherent multi-modality of future prediction.

In this paper, we focus on the case of modeling trajec-
tory data collected from multi-player sports games, namely
basketball [41] and soccer [23]. Our model uses graph-
structured variational RNNs, which are based off methods
from graph neural networks (reviewed in [3]) with varia-
tional recurrent neural networks [7]. The use of a graph,
with one node per agent, ensures the model is permutation
equivariant, which is necessary since each game segment
corresponds to an unordered set of K trajectories, where
K is the number of players in the game. Previous works,
such as [10, 44], use various heuristics to assign players to
roles, thereby fixing an agent ordering across games, but
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Ground truth Possible futures for the blue player
Figure 1. Illustration of basketball (top) and soccer (bottom) data.
We visualize possible futures, predicted from our model, for the
blue player given ground truth locations of the other agents. The

black point indicates the starting position for each agent; the gray-
highlight indicates which of the locations are given.

we show that our approach produces better results, since
roles can change dynamically. We also show that the use
of a variational RNN, as opposed to a deterministic RNN,
is helpful (at least in the case of basketball) since there is
often stochasticity in the latent dynamics of the players be-
yond the kind of short-term variation one can capture with
observation-level noise.

In addition to improving the basic model, we propose
a variety of metrics for evaluating the quality of generative
forecasting models (cf. [35]). In particular, beyond the stan-
dard use of log-likelihood and “best of K™ loss [5, 26, 31],
we propose to evaluate the marginal distributions of features
of interest, such as the player locations and speeds, based
on ground truth trajectories as well as generated trajecto-
ries. We show that simple models, such as constant veloc-
ity, can outperform more complex models, such as RNNs,
when judged by the standard metrics, but not when judged
by these distributional similarity metrics.

Finally, we consider the case of conditional prediction, in
which some aspects of the future are observed (and poten-
tially manipulated), and some are predicted. For example,
Fig. 1 shows the predicted trajectory of the blue player given
the other players, and Fig. 6 shows the predicted trajectories
of all the players if we “intervene” and modify the trajectory
of the ball. This is a step towards answering counter-factual
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queries, such as “What would happen if player A passed the
ball to player B instead of player C?”

In summary, we propose an improved generative model
for multi-player sports data. Moreover, we perform exten-
sive quantitative and qualitative analysis of this model and
compare to prior work on two challenging datasets, namely
basketball and soccer. ' ?

2. Graph Variational RNN for Sports

Problem formulation: Let x; € R? denote the 2-
dimensional location of agent k at time ¢, and let x; =
(X},...,X}) be a corresponding trajectory. Finally, let
x = {x1,...,Xk } be an unordered set of trajectories, cor-
responding to one segment of a game, i.e., a play, where K
is the number of agents in this segment, and let D = {x}
subsume all the segments. Our goal is to learn a model of
the trajectories, i.e., p(xi%).

VRNNs: Our model builds on the Variational RNN
(VRNN) [7]. VRNNSs have three types of variables: the
observed output x* = x! ., the stochastic variational auto-
encoder (VAE) state z* = z! -, and the deterministic RNN
hidden state h* = h%_,., which summarizes the past history
of observations x=* and stochastic choices z<‘. At a high
level, a VRNN is a VAE at every time step, characterized by
the following distributions and the RNN update equation:

po(2'|x<",25") = N(2"| i, (075)°)

452" [x=1,250) = N (2" |line, (0760)%)

P X<, 25) = N (!, (040)?)  (gemeration),
Rt = frnn(xtaztvht_l) (

(prior),

inference),

recurrence),

where

'Data Source: STATS, copyright 2019. Available: https://www.
stats.com/data-science/.

2 We note that, as far as we know, our paper is the first to actually model
the dynamics of the ball in basketball. Previous methods ignored the ball
and focused only on the players.

(b) ©

Figure 2. (a): Illustration of the overall approach. Each agents’ trajectory is processed through a GRU with shared parameters, while
keeping its own individual recurrent state. The graph encoder and decoder models the relationship between agents, and finally outputting
the predicted movement of each agent. (b,c): Detailed illustration of the GNNe¢pe and GNNecoder ON two agents; We use a diamond shape
to indicate the value is deterministic, and use a circle to indicate the variable is stochastic. e represent edge states and o represent updated
node (output) states.

