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Abstract

Despite the large volume of face recognition datasets,

there is a significant portion of subjects, of which the sam-

ples are insufficient and thus under-represented. Ignoring

such significant portion results in insufficient training data.

Training with under-represented data leads to biased classi-

fiers in conventionally-trained deep networks. In this paper,

we propose a center-based feature transfer framework to

augment the feature space of under-represented subjects

from the regular subjects that have sufficiently diverse sam-

ples. A Gaussian prior of the variance is assumed across

all subjects and the variance from regular ones are trans-

ferred to the under-represented ones. This encourages the

under-represented distribution to be closer to the regular

distribution. Further, an alternating training regimen is pro-

posed to simultaneously achieve less biased classifiers and

a more discriminative feature representation. We conduct

ablative study to mimic the under-represented datasets by

varying the portion of under-represented classes on the MS-

Celeb-1M dataset. Advantageous results on LFW, IJB-A and

MS-Celeb-1M demonstrate the effectiveness of our feature

transfer and training strategy, compared to both general

baselines and state-of-the-art methods. Moreover, our fea-

ture transfer successfully presents smooth visual interpola-

tion, which conducts disentanglement to preserve identity of

a class while augmenting its feature space with non-identity

variations such as pose and lighting.

1. Introduction

Face recognition is one of the ongoing success stories in

the deep learning era, yielding very high accuracy on several

benchmarks [12, 20, 21]. However, it remains undetermined

how deep learning classifiers for fine-grained recognition

are trained to maximally exploit real-world data. While

it is known that recognition engines are data-hungry and

∗Main part of the work is done when Xi was an intern at NEC Laborato-

ries America.
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Figure 1. Illustration of the UR data problem and our proposed

solution. (a) The data distribution of CASIA-WebFace dataset [47].

(b) Classifier weight norm varies across classes in proportion to

their volume. (c) Weight norm for regular class 1008 is larger than

UR class 10449, causing a bias in the decision boundary (dashed

line) towards ID 10449. (d) Data re-sampling solves the classifier

bias to some extent. However, the variance of ID 1008 is much

larger than ID 10449. We augment the feature space of ID 1008

(dashed ellipsoid) and propose improved training strategies, which

corrects the classifier bias and learns a better feature representation.

keep improving with more volume, mechanisms to derive

benefits from the vast diverse data are relatively unexplored.

In particular, as discussed by [18], there is a non-negligible

part of data that is under-represented (UR), where only a few

samples are available for each class.

It is evident that classifiers that ignore this UR data

likely imbibe hidden biases. Consider CASIA-Webface [47]

dataset as an example (Figure 1 (a)). About 39% of the 10K

subjects have less than 20 images. A simple solution is to

discard the UR classes, which results in insufficient training

data. Besides reduction in the volume of data, the inherently

uneven sampling leads to bias in the weight norm distribu-

tion across regular and UR classes (Figure 1 (b,c)). Sampling
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UR classes at a higher frequency alleviates the problem, but

still leads to biased decision boundaries due to insufficient

intra-class variance in UR classes (Figure 1 (d)).

In this paper, we propose Feature Transfer Learning (FTL)

to train less biased face recognition classifiers by adapting

the feature distribution of UR classes to mimic that of regular

classes. Our FTL handles such UR classes during training by

augmenting their feature space using a center-based transfer.

In particular, assuming a Gaussian prior on features with

class-specific mean and the shared variance across regular

and UR classes, we generate new samples of UR classes at

feature space, by transferring the linear combination of the

principal components of variance that are estimated from

regular classes to the UR classes.

Our feature transfer addresses the issue of imbalanced

training data. However, using the transferred data directly for

training is sub-optimal as the transfer might skew the class

distributions. Thus, we propose a training regimen that alter-

nates between carefully designed choices to solve for feature

transfer (with the goal of obtaining a less biased decision

boundary) and feature learning (with the goal of learning a

more discriminative representation) simultaneously. Besides,

we propose a novel and effective metric regularization which

contributes to the general deep training in an orthogonal way.

