
Diverse Generation for Multi-agent Sports Games

Raymond A. Yeh Alexander G. Schwing Jonathan Huang† Kevin Murphy†

University of Illinois at Urbana-Champaign
†Google Research

yeh17@illinois.edu, aschwing@illinois.edu, jonathanhuang@google.com, kpmurphy@google.com

Abstract

In this paper, we propose a new generative model for

multi-agent trajectory data, focusing on the case of multi-

player sports games. Our model leverages graph neu-

ral networks (GNNs) and variational recurrent neural net-

works (VRNNs) to achieve a permutation equivariant model

suitable for sports. On two challenging datasets (basketball

and soccer), we show that we are able to produce more ac-

curate forecasts than previous methods. We assess accuracy

using various metrics, such as log-likelihood and “best of

N” loss, based on N different samples of the future. We

also measure the distribution of statistics of interest, such

as player location or velocity, and show that the distribu-

tion induced by our generative model better matches the

empirical distribution of the test set. Finally, we show that

our model can perform conditional prediction, which lets

us answer counterfactual questions such as “how will the

players move if A passes the ball to B instead of C?”

1. Introduction

Multi-agent systems are widespread in the real world. In

many applications, we would like to learn a model of the

interaction between the agents, which we can use to predict

plausible future behaviors. The challenges involve model-

ing the interactions in a parsimonious way, and coping with

the inherent multi-modality of future prediction.

In this paper, we focus on the case of modeling trajec-

tory data collected from multi-player sports games, namely

basketball [41] and soccer [23]. Our model uses graph-

structured variational RNNs, which are based off methods

from graph neural networks (reviewed in [3]) with varia-

tional recurrent neural networks [7]. The use of a graph,

with one node per agent, ensures the model is permutation

equivariant, which is necessary since each game segment

corresponds to an unordered set of K trajectories, where

K is the number of players in the game. Previous works,

such as [10, 44], use various heuristics to assign players to

roles, thereby fixing an agent ordering across games, but

Ground truth Possible futures for the blue player

Figure 1. Illustration of basketball (top) and soccer (bottom) data.

We visualize possible futures, predicted from our model, for the

blue player given ground truth locations of the other agents. The

black point indicates the starting position for each agent; the gray-

highlight indicates which of the locations are given.

we show that our approach produces better results, since

roles can change dynamically. We also show that the use

of a variational RNN, as opposed to a deterministic RNN,

is helpful (at least in the case of basketball) since there is

often stochasticity in the latent dynamics of the players be-

yond the kind of short-term variation one can capture with

observation-level noise.

In addition to improving the basic model, we propose

a variety of metrics for evaluating the quality of generative

forecasting models (cf . [35]). In particular, beyond the stan-

dard use of log-likelihood and “best of K” loss [5, 26, 31],

we propose to evaluate the marginal distributions of features

of interest, such as the player locations and speeds, based

on ground truth trajectories as well as generated trajecto-

ries. We show that simple models, such as constant veloc-

ity, can outperform more complex models, such as RNNs,

when judged by the standard metrics, but not when judged

by these distributional similarity metrics.

Finally, we consider the case of conditional prediction, in

which some aspects of the future are observed (and poten-

tially manipulated), and some are predicted. For example,

Fig. 1 shows the predicted trajectory of the blue player given

the other players, and Fig. 6 shows the predicted trajectories

of all the players if we “intervene” and modify the trajectory

of the ball. This is a step towards answering counter-factual

14610

11/15/2018 pipeline_v7

1/1

Shared Weights

+

Recurrence

Sampling

11/15/2018 pipeline_v7

1/1

Shared Weights

+

Recurrence

Sampling

11/17/2018 pipeline_v7

1/1

Shared Weights

+

Recurrence

Sampling

(a) (b) (c)

Figure 2. (a): Illustration of the overall approach. Each agents’ trajectory is processed through a GRU with shared parameters, while

keeping its own individual recurrent state. The graph encoder and decoder models the relationship between agents, and finally outputting

the predicted movement of each agent. (b,c): Detailed illustration of the GNNenc and GNNdecoder on two agents; We use a diamond shape

to indicate the value is deterministic, and use a circle to indicate the variable is stochastic. e represent edge states and o represent updated

node (output) states.

queries, such as “What would happen if player A passed the

ball to player B instead of player C?”

In summary, we propose an improved generative model

for multi-player sports data. Moreover, we perform exten-

sive quantitative and qualitative analysis of this model and

compare to prior work on two challenging datasets, namely

basketball and soccer. 1 2

2. Graph Variational RNN for Sports

Problem formulation: Let x
t
k ∈ R

2 denote the 2-

dimensional location of agent k at time t, and let xk =
(x1

k, . . . ,x
T
k) be a corresponding trajectory. Finally, let

x = {x1, . . . ,xK} be an unordered set of trajectories, cor-

responding to one segment of a game, i.e., a play, where K

is the number of agents in this segment, and let D = {x}
subsume all the segments. Our goal is to learn a model of

the trajectories, i.e., p(x1:T
1:K).