[Hf)ri? Ugri] = fpri(ht_l; 6)7
[“znm a-gnc] = fenc (Xtv ht_l; (b)a
[Méec’ Uéec] = fdec(zt7 htil; 9)3

and N (-|p,0?) denotes a multivariate normal distribu-
tion with mean p and covariance matrix diag(o?). Here,
fpri> fene, and fgec are deep nets corresponding to the prior
network, encoder and decoder with learnable parameters ¢
and 6.

VRNNSs are trained by maximizing the evidence lower
bound (ELBO):

Z ZEq¢(zt|x§f7z<t) llogpg(xt|x<t,zgt) -

xeD t

DKL(%(ZtX<t»z<t)llpo(ztlx<taZ<t))1- ey

With Gaussians for the prior and posterior, we can leverage
the reparameterization trick to optimize this objective with
stochastic gradient descent (SGD), as discussed in [19].
Consistent representation: This standard VRNN formula-
tion implicitly encapsulates the ordering of the agents in the
index k. However our data consists of unordered sets of tra-
Jjectories, and so does not contain this information. In this
section, we discuss the importance of having a consistent
ordering.

Consider a dataset with two plays, each with two agents
in an “arbitrary agent order”:

D, = {{u,xﬁ”l, 2, <]}, {12, [zxé”]}}.

The superscript in parenthesis indicates the play number,
and the ordering index is paired together with the agent lo-
cation in brackets, i.e., x; is index 1 and X5 is index 2 for
both examples. We also consider another agent order:

D, = {{u,xﬁ% 2]}, {2, %2, [Lxé”]}}.
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Typically, in a deep net, the representation of x is the con-
catenation of x; and x» along the agent dimension. Ob-
serve that the representation for D; and D is different and
nothing encourages the same model probabilities.

In order to build a consistent model, i.e., the modeled
probability is the same for D; and D5, we need to handle
this ordering discrepancy. Prior works [10, 27, 34] have
proposed to solve this consistency problem by “sorting” the
agents. At a high level, similar behaving agents are placed
at the same agent index. Instead, here, we advocate for a
permutation-equivariant representation, i.e., a permutation
at the input leads to the same permutation at the output.
Consequently, the change in agent ordering does not impact
the modeled probability. One family of models that satisfy
this permutation equivariance property are graph networks,
introduced in the following section.

Graph networks: The basic idea of graph neural nets, sum-
marized in [3], is as follows: we start with a feature vector
for each node v;. We then derive a feature vector for each
edge e;; based on the nodes it is connected to. Afterwards
we send the edge feature vectors as “messages” to each of
the connected nodes to compute their new output state o;.
More formally, a single round of message passing opera-
tions of a graph net are characterized below:

v — e C(Lj) = fe([vivvj])v (2)
e—v: 0 = fu( Z e(m‘))7 3)
JEN(4)

where v; is the initial state of node i, o, is the updated (out-
put) representation for node i, N () is the set of neighbors
of node i, e(; ;) is the representation for edge (i,7), and
lastly f. and f, are deep networks.

In summary, a GNN takes in feature vectors vi.x, and
an adjacency matrix, A, and outputs a vector for each node,
01.x, that is, 01.x = GNN(vy.x ). Here, we consider fully
connected graphs only, and thus drop A for simplicity.

Observe that the operations of the GNN satisfy the per-

mutation equivariance property as the edge construction is
symmetric between pairs of nodes and the summation oper-
ator ignores the ordering of the edges (cf. [42]).
Graph VRNNs: We now describe our proposed Graph
Variational RNN (GVRNN) model. An overview of the
proposed model is illustrated in Fig. 2. Our model has inde-
pendent RNNs and observations for each agent. We model
interactions between them at each step using GNNs, where
each node is an agent, and the graph is fully connected.’