To study the empirical properties of our method, we con-

struct UR datasets by limiting the number of samples for

various proportions of classes in MS-Celeb-1M [12], and

evaluate on LFW [20], IJB-A [21] and the hold-out test set

from MS-Celeb-1M. We observe that our FTL consistently

improves upon baseline method that does not specifically

handle UR classes. Advantageous results over state-of-the-

art methods on LFW and IJB-A further confirm the effec-

tiveness of the feature transfer module. Moreover, our FTL

can be applied to low-shot or one-shot scenarios, where a

few samples are available for some classes. Competitive

record on MS-celeb-1M one-shot challenge [11] evidences

the advantage. Finally, we visualize our feature transfer mod-

ule through smooth feature interpolation. It shows that for

our feature representation, identity is preserved while non-

identity aspects are successfully disentangled and transferred

to the target subject.

We summarize our contributions as the following items.

• A center-based feature transfer algorithm to enrich the

distribution of UR classes, leading to diversity without

sacrificing volume. It also leads to an effective disentan-

glement of identity and non-identity representations.

• A two-stage alternative training scheme to achieve a less

biased classifier and retain discriminative power of the

feature representation.

• A simple but effective metric regularization to enhance

performance for both our method and baselines, which is

also applicable to other recognition tasks.

• Extensive ablation experiments demonstrate the effective-

ness of our FTL framework. Combining with the proposed

m-L2 regularization and other orthogonal metric learning

methods, we achieve top performance on LFW and IJB-A.

2. Related Work

Imbalanced data classification Classic works study data

re-sampling methods [1, 15], which learn unbiased classi-

fiers by changing the sampling frequency. By applying deep

neural networks [16, 22], the frontier of face recognition

research has been significantly advanced [24, 32, 42]. How-

ever, there are only few works that discuss about learning

from UR data. Huang et al. [19] propose quintuplet sampling

based hinge loss to maintain both inter-cluster and inter-class

margins. Zhang et al. [50] propose the range loss that si-

multaneously reduces intra-class variance and enlarges the

inter-class variance. However, UR classes are treated in the

same way as regular classes in the above methods. Guo and

Zhang [11] propose UR class promotion loss that regularizes

the norm of weight vectors of UR classes, which can solve

the unbalance issue to some extent. Other than designing

data sampling rules or regularization on UR classes, we aug-

ment UR classes by generating feature-level samples through

transfer of intra-class variance from regular classes, which

solves the fundamental problem of UR data.

One-shot and low-shot learning Low-shot learning aims

at recognizing an image for a specific class with very few

or even one image available at training. Some efforts are

made by enforcing strong regularization [14] or utilizing non-

parametric classification methods based on distance metric

learning [34, 39]. Generative model based methods have

also been studied in recent years. Dixit et al. [9] propose

a data augmentation method using attribute-guided feature

descriptor for generation. The method in [14] proposes non-

parametric generation of features by transferring within class

pair-wise variation from regular classes in object classifica-

tion task. Compared to their task on ImageNet [30] with

1K classes, face recognition is a fine-grained classification

problem that incorporates at least two orders of magnitude

more classes with low inter-class variance.

Feature transfer learning Transfer learning applies infor-

mation from a known domain to an unknown one [3, 4]. We

refer to [27] for further discussion. Attributes are used in [9]

to synthesize feature-level data. In [35], features are trans-

ferred from web images to video frames via a generative

adversarial network (GAN) [10]. Our method shares the

same flavor in terms of feature transfer concept. However,

compared to [35], no additional supervision is provided in

our method as it may introduce new bias. We model the

intra-class variance in a parametric way, assuming the regu-

lar classes and UR classes share the same feature variance

distribution. By transferring this shared variance, we transfer

sample features from regular classes to UR classes.
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Figure 2. Overview of our proposed FTL framework. It consists of a feature extractor Enc, a decoder Dec, a feature filter R, a fully

connected layer as classifier FC, and a feature transfer module G. The network is trained with an alternating bi-stage strategy. At stage 1

(solid arrows), we fix Enc and apply feature transfer G to generate new feature samples (blue triangles) that are more diverse to reshape the

decision boundary. In stage 2 (dashed arrows), we fix the rectified classifier FC, and update all the other models. As a result, the samples

that are originally on or across the boundary are pushed towards their center (blue arrows in bottom right). Best viewed in color.