VRNNs: Our model builds on the Variational RNN

(VRNN) [7]. VRNNs have three types of variables: the

observed output xt = x
t
1:K , the stochastic variational auto-

encoder (VAE) state z
t = z

t
1:K , and the deterministic RNN

hidden state ht = ht
1:K , which summarizes the past history

of observations x
≤t and stochastic choices z

≤t. At a high

level, a VRNN is a VAE at every time step, characterized by

the following distributions and the RNN update equation:

pθ(z
t|x<t, z<t) = N (zt|µt

pri, (σ
t
pri)

2) (prior),

qφ(z
t|x≤t, z<t) = N (zt|µt

enc, (σ
t
enc)

2) (inference),

pθ(x
t|x<t, z≤t) = N (xt|µt

dec, (σ
t
dec)

2) (generation),

ht = frnn(x
t, zt, ht−1) (recurrence),

where

1Data Source: STATS, copyright 2019. Available: https://www.

stats.com/data-science/.
2 We note that, as far as we know, our paper is the first to actually model

the dynamics of the ball in basketball. Previous methods ignored the ball

and focused only on the players.

[µt
pri,σ

t
pri] = fpri(h

t−1; θ),

[µt
enc,σ

t
enc] = fenc(x

t, ht−1;φ),

[µt
dec,σ

t
dec] = fdec(z

t, ht−1; θ),

and N (·|µ,σ2) denotes a multivariate normal distribu-

tion with mean µ and covariance matrix diag(σ2). Here,

fpri, fenc, and fdec are deep nets corresponding to the prior

network, encoder and decoder with learnable parameters φ

and θ.

VRNNs are trained by maximizing the evidence lower

bound (ELBO):

∑

x∈D

∑

t

Eqφ(zt|x≤t,z<t)

[

log pθ(x
t|x<t, z≤t)−

DKL(qφ(z
t|x≤t, z<t)||pθ(z

t|x<t, z<t))

]

. (1)

With Gaussians for the prior and posterior, we can leverage

the reparameterization trick to optimize this objective with

stochastic gradient descent (SGD), as discussed in [19].

Consistent representation: This standard VRNN formula-

tion implicitly encapsulates the ordering of the agents in the

index k. However our data consists of unordered sets of tra-

jectories, and so does not contain this information. In this

section, we discuss the importance of having a consistent

ordering.

Consider a dataset with two plays, each with two agents

in an “arbitrary agent order”:

D1 =

{

{[1,x
(1)
1], [2,x

(1)
2]}, {[1,x

(2)
1], [2,x

(2)
2]}

}

.

The superscript in parenthesis indicates the play number,

and the ordering index is paired together with the agent lo-

cation in brackets, i.e., x1 is index 1 and x2 is index 2 for

both examples. We also consider another agent order:

D2 =

{

{[1,x
(1)
1], [2,x

(1)
2]}, {[2,x

(2)
1], [1,x

(2)
2]}

}

.

4611

Typically, in a deep net, the representation of x is the con-

catenation of x1 and x2 along the agent dimension. Ob-

serve that the representation for D1 and D2 is different and

nothing encourages the same model probabilities.

In order to build a consistent model, i.e., the modeled

probability is the same for D1 and D2, we need to handle

this ordering discrepancy. Prior works [10, 27, 34] have

proposed to solve this consistency problem by “sorting” the

agents. At a high level, similar behaving agents are placed

at the same agent index. Instead, here, we advocate for a

permutation-equivariant representation, i.e., a permutation

at the input leads to the same permutation at the output.

Consequently, the change in agent ordering does not impact

the modeled probability. One family of models that satisfy

this permutation equivariance property are graph networks,

introduced in the following section.

Graph networks: The basic idea of graph neural nets, sum-

marized in [3], is as follows: we start with a feature vector

for each node vi. We then derive a feature vector for each

edge eij based on the nodes it is connected to. Afterwards

we send the edge feature vectors as “messages” to each of

the connected nodes to compute their new output state oi.

More formally, a single round of message passing opera-

tions of a graph net are characterized below:

v → e : e(i,j) = fe([vi, vj]), (2)

e → v : oi = fv

(

∑

j∈N(i)

e(i,j)

)

, (3)

where vi is the initial state of node i, oi is the updated (out-

put) representation for node i, N(i) is the set of neighbors

of node i, e(i,j) is the representation for edge (i, j), and

lastly fe and fv are deep networks.

In summary, a GNN takes in feature vectors v1:K , and

an adjacency matrix, A, and outputs a vector for each node,

o1:K , that is, o1:K = GNN(v1:K). Here, we consider fully

connected graphs only, and thus drop A for simplicity.

Observe that the operations of the GNN satisfy the per-

mutation equivariance property as the edge construction is

symmetric between pairs of nodes and the summation oper-

ator ignores the ordering of the edges (cf . [42]).

Graph VRNNs: We now describe our proposed Graph

Variational RNN (GVRNN) model. An overview of the

proposed model is illustrated in Fig. 2. Our model has inde-

pendent RNNs and observations for each agent. We model

interactions between them at each step using GNNs, where

each node is an agent, and the graph is fully connected.3

More precisely, the distributions in Eq. (1) and RNN up-

3 Although the graph is fully connected, the “effective strength” of each

edge is computed dynamically, which is similar to the approach of graph

attention networks [36].

date are define as follows:

pθ(z
t|x<t, z<t) =

∏

k

N (zt|µt
pri,k, (σ

t
pri,k)

2),

qφ(z
t|x≤t, z<t) =

∏

k

N (zt|µt
enc,k, (σ

t
enc,k)

2),

pθ(x
t|x<t, z≤t) =

∏

k

N (xt|µt
dec,k, (σ

t
dec,k)

2),

ht
k = frnn(x

t
k, z

t
k, h

t−1
k),

where

[µt
pri,1:K ,σt

pri,1:K] = GNNpri(h
t−1
1:K),

[µt
enc,1:K ,σt

enc,1:K] = GNNenc([x
t
1:K , ht−1

1:K]),

[µt
dec,1:K ,σt

dec,1:K] = GNNdec([z
t
1:K , ht−1

1:K]).