More precisely, the distributions in Eq. (1) and RNN up-

3 Although the graph is fully connected, the “effective strength” of each
edge is computed dynamically, which is similar to the approach of graph
attention networks [36].

date are define as follows:
po(2'[x=",2%") = [T N (@' 1 gor (i) )
k
4o (2 [x=",2") = [ [N (& |t 0 (0ne.)?);
2
po(x|x<*,25") = [TV (< e or (Tdeee) )
k
hl, = fon (XL, 25, R,
where
[me,LKv Uﬁri,LK] = GNNpri(hE%%

[Au'énc,l:Kv o'énc,l:K] = GNNGHC([Xi:KW hﬁ_Kl'D7

[Au'(tlec,l:Kv Uéec,l:K] = GNNdeC([Zi:KW hi_Kl'D

In Fig. 2 (b,c) we illustrate the computation of the en-
coder and decoder for a two agent case. Here, the prior net-
work, encoder, and decoder are chosen to be GNNs. Note
that, while the RNN state for agent k, ht, only depends di-
rectly on quantities related to k (i.e., hi, z! and x}), these
quantities do depend indirectly on the other agents through
the GNNGs.

In practice, the model generates the change in coordi-

nates at each step, Ax}, and then computes x}, = fol +
Ax!. Also, we use as input to the GNNs the previous ob-
servations, xtl_é as well as the previous RNN states, htfl%
This is a form of “skip connection,” which we found to
slightly improve performance. We have also tried adding a
GNN to model direct interaction between the h}; nodes, but
this did not improve performance, and slowed down train-
ing, so we omit this.
Adding type information: The graph network is com-
pletely exchangeable between agents, but sometimes this is
too strong an assumption. For example, players and balls
often move very differently. One way to achieve partial ex-
changeability is to use type information. Specifically, we
can use a different kind of node function f, for each type of
node, and a different kind of edge function f. for every pair
of node type. However, to avoid the quadratic explosion in
the number of parameters, we choose instead to use a single
edge function. But to make it “type aware” we add an em-
bedding t; ; depending on the edge type and node type t;,
e.g., a one-hot vector. Consequently, our message passing
operations are:

v—e: eqj) = fel[Vis Vi, tigl), “4)
e—v: 0; :fr[)([ Z e(iwj),tl‘:|). (5)
JEN(3)

In the experiments, we show that adding type information
improves the performance.
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Approach Order NLL L2 (Avg) Lo (Best) Max-Lo (Best) Miss Rate (%) Cond. Lo (Best)
Velocity - - 1040 +£.03 10.40 + .03 17.20 + .04 742 + .10 13.87 + .06
RNN Random -2171 13.72 £ .04 13.72 + .04 25.21 £.09 82.8 + .04 14.23 4+ .06
RNN Template -2308 1146 £.05 1146+ .05 20.93 £ .12 79.7 £ .05 12.04 £ .04
RNN Tree -2318 11.554+.05 11.55+ .05 21.03 + .12 80.2 + .05 11.69 £+ .04
GRNN-Diag Equivariant -2252 1075+ .02  10.75 £ .02 16.97 + .04 82.7 + .05 13.10 + .05
GRNN-Full Equivariant -2363 1233+ .03  12.33 +£.03 19.53 + .05 86.8 + .05 13.65 + .05
GRNNT-Diag  Equivariant -2374 09.70 .02  09.70 £+ .02 16.73 + .05 75.9 +£ .05 12.18 + .05
GRNNT-Full Equivariant -2264 11.24 +.03 11.24 + .03 19.07 £ .07 79.6 £+ .06 12.20 4+ .04
VRNN Random <-2667 1052 +£.12  09.59 £ .06 16.44 + 21 76.0 £ .05 11.36 £+ .05
VRNN Template <-2750  09.44 +£ .01 09.02 £.02 15.51 £ .06 71.5 £ .08 09.79 £ .04
VRNN Tree <-2748 09.88 £.01 09.40 + .02 16.05 £+ .05 72.8 £ .05 09.83 + .04
GVRNN-Diag  Equivariant < -2814 11.09 +.01 08.86 .02 14.26 + .03 72.4 £ .08 09.02 £+ .03
GVRNN-Full Equivariant < -2814 10.71 £.01 08.39 £ .02 13.46 + .03 69.1 +.08 08.63 + .03
GVRNNT-Diag Equivariant <-2818 09.51 +.01 08.87 £+ .02 15.17 £+ .06 70.6 £+ .08 10.63 £+ .04
GVRNNT-Full Equivariant < -2832 10.374+.01 08.26 + .02 13.46 + .04 68.6 + .06 07.88 .03

Table 1. Quantitative results on basketball dataset modeling offensive players and ball. We report mean and standard deviation of the mean
(sample size is 13,845). Lower numbers are better. Bold is the best and italics is second best. For conditional generation (last column), the
task is to predict the ball’s trajectory conditioned on the offensive players. The L2 metrics have the units of feet.