3. The Proposed Approach

In this section, we first introduce the problems caused

by training with UR classes for face recognition (Sec. 3.1).

Then, we present the recognition backbone framework with

our proposed metric regularization (Sec. 3.2), our proposed

feature transfer framework (Sec. 3.3), and the alternating

training scheme to solve these problems (Sec. 3.4).

3.1. Limitations of Training with UR Classes

A recent work [50] shows that directly learning face rep-

resentation with UR classes results in degraded performance.

To demonstrate the problems of training with UR classes,

we train a network (CASIA-Net) on CASIA-Webface [47],

of which the data distribution is shown in Figure 1 (a).

We mainly observe two issues: (1) wildly variant classi-

fier weight norms; and (2) imbalanced intra-class variances

between regular and UR classes.

Imbalance on classifier weight norm As shown in Figure 1

(b), the norms of the classifier weights (i.e., the weights in the

last fully connected layer) of regular classes are much larger

than those of UR classes, which causes the decision boundary

biases towards the UR classes [11]. This is because the

much larger volume of regular classes lead to more frequent

weight updates than those of UR classes. To alleviate this

problem, there are typical solutions such as data re-sampling

or weight normalization [11]. However, such strategies can

not solve the fundamental problem of lacking sufficient and

diversified samples in UR classes, which is demonstrated in

the following.

Imbalance on intra-class variance As an illustrative ex-

ample, we randomly pick two classes, one regular class

(ID=1008) and one UR class (ID=10449). We visualize

the features from two classes projected onto 2D space us-

ing t-SNE [38] in Figure 1(c). Further, the feature space

after weight norm regularization is shown in Figure 1(d).

Although the weight norms are regularized to be similar,

the low intra-class variance of the UR class still causes the

decision boundary bias problem.

Based on these observations, we posit that enlarging the

intra-class variance for UR classes is the key to alleviate

these imbalance issues. Therefore, we propose a feature

transfer learning approach that generates extra samples for

UR classes to enlarge the intra-class variance. As illustrated

in Figure 1(d), the feature distribution augmented by the

virtual samples (blue triangles) helps to rectify the classifier

decision boundary and learn a better representation.

3.2. The Proposed Framework

Most recent success in deep face recognition works on

novel losses or regularizations [7, 24, 31, 32, 34], which aim

at improving model generalization. In contrast, our method

focuses on enlarging intra-class variance of UR classes by

transferring knowledge from regular classes. At first glance,

our goal of diversifying features seems to contradict with

the general premise of face recognition frameworks, i.e.,

pursuing compact features. In fact, we enlarge the intra-class

variance of UR classes at a lower level feature space, which

we term as rich-feature layer [13]. The subsequent filtering

layers will learn a more discriminative representation.

As illustrated in Figure 2, the proposed framework is

composed of several modules including an encoder, decoder,

feature transfer module followed by filtering module and

a classifier layer. An encoder Enc computes rich features

g = Enc(x) ∈ R
320 from an input image x ∈ R

100×100

and reconstructs the input with a decoder Dec, i.e., x′ =
Dec(g) = Dec(Enc(x)) ∈ R

100×100. This pathway is

trained with the following pixel-wise reconstruction loss:

Lrecon = ‖x′ − x‖22. (1)

The reconstruction loss allows g to contain diverse non-

identity variations such as pose, expression, and lighting.

Therefore, we denote g as the rich feature space.

A filtering network R is applied to generate discriminative

identity features f = R(g) ∈ R
320 that are fed to a linear

classifier layer FC with weight matrix W = [wj]
Nc

j=1
∈
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Figure 3. Visualization of samples closest to the feature center of classes with most number of images (left) and classes with least number of

images (right). We find that near-frontal close-to-neutral faces are the nearest neighbors of the feature centers of regular classes. However,

the nearest neighbors of the feature centers of UR classes still contain pose and expression variations. Features are extracted by VGGFace

model [28] and samples are from CASIA-WebFace dataset.