In Fig. 2 (b,c) we illustrate the computation of the en-

coder and decoder for a two agent case. Here, the prior net-

work, encoder, and decoder are chosen to be GNNs. Note

that, while the RNN state for agent k, ht
k, only depends di-

rectly on quantities related to k (i.e., ht
k, ztk and x

t
k), these

quantities do depend indirectly on the other agents through

the GNNs.

In practice, the model generates the change in coordi-

nates at each step, ∆x
t
k, and then computes x

t
k = x

t−1
k +

∆x
t
k. Also, we use as input to the GNNs the previous ob-

servations, xt−1
1:K , as well as the previous RNN states, ht−1

1:K .

This is a form of “skip connection,” which we found to

slightly improve performance. We have also tried adding a

GNN to model direct interaction between the ht
k nodes, but

this did not improve performance, and slowed down train-

ing, so we omit this.

Adding type information: The graph network is com-

pletely exchangeable between agents, but sometimes this is

too strong an assumption. For example, players and balls

often move very differently. One way to achieve partial ex-

changeability is to use type information. Specifically, we

can use a different kind of node function fv for each type of

node, and a different kind of edge function fe for every pair

of node type. However, to avoid the quadratic explosion in

the number of parameters, we choose instead to use a single

edge function. But to make it “type aware” we add an em-

bedding ti,j depending on the edge type and node type ti,

e.g., a one-hot vector. Consequently, our message passing

operations are:

v → e : e(i,j) = fe([vi, vj , ti,j]), (4)

e → v : oi = fv

([

∑

j∈N(i)

e(i,j), ti

])

. (5)

In the experiments, we show that adding type information

improves the performance.

4612

Approach Order NLL L2 (Avg) L2 (Best) Max-L2 (Best) Miss Rate (%) Cond. L2 (Best)

Velocity - - 10.40 ± .03 10.40 ± .03 17.20 ± .04 74.2 ± .10 13.87 ± .06

RNN Random -2171 13.72 ± .04 13.72 ± .04 25.21 ± .09 82.8 ± .04 14.23 ± .06

RNN Template -2308 11.46 ± .05 11.46 ± .05 20.93 ± .12 79.7 ± .05 12.04 ± .04

RNN Tree -2318 11.55 ± .05 11.55 ± .05 21.03 ± .12 80.2 ± .05 11.69 ± .04

GRNN-Diag Equivariant -2252 10.75 ± .02 10.75 ± .02 16.97 ± .04 82.7 ± .05 13.10 ± .05

GRNN-Full Equivariant -2363 12.33 ± .03 12.33 ± .03 19.53 ± .05 86.8 ± .05 13.65 ± .05

GRNNT-Diag Equivariant -2374 09.70 ± .02 09.70 ± .02 16.73 ± .05 75.9 ± .05 12.18 ± .05

GRNNT-Full Equivariant -2264 11.24 ± .03 11.24 ± .03 19.07 ± .07 79.6 ± .06 12.20 ± .04

VRNN Random ≤ -2667 10.52 ± .12 09.59 ± .06 16.44 ± .21 76.0 ± .05 11.36 ± .05

VRNN Template ≤ -2750 09.44 ± .01 09.02 ± .02 15.51 ± .06 71.5 ± .08 09.79 ± .04

VRNN Tree ≤ -2748 09.88 ± .01 09.40 ± .02 16.05 ± .05 72.8 ± .05 09.83 ± .04

GVRNN-Diag Equivariant ≤ -2814 11.09 ± .01 08.86 ± .02 14.26 ± .03 72.4 ± .08 09.02 ± .03

GVRNN-Full Equivariant ≤ -2814 10.71 ± .01 08.39 ± .02 13.46 ± .03 69.1 ± .08 08.63 ± .03

GVRNNT-Diag Equivariant ≤ -2818 09.51 ± .01 08.87 ± .02 15.17 ± .06 70.6 ± .08 10.63 ± .04

GVRNNT-Full Equivariant ≤ -2832 10.37 ± .01 08.26 ± .02 13.46 ± .04 68.6 ± .06 07.88 ± .03

Table 1. Quantitative results on basketball dataset modeling offensive players and ball. We report mean and standard deviation of the mean

(sample size is 13,845). Lower numbers are better. Bold is the best and italics is second best. For conditional generation (last column), the

task is to predict the ball’s trajectory conditioned on the offensive players. The L2 metrics have the units of feet.

3. Related Work

Multi-agent modeling for sports: Learning based meth-

ods have demonstrated success in predictive modeling for

a variety of sports, including basketball, soccer, Ameri-

can football, water-polo, etc. Commonly employed for-

mulations are regression, e.g., predicting future trajecto-

ries [9, 23, 25, 44], and classification, e.g., event detec-

tion [38], most of which leverage deep nets. More specif-

ically, for basketball, [10] proposed to use a conditional

variational autoencoder, which personalizes the agent’s be-

havior by conditioning on player and team identity. How-

ever, a different network architecture is necessary for each

time horizon prediction. A recurrent network solves this

issue. In [43, 44] the challenge of modeling long sequen-

tial data is addressed by decomposing the task into “micro”

and “macro” goals, capturing short-term and long-term be-

havior separately via a recurrent net. In [10, 43, 44], the

agents are first pre-processed into a specific “order,” using

template-based or tree-based methods [27, 34]. The idea is

to sort “similarly” behaving agents into the same bin so as

to obtain a consistent representation. In contrast, we use

a permutation-equivariant representation based on graphs,

that avoids the needs for such preprocessing. We show be-

low that this results in improved performance.