3. Related Work

Multi-agent modeling for sports: Learning based meth-
ods have demonstrated success in predictive modeling for
a variety of sports, including basketball, soccer, Ameri-
can football, water-polo, etc. Commonly employed for-
mulations are regression, e.g., predicting future trajecto-
ries [9, 23, 25, 44], and classification, e.g., event detec-
tion [38], most of which leverage deep nets. More specif-
ically, for basketball, [10] proposed to use a conditional
variational autoencoder, which personalizes the agent’s be-
havior by conditioning on player and team identity. How-
ever, a different network architecture is necessary for each
time horizon prediction. A recurrent network solves this
issue. In [43, 44] the challenge of modeling long sequen-
tial data is addressed by decomposing the task into “micro”
and “macro” goals, capturing short-term and long-term be-
havior separately via a recurrent net. In [10, 43, 44], the
agents are first pre-processed into a specific “order,” using
template-based or tree-based methods [27, 34]. The idea is
to sort “similarly” behaving agents into the same bin so as
to obtain a consistent representation. In contrast, we use
a permutation-equivariant representation based on graphs,
that avoids the needs for such preprocessing. We show be-
low that this results in improved performance.

Pedestrian trajectory forecasting: There is a large lit-
erature on modeling of pedestrian movements. Most re-
cent works, e.g., [1, 15, 24, 30, 40] focus on effectively
aggregating information across a large number of people.
For aggregation, specialized pooling modules are often
used [1, 15, 24, 40]. Interestingly, [4] showed that a sim-
ple baseline of an RNN with an MLP decoder outperformed
many of these prior works on the TrajNet benchmark [32].
Generative and time series models: In [I1], auto-
regressive RNNs have shown good forecasting performance

for simple 1d time series, such as sales data. However,
for multi-dimensional data, the use of latent variables often
gives improved performance, as shown in [7]. Various other
time series models have been proposed. For example, [22]
and [12] propose nonlinear stochastic state space models,
where the latent states at each time step do not depend on
past model outputs, unlike an RNN. In [17], a sequence-
to-sequence model is presented, where there is only one la-
tent sample per sequence. Similarly, [37] uses a conditional
VAE, which predicts future pixel trajectories given a sin-
gle image. In contrast, in our model, we have a latent state
per time step with dependencies on the past model output,
which follows the structure of a variational RNN in [7].

Graph neural networks: To model interactions between
variables, graph neural networks (GNN) [33] have been pro-
posed. A plethora of variants exist, including Interaction
Network [2], Message Passing Network [13], Graph Con-
volutional Network [21] and others [16, 28, 36, 42]. A sum-
mary is provided in [3]. GNNs have recently been applied
to many datasets, including sports trajectory data. In par-
ticular, [20] modeled pick-and-roll basketball data using a
latent graph. However, the focus of their approach is to dis-
cover the underlying latent graph. Another relevant work
is [16], who applied GNNs to soccer data. However, their
model predicts from a single frame and does not model past
trajectories, whereas we use temporal history and a stochas-
tic model of the future.

4. Experimental Evaluation

In this section, we compare our model to various base-
lines on two datasets: modeling of basketball and soccer
game trajectories.
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Figure 3. Quantitative results for basketball dataset with the distributional metrics evaluated on the offensive players and ball model
visualized in box-plot, the dashed-line indicates the mean. Refer to the y-axis for the specific statistic being visualized. The barplots are
ordered as follows: Ground truth, GVRNNT-Full, GVRNNT-Diag, VRNN with template ordering.

4.1. Models

We compare our approach to several deep learning base-
lines. For the non-permutation equivariant models, we eval-
uate on two ordering methods, a template-based method and
a tree-based method [34].