R
Nc×320 where Nc is the total number of classes. This

pathway optimizes the softmax loss:

Lsfmx = − log
exp(wT

yi
f)

∑Nc

j exp(wT
j f)

, (2)

where yi is the ground-truth identity label of x.

Note that softmax loss is scale-dependent where the loss

can be made arbitrarily small by scaling the norm of the

weights wj or features f . Typical solutions to prevent this

problem are to either regularize the norm of weights1 or

features, or to normalize both of them [40]. However, we

argue that these methods are too stringent since they penalize

norms of individual weights and features without considering

their compatibility. Instead, we propose to regularize the

norm of the output of FC as following:

Lreg = ‖WT f‖22. (3)

We term the proposed regularization as metric L2 or m-

L2 regularization. As will shown in the experiment, joint

regularization on weights and features works better than

individual regularization.

Finally, we formulate the training loss in Eqn. (4), with

the following coefficients αsfmx =αrecon =1, αreg =0.25
unless otherwise stated:

L = αsfmxLsfmx + αreconLrecon + αregLreg. (4)

3.3. Feature Transfer for UR Classes

Following the Joint Bayesian face model [2], we assume

that the rich feature gik from class i lies in a Gaussian distri-

bution with a class mean ci and a covariance matrix Σi. The

class mean or center is estimated as an arithmetic average

over all features from the same class. As shown in the left

of Figure 3, the center representation of regular classes is

identity-specific while removing non-identity factors such as

pose, expression and illumination. However, as in the right

of Figure 3, due to the lack of samples, the center estimation

of UR classes is not accurate and often biased towards cer-

tain identity-irrelevant factors like pose, which we find to be

dominant in practice.

1http://ufldl.stanford.edu/wiki/index.php/

Softmax_Regression#Weight_Decay

To improve the quality of center estimation for UR classes,

we discard samples with extreme pose variation. Further-

more, we consider averaging features from both the original

and horizontally flipped images. With ḡik ∈ R
320 denoting

the rich feature extracted from the flipped image, the feature

center is estimated as follows:

ci=
1

2|Ωi|

∑

k∈Ωi

(gik+ḡik), Ωi={k | |pik|+|p̄ik| ≤ τ}, (5)

where pik and p̄ik are the estimated poses of the original and

flipped images, respectively. By bounding the summation,

we expect the yaw angle pik to be an inlier.

To transfer the intra-class variance from regular classes

to UR classes, we assume the covariance matrices are shared

across all classes, i.e., Σi =Σ. In theory, one can draw

feature samples of UR classes by adding a noise vector

ε∼N (0,Σ) to its center ci. However, the direction of the

noise vector might be too random and does not reflect the

true factors of variations found in the regular classes. There-

fore, we transfer the intra-class variance evaluated from the

samples of regular classes. First, we calculate the covariance

matrix V via:

V =

Nc∑

i=1

mi∑

k=1

(gik − ci)
T (gik − ci) (6)

where mi is the total number of samples for class i. We

perform PCA to decompose V into major components and

take the first 150 Eigenvectors as Q ∈ R
320×150, which

preserves 95% energy. Our center-based feature transfer is

achieved via:

g̃ik = ci +QQT (gjk − cj), (7)

where gjk and cj are the feature-level sample and the center

of a regular class j. ci is the feature center of an UR class

i and g̃ik is the transferred features for class i. Here, g̃ik

preserves the same identity as ci, with similar intra-class vari-

ance as gjk. By sufficiently sampling gjk across different

regular classes, we expect to obtain an enriched distribution

of the UR class i, which consists of both the original features

gik and the transferred features g̃ik.
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Stage 1: Decision boundary reshape.

Fixed models: Enc and Dec.

Training models: R and FC, using Eqn. 2 and 3.