Pedestrian trajectory forecasting: There is a large lit-

erature on modeling of pedestrian movements. Most re-

cent works, e.g., [1, 15, 24, 30, 40] focus on effectively

aggregating information across a large number of people.

For aggregation, specialized pooling modules are often

used [1, 15, 24, 40]. Interestingly, [4] showed that a sim-

ple baseline of an RNN with an MLP decoder outperformed

many of these prior works on the TrajNet benchmark [32].

Generative and time series models: In [11], auto-

regressive RNNs have shown good forecasting performance

for simple 1d time series, such as sales data. However,

for multi-dimensional data, the use of latent variables often

gives improved performance, as shown in [7]. Various other

time series models have been proposed. For example, [22]

and [12] propose nonlinear stochastic state space models,

where the latent states at each time step do not depend on

past model outputs, unlike an RNN. In [17], a sequence-

to-sequence model is presented, where there is only one la-

tent sample per sequence. Similarly, [37] uses a conditional

VAE, which predicts future pixel trajectories given a sin-

gle image. In contrast, in our model, we have a latent state

per time step with dependencies on the past model output,

which follows the structure of a variational RNN in [7].

Graph neural networks: To model interactions between

variables, graph neural networks (GNN) [33] have been pro-

posed. A plethora of variants exist, including Interaction

Network [2], Message Passing Network [13], Graph Con-

volutional Network [21] and others [16, 28, 36, 42]. A sum-

mary is provided in [3]. GNNs have recently been applied

to many datasets, including sports trajectory data. In par-

ticular, [20] modeled pick-and-roll basketball data using a

latent graph. However, the focus of their approach is to dis-

cover the underlying latent graph. Another relevant work

is [16], who applied GNNs to soccer data. However, their

model predicts from a single frame and does not model past

trajectories, whereas we use temporal history and a stochas-

tic model of the future.

4. Experimental Evaluation

In this section, we compare our model to various base-

lines on two datasets: modeling of basketball and soccer

game trajectories.

4613

Figure 3. Quantitative results for basketball dataset with the distributional metrics evaluated on the offensive players and ball model

visualized in box-plot, the dashed-line indicates the mean. Refer to the y-axis for the specific statistic being visualized. The barplots are

ordered as follows: Ground truth, GVRNNT-Full, GVRNNT-Diag, VRNN with template ordering.

4.1. Models

We compare our approach to several deep learning base-

lines. For the non-permutation equivariant models, we eval-

uate on two ordering methods, a template-based method and

a tree-based method [34].

Velocity: As a sanity check, we used velocity extrapolation

as a simple baseline, i.e., each of the agent’s predictions is

linearly extrapolated using its past observed velocity.

RNN: A recurrent neural net baseline implemented using a

gated recurrent unit [6]. The model uses an MLP-decoder

for prediction, rather than the output-gate of the RNN. This

is a simple, yet effective baseline shown in [4].

VRNN: A variational version of the above RNN.

GVRNN (Ours): A graph variational recurrent neural net,

either with a fully connected graph (Full) or a graph con-

taining only self-loops, i.e., a diagonal adjacency matrix

(Diag). In the latter case, we do not model interaction be-

tween the agents; the model is still permutation-equivariant.

GVRNNT (Ours): GVRNN extended with agent types.

Training Details:We train all the models using the Adam

optimizer [18] with default parameters. The initial learning

rate is 0.0005. We decay the learning rate exponentially by

a factor of 0.999 per epoch. All models are trained using

teacher forcing [39], and the reparameterization-trick with

random sample size of 1 is used. All fully connected layers

are initialized using Xavier initialization [14]. To prevent

over-fitting, we select the best performing model using log-

likelihood on the validation set.

4.2. Evaluation Metrics:

Due to the difficult nature of evaluating a generative

model, we evaluate on several different metrics to demon-

strate the efficacy of our approach.

Negative Log-Likelihood (NLL): We report the negative

log-likelihood on the test set, −
∑T

t=2 log p(x
t|x1:t−1). For

the deterministic baselines the NLL is exact. For the varia-

tional models, we report the negative ELBO, which is an up-

per bound on the NLL (indicated by the ≤ symbol). Unfor-

Ground truth GVRNNT-Full GVRNNT-Diag VRNN-Template

Figure 4. Top: Average location of players sampled from leave-

one-out generation for each model. Bottom: Average location

of the ball sampled conditioned on the players from each model.

At a glance, GVRNNT-Full’s map matches the ground truth more

closely for both player and ball, which is confirmed with the quan-

titative evaluation in Tab. 2.

Approach Player-SKL Player-JS Ball-SKL Ball-JS

VRNN-Template 0.0068 0.0017 0.3556 0.0954

GVRNNT-Diag 0.0084 0.0020 0.3985 0.1080

GVRNNT-Full 0.0036 0.0009 0.2658 0.0713

Table 2. Basketball’s quantitative comparison of each models’

heatmap in Fig. 4 with the ground truth. We evaluate on two differ-

ent divergences, where SKL refers to Symmetric KL-divergence,

and JSD refers to Jensen-Shannon divergence.

tunately, such bounds are not directly comparable between

methods, and tighter bounds do not necessarily lead to bet-

ter performance [29], so we also report several other more

informative metrics detailed below.