Velocity: As a sanity check, we used velocity extrapolation
as a simple baseline, i.e., each of the agent’s predictions is
linearly extrapolated using its past observed velocity.
RNN: A recurrent neural net baseline implemented using a
gated recurrent unit [6]. The model uses an MLP-decoder
for prediction, rather than the output-gate of the RNN. This
is a simple, yet effective baseline shown in [4].

VRNN: A variational version of the above RNN.

GVRNN (Ours): A graph variational recurrent neural net,
either with a fully connected graph (Full) or a graph con-
taining only self-loops, i.e., a diagonal adjacency matrix
(Diag). In the latter case, we do not model interaction be-
tween the agents; the model is still permutation-equivariant.
GVRNNT (Ours): GVRNN extended with agent types.
Training Details:We train all the models using the Adam
optimizer [ 18] with default parameters. The initial learning
rate is 0.0005. We decay the learning rate exponentially by
a factor of 0.999 per epoch. All models are trained using
teacher forcing [39], and the reparameterization-trick with
random sample size of 1 is used. All fully connected layers
are initialized using Xavier initialization [14]. To prevent
over-fitting, we select the best performing model using log-
likelihood on the validation set.

4.2. Evaluation Metrics:

Due to the difficult nature of evaluating a generative
model, we evaluate on several different metrics to demon-
strate the efficacy of our approach.

Negative Log-Likelihood (NLL): We report the negative
log-likelihood on the test set, — 23;2 log p(xt|z**~1). For
the deterministic baselines the NLL is exact. For the varia-
tional models, we report the negative ELBO, which is an up-
per bound on the NLL (indicated by the < symbol). Unfor-

e |l_w |
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Ground truth | GVRNNT-Full | GVRNNT-Diag | VRNN-Template
Figure 4. Top: Average location of players sampled from leave-
one-out generation for each model. Bottom: Average location
of the ball sampled conditioned on the players from each model.
At a glance, GVRNNT-Full’s map matches the ground truth more
closely for both player and ball, which is confirmed with the quan-
titative evaluation in Tab. 2.

Approach Player-SKL Player-JS | Ball-SKL Ball-JS
VRNN-Template |  0.0068 0.0017 | 0.3556 0.0954
GVRNNT-Diag 0.0084 0.0020 | 0.3985 0.1080
GVRNNT-Full 0.0036 0.0009 | 0.2658 0.0713

Table 2. Basketball’s quantitative comparison of each models’
heatmap in Fig. 4 with the ground truth. We evaluate on two differ-
ent divergences, where SKL refers to Symmetric KL-divergence,
and JSD refers to Jensen-Shannon divergence.

tunately, such bounds are not directly comparable between
methods, and tighter bounds do not necessarily lead to bet-
ter performance [29], so we also report several other more
informative metrics detailed below.

Mean and best Lo-error: We evaluate the models on the
task of future prediction, i.e., conditioned on the first 10
frames of all agents’ trajectories we predict an additional 40
frames. We report the Lo-error (in feet or meters) between
the predicted and the ground truth. Due to the multimodal
nature of the system, for each test case, we randomly sample
N = 10 trajectories and report the average or the best of the
samples. More precisely, we compute the Lo-error between
the ground truth and the n’th generated sample £ using:

1 T K
B = e IR -
t=1 k=1
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Figure 5. First row: We visualize the first 10 and 50 frames
of the trajectory (ball is in orange). Second row: negative log
posterior predictive for ball location at ¢ = 11 for for GVRNNT-
Full, GVRNNT-Diag and VRNN-Template. Third row: Bayesian
surprise for ball location at t = 11 for GVRNNT-Full, GVRNNT-
Diag and VRNN-Template.

10

We then report the average, % Zn LY, and the best,
min,, L7, as is standard practice [5, 26, 31].

Max Ly-error (Best): We also compute the average, over
agents, maximum Ls-error between the prediction and the
ground truth trajectory:

1 T sn,t

K pax 1X, =%l

For each test case, we sample N = 10 random trajectories
from the model and report the best, min,, M™.