Init [C,Q,h] = UpdateStats(), Niter = # iterations.

for i = 1, . . . , Niter do
Train 1st batch sampled from h in Dreg: {xr,yr}.

Train 2nd batch sampled from DUR: {xu,yu}.

Feature transfer: g̃u = Transfer(xr, yr, yu).

Train 3rd batch: {g̃u,yu}.
Stage 2: Compact feature learning.

Fixed models: FC.

Training models: Enc, Dec, and R, using Eqn. 4.

for i = 1, . . . , Niter do
train batch sampled from D: {x,y}.

Alternate stage 1 and 2 every Niter until convergence.

Function [C,Q,h] = UpdateStats()

Init C = [], V = [], h = [], mi = #samples in class i,

Nc = # classes, Ns = # samples in each batch.

for i = 1, . . . , Nc do

for j = 1, . . . ,mi do
gij = Enc(xij), ḡij = Enc(x̄ij)

ci =
1

2|Ωi|

∑
k∈Ωi

(gik + ḡik)

C.append(ci)

if i in Dreg then

di =
1

mi

∑
k ||gik − ci||2

for j = 1, . . . ,mi do

V += (gij − ci)
T (gij − ci)

if ||gij − ci||2 > di then
h.append([i,j])

Q = PCA(V)

Function g̃u = Transfer(xr, yr, yu)

gr = Enc(xr)
for k = 1, . . . , Ns do

cj = C(yr
k, :), ci = C(yu

k , :)
g̃u
k = ci +QQT (gr

k − cj)

Algorithm 1: Two-stage alternating training strategy.

3.4. Alternating Training Strategy

Given a training set of both regular and UR classes

D = {Dreg,DUR}, we first pre-train all modules M =
{Enc,Dec,R, FC} using Eqn. 4 without feature transfer.

Then, we alternate between the training of the classifier with

our proposed feature transfer method for decision boundary

reshape and learning a more discriminative feature represen-

tation with boundary-corrected classifier. The overview of

our two-stage alternating training process is illustrated in

Algorithm 1, which we describe in more details below.

Stage 1: Decision boundary reshape. In this stage, we

train R and FC while fixing other modules (the rich feature

space is fixed for stable feature transfer). The goal is to

reshape the decision boundary by transferring features from

regular classes to UR classes. We first update the statistics for

each regular class including the feature centers C, PCA basis

Q and an index list h of hard samples whose distances to

the feature centers exceeding the average distance. The PCA

basis Q is achieved by decomposing the covariance matrix

V computed with the samples from all regular classes Dreg .

Three batches are applied for training in each iteration: (1) a

regular batch sampled from hard index list h: {gr,yr}, to

guarantee no degradation in the performance; (2) a UR batch

sampled from UR classes {gu,yu}, to conduct the updating

similar to class-balanced sampling; (3) a transferred batch

{g̃u,yu} by transferring the variances from regular batch to

UR batch, to reshape the decision boundary.

Stage 2: Compact feature learning. In this stage, we train

Enc, Dec and R using normal batches {x,y} from both

regular and UR classes without feature transfer. We keep

FC fixed since it is already updated from the previous stage

with decision boundary correction. The gradient directly

back-propagates to R and Enc to learn a more compact

representation that reduces the violation of crossing rectified

classifier boundaries. We perform online alternation between

stage 1 and 2 for every Niter iterations until convergence.

4. Experiments

We use MS-Celeb-1M as our training set. Due to label

noise, we adopt a cleaned version from [43] and remove the

classes overlapped with LFW and IJB-A, which results in

4.8M images of 76.5K classes. A class with no more than

20 images is considered as a UR class, following [50]. A

facial key point localization method [49] is applied as the

face alignment and cropping.

We apply an encoder-decoder structure for model Enc

and Dec. Model R consists of a linear layer, two de-

convolution layers, two convolution layers and another linear

layer to obtain f ∈ R
320. Detail of the network structure is

referred to the supplementary material. Adam solver with a

learning rate of 2e−4 is used in model pre-training. A learn-

ing rate of 1e−5 is used in stage 1 and 2, which alternate for

every 5K iterations until convergence. The hyper-parameter

setting is determined by an off-line parameter search based

on a hold-out validation set.