Mean and best L2-error: We evaluate the models on the

task of future prediction, i.e., conditioned on the first 10

frames of all agents’ trajectories we predict an additional 40

frames. We report the L2-error (in feet or meters) between

the predicted and the ground truth. Due to the multimodal

nature of the system, for each test case, we randomly sample

N = 10 trajectories and report the average or the best of the

samples. More precisely, we compute the L2-error between

the ground truth and the n’th generated sample x̂n using:

Ln
2 =

1

T ·K

T
∑

t=1

K
∑

k=1

||x̂n,t
k − x

t
k||2.

4614

GT’s first 10 frames Complete GT

GVRNNT-Full GVRNNT-Diag VRNN-Template
Figure 5. First row: We visualize the first 10 and 50 frames

of the trajectory (ball is in orange). Second row: negative log

posterior predictive for ball location at t = 11 for for GVRNNT-

Full, GVRNNT-Diag and VRNN-Template. Third row: Bayesian

surprise for ball location at t = 11 for GVRNNT-Full, GVRNNT-

Diag and VRNN-Template.

We then report the average, 1
N

∑

n L
n
2 , and the best,

minn L
n
2 , as is standard practice [5, 26, 31].

Max L2-error (Best): We also compute the average, over

agents, maximum L2-error between the prediction and the

ground truth trajectory:

Mn =
1

K

K
∑

k=1

T
max
t=1

||x̂n,t
k − x

t
k||2.

For each test case, we sample N = 10 random trajectories

from the model and report the best, minn M
n.

Miss rate: This denotes the percentage of predictions hav-

ing an L2-error greater than 3 feet for basketball and 1 me-

ter for soccer. This is reported on the best out of 10 random

samples per example.

Conditional L2-error (Best): We evaluate on conditional

generation. For example, we condition on all the players’

trajectories and predict the ball trajectory. We report the

lowest L2 error out of 10 random samples for each test case.

This metric is used to evaluate whether the model learned

relations among the agents in the system.

Distributional metrics: To measure properties of the over-

all distribution of trajectories x = x
1:T
1:K , we compute the

marginal distributions of 8 univariate statistics, denoted

φ1(x), . . . , φ8(x) namely: linear/ angular velocity/ accel-

eration of player/ ball; we also compute the marginal distri-

bution over agent locations, φl(x) ∈ R
2. We then compare

the distribution of these statistics induced by various gen-

erative models to the true (empirical) distribution induced

by the test set. We do this informally via boxplots of the

distributions pθ(φi(x)) and p∗(φi(x)) for each of the 8 uni-

GT

GVRNNT-Full

GT-modified

GVRNNT-Diag

VRNN-Template
Figure 6. Illustration of a “counter-factual” experiment. Solid ”va-

por trails” correspond to past trajectories until the time when we

perform an intervention by modifying ball trajectory (orange), col-

ored trails correspond to subsequent trajectories. We then compute

3 different future trajectories for all the players for each model.

See text for details.

variate statistics, where pθ is a learned model and p∗ is the

true (empirical) test distribution. For the 2d location dis-

tributions, we use heatmaps as a visualization method, and

quantitatively compare the distributions using two similar-

ity metrics, namely symmetric Kullback-Leibler (KL) di-

vergence and Jensen-Shannon divergence.

4.3. Modeling Basketball Dynamics

We use the basketball dataset from [41, 43], which con-

tains tracking trajectories of professional basketball play-

ers and the ball. We use the pre-processed version of the

dataset. Each example is sampled at 6Hz for 50 frames

(roughly 8 seconds), with the offense team always going

towards the left-side of the court. In total the dataset con-

tains 107,146 training and 13,845 test examples. The data

is centered and normalized to be within [−1, 1].
Trajectory metrics: In Tab. 1, we report the quantitative

results for modeling the offensive players and the ball. It

can be observed that our GVRNNT-Full model outperforms

all the others on all metrics except for average L2. However,

that metric is not particularly informative, since it does not

measure sample diversity. We also observe that the constant

velocity baseline outperforms the simple RNN with fixed

ordering (template or tree based) on all metrics except for

predicting the ball.

We performed several ablation studies verifying the ne-

cessity of each of the components. For the non-graph

models, we observed that random ordering performs the

worst, then tree-based ordering, then template-based or-

dering. Graph-based models outperform all of these non-

4615

Approach Order NLL L2 (Avg) L2 (Best) Max-L2 (Best) Miss Rate (%) Cond. L2 (Best)

Velocity - - 4.58 ± .02 4.58 ± .02 8.72 ± .05 80.0 ± .13 10.74 ± .09

RNN Random -5244 3.33 ± .01 3.33 ± .01 7.05 ± .03 69.5 ± .08 09.10 ± .09

RNN Template -5350 3.17 ± .01 3.17 ± .01 6.68 ± .04 67.6 ± .08 08.58 ± .09

RNN Tree -5353 3.20 ± .01 3.20 ± .01 6.74 ± .03 68.5 ± .08 08.18 ± .08

GRNN-Diag Equivariant -5221 4.37 ± .02 4.37 ± .01 8.40 ± .06 79.7 ± .09 10.99 ± .13

GRNN-Full Equivariant -5292 4.55 ± .03 4.55 ± .02 8.34 ± .05 78.9 ± .11 11.79 ± .13

GRNNT-Diag Equivariant -5333 3.16 ± .01 3.16 ± .03 6.54 ± .03 67.9 ± .09 08.77 ± .09

GRNNT-Full Equivariant -5349 3.05 ± .01 3.05 ± .01 6.32 ± .03 67.3 ± .09 08.02 ± .07