Miss rate: This denotes the percentage of predictions hav-
ing an Lo-error greater than 3 feet for basketball and 1 me-
ter for soccer. This is reported on the best out of 10 random
samples per example.

Conditional Lo-error (Best): We evaluate on conditional
generation. For example, we condition on all the players’
trajectories and predict the ball trajectory. We report the
lowest Lo error out of 10 random samples for each test case.
This metric is used to evaluate whether the model learned
relations among the agents in the system.

Distributional metrics: To measure properties of the over-
all distribution of trajectories x = x}%., we compute the
marginal distributions of 8 univariate statistics, denoted
$1(x), ..., ¢s(x) namely: linear/ angular velocity/ accel-
eration of player/ ball; we also compute the marginal distri-
bution over agent locations, ¢;(x) € R?. We then compare
the distribution of these statistics induced by various gen-
erative models to the true (empirical) distribution induced
by the test set. We do this informally via boxplots of the
distributions pg(¢;(x)) and p.(¢;(x)) for each of the 8 uni-

e 7
K 'oR 0N "0
— ] ‘20z
f 3 o GVRNNT-Full
k | = | . ——
we
T ReR e
~ r% i / 1 1 I/I
s o GVRNNT-Diag
’“ Z\\S"o‘%’o‘%”o
| M P
GT-modified | —/‘< by E -/‘f

VRNN-Template

Figure 6. Illustration of a “counter-factual” experiment. Solid "va
por trails” correspond to past trajectories until the time when we
perform an intervention by modifying ball trajectory (orange), col-
ored trails correspond to subsequent trajectories. We then compute
3 different future trajectories for all the players for each model.
See text for details.

variate statistics, where py is a learned model and p, is the
true (empirical) test distribution. For the 2d location dis-
tributions, we use heatmaps as a visualization method, and
quantitatively compare the distributions using two similar-
ity metrics, namely symmetric Kullback-Leibler (KL) di-
vergence and Jensen-Shannon divergence.

4.3. Modeling Basketball Dynamics

We use the basketball dataset from [41, 43], which con-
tains tracking trajectories of professional basketball play-
ers and the ball. We use the pre-processed version of the
dataset. Each example is sampled at 6Hz for 50 frames
(roughly 8 seconds), with the offense team always going
towards the left-side of the court. In total the dataset con-
tains 107,146 training and 13,845 test examples. The data
is centered and normalized to be within [—1, 1].
Trajectory metrics: In Tab. 1, we report the quantitative
results for modeling the offensive players and the ball. It
can be observed that our GVRNNT-Full model outperforms
all the others on all metrics except for average L,. However,
that metric is not particularly informative, since it does not
measure sample diversity. We also observe that the constant
velocity baseline outperforms the simple RNN with fixed
ordering (template or tree based) on all metrics except for
predicting the ball.

We performed several ablation studies verifying the ne-
cessity of each of the components. For the non-graph
models, we observed that random ordering performs the
worst, then tree-based ordering, then template-based or-
dering. Graph-based models outperform all of these non-
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Approach Order NLL L2 (Avg) Lo (Best) Max-Lo (Best) Miss Rate (%) Cond. Lo (Best)
Velocity - - 458 +£.02 4.58 +.02 8.72 £ .05 80.0 + .13 10.74 £+ .09
RNN Random -5244 3334+ .01 3.33+.01 7.05 +.03 69.5 + .08 09.10 &+ .09
RNN Template -5350 317+ .01 3.17 £+ .01 6.68 + .04 67.6 + .08 08.58 £ .09
RNN Tree -5353 320+ .01 3.20£.01 6.74 £+ .03 68.5 + .08 08.18 .08
GRNN-Diag Equivariant -5221 437 4+.02 437 +.01 8.40 + .06 79.7 £ .09 10.99 £+ .13
GRNN-Full Equivariant -5292 4.55+.03 4.554+.02 8.34 £+ .05 78.9 £+ .11 11.79 + .13
GRNNT-Diag  Equivariant -5333 3.16 + .01 3.16 +£.03 6.54 + .03 67.9 + .09 08.77 £ .09
GRNNT-Full Equivariant -5349 3.05+.01 3.05+.01 6.32 +.03 67.3 £ .09 08.02 4+ .07
VRNN Random <-5238 398+.01 3974.01 8.95+ .04 72.6 + .07 09.17 £ .09
VRNN Template <-5579 436+.09 3.384+.02 7.43 + .11 65.1 +£.09 12.10 £ .14
VRNN Tree <-5569 357+.01 342+.02 7.46 + .04 65.8 £ .09 1241 £+ .14
GVRNN-Diag  Equivariant <-5207 335+.01 3.11+£.01 6.47 + .03 65.2.09 8.95 + .08
GVRNN-Full Equivariant <-5369 3.25+ .01 3.254 .01 6.80 + .03 66.9 + .09 8.55+ .10
GVRNNT-Diag Equivariant <-5438 3.60+.01 3.11+£.01 6.39 + .04 64.5 + .08 7.77 £ .10
GVRNNT-Full Equivariant <-5325 3.17+.01 3.07 +£.02 6.49 + .08 66.8 + .09 7.61 + .13