VRNN Random ≤ -5238 3.98 ± .01 3.97 ± .01 8.95 ± .04 72.6 ± .07 09.17 ± .09

VRNN Template ≤ -5579 4.36 ± .09 3.38 ± .02 7.43 ± .11 65.1 ± .09 12.10 ± .14

VRNN Tree ≤ -5569 3.57 ± .01 3.42 ± .02 7.46 ± .04 65.8 ± .09 12.41 ± .14

GVRNN-Diag Equivariant ≤ -5207 3.35 ± .01 3.11 ± .01 6.47 ± .03 65.2 .09 8.95 ± .08

GVRNN-Full Equivariant ≤ -5369 3.25 ± .01 3.25 ± .01 6.80 ± .03 66.9 ± .09 8.55 ± .10

GVRNNT-Diag Equivariant ≤ -5438 3.60 ± .01 3.11 ± .01 6.39 ± .04 64.5 ± .08 7.77 ± .10

GVRNNT-Full Equivariant ≤ -5325 3.17 ± .01 3.07 ± .02 6.49 ± .08 66.8 ± .09 7.61 ± .13

Table 3. Quantitative results on soccer dataset modeling offensive players (without the goal keeper) and ball. For conditional generation,

the task is to predict the ball’s trajectory conditioned on the offensive players. The L2 metrics are measured in meters.

equivariant models. Furthermore, by comparing GVRNNT-

Full and GVRNNT-Diag, we observed that the graph net-

work is indeed learning relations between the agents. By

comparing GVRNNT-Full and GVRNN-Full, we demon-

strate that including agent types leads to further improve-

ment in performance. Finally, we see that variational mod-

els outperform ones that only have stochasticity at the out-

put nodes.

Distributional metrics: Next, we report the distributional

metrics. Fig. 3 shows boxplots illustrating the distribution

of the 8 statistics of interest. In general, our GVRNNT-Full

model (orange) better matches the true distribution (blue)

than GVRNNT-Diag (green), which is comparable in per-

formance to a vanilla VRNN (red). Note that although the

constant velocity baseline performs well for the metrics in

Tab. 1, it performs poorly in terms of boxplots for certain

statistics, such as the acceleration of an agent (results not

shown). This illustrates the importance of using multiple

performance metrics.

Location heatmaps: Fig. 4 shows the 2d marginal distri-

bution of the agent locations as a heatmap. These distri-

butions are generated from the averages of leave-one-out

conditional generation, i.e., predict an agent’s trajectory

conditioned on all other agents. Visually it appears that

GVRNNT-Full better matches the true marginal distribution

than GVRNNT-Diag and VRNN-Template. We quantify

this in Tab. 2 where we report on two different divergence

metrics, symmetric KL and Jensen-Shannon, applied to the

heatmaps.

Qualitative samples: In Fig. 1, we visualize random sam-

ples generated from our model. We observe that our ap-

proach successfully generates a variety of possible trajecto-

ries, consistent with our expectation that the trajectories are

multimodal in nature.

Predicting the ball location: Most prior works on bas-

ketball modeling, such as [10, 43, 44], only predict player

locations. Here we assess the model’s ability to predict

future ball locations, which is much harder. To visual-

ize this, we plot the negative log posterior predictive, i.e.,

− log p(xt
b|x

1:t−1
1:K), where b is the ball index, for each pos-

sible ball location (value of xt
b). This is shown in Fig. 5

for 3 different models: GVRNNT-Full, GVRNNT-Diag and

VRNN. Unfortunately these plots are not particularly infor-

mative, due to the Gaussian assumption of p(xt
b|x

1:t−1
1:K). A

more insightful way to measure the predictive ability of la-

tent variable models is to use the “Bayesian surprise” metric

of [8], defined as follows:

DKL(qφ(z
t|x≤t, z<t)||pθ(z

t|x<t, z<t)).

This indicates how “surprised” the model is at observing

x
t given past observations x

<t. We use x
t = (xt

b,x
t
1:P)

where we clamp x
t
b to all possible ball locations, and us-

ing the ground truth locations for the K players. The re-

sults are shown in Fig. 5 (third row). Without modeling the

interactions (middle), the surprise as a function of future

ball location behaves like a Gaussian decay, with a higher

density along the current velocity direction. However, the

GVRNNT-full model (left) takes into account the player po-

sition and models a higher density towards the players. This

demonstrates that the graph component successfully models

the agents’ relations.

Counter-factual predictions: Lastly, we assess the abili-

ties for “counter-factual” reasoning by modifying the ball

trajectory. In particular, in Fig. 6, we modified the ground

truth so that instead of passing the ball (dotted orange tra-

jectory) to the blue player (top), the pass goes to the green

player (bottom). We observe that with the GVRNNT-Full

model, the green player runs towards the ball. Instead, in the

GVRNNT-Diag and VRNN model, the green player simply

follows the original trajectory.

4616

Figure 7. Quantitative results for soccer dataset with the distributional metrics evaluated on the offensive players and ball model visualized

in box-plot, the dashed-line indicates the mean. Refer to the y-axis for the specific statistic being visualized. The barplots are ordered as

follows: Ground truth, GVRNNT-Full, GVRNNT-Diag, RNN with template ordering.

Ground truth GVRNNT-Full GRNNT-Full RNN-Template

Figure 8. Top: Average location of soccer players sampled from

leave-one-out generation for each model. Bottom: Average lo-

cation of the ball sampled conditioned on the players from each

model. We provide quantitative comparisons in Tab. 4.