Table 3. Quantitative results on soccer dataset modeling offensive players (without the goal keeper) and ball. For conditional generation,
the task is to predict the ball’s trajectory conditioned on the offensive players. The L2 metrics are measured in meters.

equivariant models. Furthermore, by comparing GVRNNT-
Full and GVRNNT-Diag, we observed that the graph net-
work is indeed learning relations between the agents. By
comparing GVRNNT-Full and GVRNN-Full, we demon-
strate that including agent types leads to further improve-
ment in performance. Finally, we see that variational mod-
els outperform ones that only have stochasticity at the out-
put nodes.

Distributional metrics: Next, we report the distributional
metrics. Fig. 3 shows boxplots illustrating the distribution
of the 8 statistics of interest. In general, our GVRNNT-Full
model (orange) better matches the true distribution (blue)
than GVRNNT-Diag (green), which is comparable in per-
formance to a vanilla VRNN (red). Note that although the
constant velocity baseline performs well for the metrics in
Tab. 1, it performs poorly in terms of boxplots for certain
statistics, such as the acceleration of an agent (results not
shown). This illustrates the importance of using multiple
performance metrics.

Location heatmaps: Fig. 4 shows the 2d marginal distri-
bution of the agent locations as a heatmap. These distri-
butions are generated from the averages of leave-one-out
conditional generation, i.e., predict an agent’s trajectory
conditioned on all other agents. Visually it appears that
GVRNNT-Full better matches the true marginal distribution
than GVRNNT-Diag and VRNN-Template. We quantify
this in Tab. 2 where we report on two different divergence
metrics, symmetric KL and Jensen-Shannon, applied to the
heatmaps.

Qualitative samples: In Fig. 1, we visualize random sam-
ples generated from our model. We observe that our ap-
proach successfully generates a variety of possible trajecto-
ries, consistent with our expectation that the trajectories are
multimodal in nature.

Predicting the ball location: Most prior works on bas-
ketball modeling, such as [10, 43, 44], only predict player

locations. Here we assess the model’s ability to predict
future ball locations, which is much harder. To visual-
ize this, we plot the negative log posterior predictive, i.e.,
—log p(xh|x1t-1), where b is the ball index, for each pos-
sible ball location (value of wg). This is shown in Fig. 5
for 3 different models: GVRNNT-Full, GVRNNT-Diag and
VRNN. Unfortunately these plots are not particularly infor-
mative, due to the Gaussian assumption of p(z§|x1t-1). A
more insightful way to measure the predictive ability of la-
tent variable models is to use the “Bayesian surprise” metric
of [8], defined as follows:

Dy (g (2 [x=",25")||po (2" [x~",2~")).

This indicates how “surprised” the model is at observing
x' given past observations x<'. We use x' = (x},x! p)
where we clamp x} to all possible ball locations, and us-
ing the ground truth locations for the K players. The re-
sults are shown in Fig. 5 (third row). Without modeling the
interactions (middle), the surprise as a function of future
ball location behaves like a Gaussian decay, with a higher
density along the current velocity direction. However, the
GVRNNT-full model (left) takes into account the player po-
sition and models a higher density towards the players. This
demonstrates that the graph component successfully models
the agents’ relations.