Approach Player-SKL Player-JS Ball-SKL Ball-JS

RNN-Template 0.0018 0.00049 0.2136 0.0708

GRNNT-Full 0.0016 0.00045 0.1910 0.0571

GVRNNT-Full 0.0017 0.00044 0.1853 0.0535

Table 4. Soccer’s quantitative comparison of each models’

heatmap with the ground truth evaluated on the offensive players

and the ball.

4.4. Modelling Soccer Dynamics

To demonstrate the generality of our approach, we apply

it to the soccer dataset [23]. It contains trajectories of soc-

cer players and the ball from a professional soccer league’s

game play. A total of 7500 sequences are in the training and

the test set. As the split does not contain a validation set, we

randomly sampled 10% of the training set to be the valida-

tion set. The sequences are of variable length sampled at

10Hz. We preprocess the data into segments of length 50

by using a sliding window with 50% overlap on both the

training and test set. The trajectories are centered and nor-

malized to be in the range of [−1, 1]. We do not model the

goal-keeper as the goal keepers tend to move little.

Trajectory metrics: We evaluate the predictions for the

offensive players and the ball. The results are shown in

Tab. 3. We observe that tree-based ordering performs on

par with template-based ordering, and permutation equiv-

ariant models with edge types outperform all baselines.

Surprisingly, variational models did not outperform non-

variational models on all metrics, unlike for basketball. We

hypothesize that soccer dynamics, due to the bigger field

and higher sampling rate, contain less stochasticity. Play-

ers tend to run more linearly compared to basketball, see

Fig. 1. This is also supported by the results in Tab. 4,

where we show that the variational model does better than

the non-variational model at representing the distribution of

ball locations, which is quite complex, but the two methods

perform similarly when representing the player locations,

which is much simpler.

Distributional metrics: In Fig. 7, we show the boxplots

of the 8 statistics for the soccer dataset. In general, all 3

models perform similarly. None of them properly model

the player’s acceleration, perhaps because rapid accelera-

tion is a sparse and bursty phenomenon not well captured

by a Gaussian likelihood.

Location Heatmaps: In Fig. 8, we show the marginal dis-

tributions of agent locations as 2d heatmaps. We see that the

ball is much less predictable than the players. We also see

that all models capture the player distribution, but the ball

is best modeled using GVRNNT-Full. This is quantified in

Tab. 4.

5. Conclusion

We address the problem of generative modeling for

multi-agent systems, focusing on sports applications. Mo-

tivated by the challenges in role-based approaches, we in-

vestigate permutation-equivariant (graph-based) stochastic

temporal models. Empirically, we demonstrate the ef-

fectiveness of each of the proposed components in our

GVRNNT model. Additionally, we propose several new

evaluation metrics that quantify the quality of the generated

samples at a distribution level. These metrics provide addi-

tional insights beyond the average prediction error in player

locations and pave the way for future research.

Acknowledgments: This work is supported in part by NSF under

Grant No. 1718221, Samsung, 3M and a Google PhD Fellowship

to RY. We thank NVIDIA for providing GPUs used for this work.

4617

References

[1] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei,

and S. Savarese. Social lstm: Human trajectory prediction in

crowded spaces. In Proc. CVPR, 2016. 4
[2] P. Battaglia, R. Pascanu, M. Lai, D. J. Rezende, et al. In-

teraction networks for learning about objects, relations and

physics. In Proc. NeurIPS, 2016. 4
[3] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-

Gonzalez, V. Zambaldi, M. Malinowski, A. Tacchetti, D. Ra-

poso, A. Santoro, R. Faulkner, et al. Relational inductive

biases, deep learning, and graph networks. arXiv preprint

arXiv:1806.01261, 2018. 1, 3, 4
[4] S. Becker, R. Hug, W. Hübner, and M. Arens. Red: A simple

but effective baseline predictor for the trajnet benchmark. In

Proc. ECCV Workshop, 2019. 4, 5
[5] A. Bhattacharyya, B. Schiele, and M. Fritz. Accurate and di-

verse sampling of sequences based on a best of many sample

objective. In Proc. CVPR, 2018. 1, 6
[6] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau,

F. Bougares, H. Schwenk, and Y. Bengio. Learning phrase

representations using RNN encoder-decoder for statistical

machine translation. arXiv preprint arXiv:1406.1078, 2014.

5
[7] J. Chung, K. Kastner, L. Dinh, K. Goel, A. C. Courville, and

Y. Bengio. A recurrent latent variable model for sequential

data. In Proc. NeurIPS, 2015. 1, 2, 4
[8] S. A. Eslami, D. J. Rezende, F. Besse, F. Viola, A. S. Mor-

cos, M. Garnelo, A. Ruderman, A. A. Rusu, I. Danihelka,

K. Gregor, et al. Neural scene representation and rendering.

Science, 2018. 7
[9] P. Felsen, P. Agrawal, and J. Malik. What will happen next?

forecasting player moves in sports videos. In Proc. ICCV,

2017. 4
[10] P. Felsen, P. Lucey, and S. Ganguly. Where will they go?

predicting fine-grained adversarial multi-agent motion using

conditional variational autoencoders. In Proc. ECCV, 2018.

1, 3, 4, 7
[11] V. Flunkert, D. Salinas, and J. Gasthaus. DeepAR: Prob-

abilistic forecasting with autoregressive recurrent networks.

Apr. 2017. 4
[12] M. Fraccaro, S. K. Sønderby, U. Paquet, and O. Winther.

Sequential neural models with stochastic layers. In Proc.

NeurIPS, 2016. 4
[13] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E.

Dahl. Neural message passing for quantum chemistry. In

Proc. ICML, 2017. 4
[14] X. Glorot and Y. Bengio. Understanding the difficulty of

training deep feedforward neural networks. In Proc. AIS-

TATS, 2010. 5
[15] A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi.

Social gan: Socially acceptable trajectories with generative

adversarial networks. In Proc. CVPR, 2018. 4
[16] Y. Hoshen. Vain: Attentional multi-agent predictive model-

ing. In Proc. NeurIPS, 2017. 4
[17] W.-N. Hsu, Y. Zhang, and J. Glass. Unsupervised learning of

disentangled and interpretable representations from sequen-

tial data. In Proc. NeurIPS, 2017. 4
[18] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. In Proc. ICLR, 2015. 5

[19] D. P. Kingma and M. Welling. Auto-Encoding Variational

Bayes. In Proc. ICLR, 2014. 2
[20] T. Kipf, E. Fetaya, K.-C. Wang, M. Welling, and R. Zemel.

Neural relational inference for interacting systems. In Proc.

ICML, 2018. 4
[21] T. N. Kipf and M. Welling. Semi-supervised classification

with graph convolutional networks. In Proc. ICLR, 2017. 4
[22] R. G. Krishnan, U. Shalit, and D. Sontag. Structured infer-

ence networks for nonlinear state space models. In Proc.

AAAI, 2017. 4
[23] H. M. Le, Y. Yue, and P. Carr. Coordinated multi-agent imi-

tation learning. In Proc. ICML, 2017. 1, 4, 8
[24] N. Lee, W. Choi, P. Vernaza, C. B. Choy, P. H. Torr, and

M. Chandraker. Desire: Distant future prediction in dynamic

scenes with interacting agents. In Proc. CVPR, 2017. 4
[25] N. Lee and K. M. Kitani. Predicting wide receiver trajecto-

ries in american football. In Proc. WACV, 2016. 4
[26] S. Lee, S. Purushwalkam Shiva Prakash, M. Cogswell,

V. Ranjan, D. Crandall, and D. Batra. Stochastic multiple

choice learning for training diverse deep ensembles. In Proc.

NeurIPS. 1, 6
[27] P. Lucey, A. Bialkowski, P. Carr, S. Morgan, I. Matthews,

and Y. Sheikh. Representing and discovering adversarial

team behaviors using player roles. In Proc. CVPR, 2013.

3, 4
[28] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep

learning on point sets for 3d classification and segmentation.

In Proc. CVPR, 2017. 4
[29] T. Rainforth, A. R. Kosiorek, T. A. Le, C. J. Maddison,

M. Igl, F. Wood, and Y. W. Teh. Tighter variational bounds

are not necessarily better. In Proc. ICML, 2018. 5
[30] A. Robicquet, A. Sadeghian, A. Alahi, and S. Savarese.

Learning social etiquette: Human trajectory understanding

in crowded scenes. In Proc. ECCV, 2016. 4
[31] C. Rupprecht, I. Laina, R. DiPietro, M. Baust, F. Tombari,

N. Navab, and G. D. Hager. Learning in an uncertain world:

Representing ambiguity through multiple hypotheses. In

Proc. ICCV, 2017. 1, 6
[32] A. Sadeghian, V. Kosaraju, A. Gupta, S. Savarese, and

A. Alahi. Trajnet: Towards a benchmark for human trajec-

tory prediction. arXiv preprint, 2018. 4
[33] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and

G. Monfardini. The graph neural network model. Trans.

on Neural Networks, 2009. 4
[34] L. Sha, P. Lucey, S. Zheng, T. Kim, Y. Yue, and S. Sridha-

ran. Fine-grained retrieval of sports plays using tree-based

alignment of trajectories. arXiv preprint arXiv:1710.02255,

2017. 3, 4, 5
[35] L. Theis, A. van den Oord, and M. Bethge. A note on the

evaluation of generative models. In ICLR, 2016. 1
[36] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio,

and Y. Bengio. Graph attention networks. In Proc. ICLR,

2018. 3, 4
[37] J. Walker, C. Doersch, A. Gupta, and M. Hebert. An uncer-

tain future: Forecasting from static images using variational

autoencoders. In ECCV, 2016. 4
[38] K.-C. Wang and R. Zemel. Classifying nba offensive plays

using neural networks. In Proceedings of MIT Sloan Sports

Analytics Conference, 2016. 4
[39] R. J. Williams and D. Zipser. A learning algorithm for con-

4618

tinually running fully recurrent neural networks. Neural

computation, 1989. 5
[40] Y. Xu, Z. Piao, and S. Gao. Encoding crowd interaction with

deep neural network for pedestrian trajectory prediction. In

Proc. CVPR, 2018. 4
[41] Y. Yue, P. Lucey, P. Carr, A. Bialkowski, and I. Matthews.

Learning fine-grained spatial models for dynamic sports play

prediction. In Proc. ICDM, 2014. 1, 6
[42] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R.

Salakhutdinov, and A. J. Smola. Deep sets. In Proc.

NeurIPS, 2017. 3, 4
[43] E. Zhan, S. Zheng, Y. Yue, and P. Lucey. Generative multi-

agent behavioral cloning. arXiv preprint arXiv:1803.07612,

2018. 4, 6, 7
[44] S. Zheng, Y. Yue, and J. Hobbs. Generating long-term trajec-

tories using deep hierarchical networks. In Proc. NeurIPS,

2016. 1, 4, 7

4619