Counter-factual predictions: Lastly, we assess the abili-
ties for “counter-factual” reasoning by modifying the ball
trajectory. In particular, in Fig. 6, we modified the ground
truth so that instead of passing the ball (dotted orange tra-
jectory) to the blue player (top), the pass goes to the green
player (bottom). We observe that with the GVRNNT-Full
model, the green player runs towards the ball. Instead, in the
GVRNNT-Diag and VRNN model, the green player simply
follows the original trajectory.
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Figure 7. Quantitative results for soccer dataset with the distributional metrics evaluated on the offensive players and ball model visualized
in box-plot, the dashed-line indicates the mean. Refer to the y-axis for the specific statistic being visualized. The barplots are ordered as
follows: Ground truth, GVRNNT-Full, GVRNNT-Diag, RNN with template ordering.

Ground truth | GVRNNT-Full| GRNNT-Full |RNN-Template
Figure 8. Top: Average location of soccer players sampled from
leave-one-out generation for each model. Bottom: Average lo-
cation of the ball sampled conditioned on the players from each
model. We provide quantitative comparisons in Tab. 4.

Approach Player-SKL Player-JS | Ball-SKL Ball-JS
RNN-Template 0.0018 0.00049 | 0.2136  0.0708
GRNNT-Full 0.0016 0.00045 | 0.1910  0.0571
GVRNNT-Full 0.0017 0.00044 | 0.1853  0.0535

Table 4. Soccer’s quantitative comparison of each models’
heatmap with the ground truth evaluated on the offensive players
and the ball.

4.4. Modelling Soccer Dynamics

To demonstrate the generality of our approach, we apply
it to the soccer dataset [23]. It contains trajectories of soc-
cer players and the ball from a professional soccer league’s
game play. A total of 7500 sequences are in the training and
the test set. As the split does not contain a validation set, we
randomly sampled 10% of the training set to be the valida-
tion set. The sequences are of variable length sampled at
10Hz. We preprocess the data into segments of length 50
by using a sliding window with 50% overlap on both the
training and test set. The trajectories are centered and nor-
malized to be in the range of [—1, 1]. We do not model the
goal-keeper as the goal keepers tend to move little.
Trajectory metrics: We evaluate the predictions for the
offensive players and the ball. The results are shown in
Tab. 3. We observe that tree-based ordering performs on
par with template-based ordering, and permutation equiv-
ariant models with edge types outperform all baselines.
Surprisingly, variational models did not outperform non-

variational models on all metrics, unlike for basketball. We
hypothesize that soccer dynamics, due to the bigger field
and higher sampling rate, contain less stochasticity. Play-
ers tend to run more linearly compared to basketball, see
Fig. 1. This is also supported by the results in Tab. 4,
where we show that the variational model does better than
the non-variational model at representing the distribution of
ball locations, which is quite complex, but the two methods
perform similarly when representing the player locations,
which is much simpler.

Distributional metrics: In Fig. 7, we show the boxplots
of the 8 statistics for the soccer dataset. In general, all 3
models perform similarly. None of them properly model
the player’s acceleration, perhaps because rapid accelera-
tion is a sparse and bursty phenomenon not well captured
by a Gaussian likelihood.

Location Heatmaps: In Fig. 8, we show the marginal dis-
tributions of agent locations as 2d heatmaps. We see that the
ball is much less predictable than the players. We also see
that all models capture the player distribution, but the ball
is best modeled using GVRNNT-Full. This is quantified in
Tab. 4.

5. Conclusion

We address the problem of generative modeling for
multi-agent systems, focusing on sports applications. Mo-
tivated by the challenges in role-based approaches, we in-
vestigate permutation-equivariant (graph-based) stochastic
temporal models. Empirically, we demonstrate the ef-
fectiveness of each of the proposed components in our
GVRNNT model. Additionally, we propose several new
evaluation metrics that quantify the quality of the generated
samples at a distribution level. These metrics provide addi-
tional insights beyond the average prediction error in player
locations and pave the way for future research.
Acknowledgments: This work is supported in part by NSF under
Grant No. 1718221, Samsung, 3M and a Google PhD Fellowship
to RY. We thank NVIDIA for providing GPUs used for this work.
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