4.1. Feature Center Estimation

Feature center estimation is a key step for feature transfer.

To evaluate center estimation for UR classes, 1K regular

classes are selected from MS-Celeb-1M and features are ex-

tracted using a pre-trained recognition model. We randomly

choose a subset of 1, 5, 10, 20 images to mimic an UR class.

Three methods are compared: (1) “PickOne”, randomly pick

one sample as center. (2) “AvgAll”, average features of all

images. (3) “AvgFlip”, proposed method in Eqn. 5. We

compute the error as the difference between the center of
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Figure 4. (a) Center estimation error comparison. (b) Illustration of

intra- and inter-class variances. Circles from small to large show the

minimum, mean and maximum distances from intra-class samples

to center. Distances are averaged across 1K classes.
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Figure 5. Toy example on MNIST to show the effectiveness of our

m-L2 regularization. Figure shows the feature distributions for

models trained without (a) and with (b) m-L2 regularization.

the full set (ground truth) and the subset (estimated), and is

normalized by the inter-class variance.

Results in Figure 4 show that our “AvgFlip” achieves a

smaller error. When compared to the intra-class variance,

the error is fairly small, which suggests that our center esti-

mation is accurate to support the feature transfer.

4.2. Effects of m-L2 Regularization

To study the effects of the proposed m-L2 regularization,

we show a toy example on the MNIST dataset [23]. We use

LeNet++ network (following [42]) to learn a 2D feature

space for better visualization. Two models are compared:

one trained with softmax loss only; the other trained with

softmax loss and m-L2 regularization (αreg = 0.001).

We have the following observations: (1) m-L2 effectively

avoids over-fitting. In Figure 5, the norm of the features in (a)

is much larger than that in (b), as increasing the feature norm

can reduce softmax loss, which may cause over-fitting. (2)

m-L2 enforces a more balanced feature distribution, where

Figure 5 (b) shows a more balanced angular distribution

than that in (a). On the MNIST testing set, the performance

with m-L2 improves sfmx from 99.06% to 99.35%. More-

over, the testing accuracy with m-L2 improves sfmx and

sfmx+ L2 from 98.60% and 98.53% to 99.37% on LFW

as in Table 3. Note that m-L2 is a general regularization

which is orthogonal to our main claim in this paper, that can

be easily adapted to other recognition frameworks.

(a)

(b)
Figure 6. Center visualization. (a) one sample image from the

selected class; (b) the decoded image from the feature center.

4.3. Ablation Study

We study the impact of the ratio between the portion of

regular classes and the portion of UR classes on training

a face recognition system. To construct the exact regular

and UR classes, we use the top 60K regular classes, which

contain the most images from MS-Celeb-1M. Further, the

top 10K classes are selected as regular classes which are

shared among all training sets. We regard the 10K and 60K

sets as the lower and upper bounds. Among the rest 50K

classes sorted by the number of images, we select the first

10K, 30K and 50K and randomly pick 5 images per class.

In this way, we form the training set of 10K10K, 10K30K,

and 10K50K, of which the first 10K are regular and the last

10K or 30K or 50K are called faked UR classes. A hold-out

testing set is formed by selecting 5 images from each of the

shared 10K regular classes and 10K UR classes.

The evaluation on the hold out test set from MS-Celeb-

1M is to mimic low-shot learning, where we use the feature

center from the training images as the gallery and nearest

neighbor (NN) for face matching. The rank-1 accuracy for

both regular and UR classes are reported. We also evaluate

the recognition performance on LFW and IJB-A. The results

are shown in Table 1 and we draw the following observations.

• The rich feature space g is less discriminative than the

feature space f , which validates our intuition that g is rich

in intra-class variance for feature transfer while f is more

discriminative for face recognition.

• The proposed m-L2 regularization boosts the performance

with a large margin over the baseline softmax loss.

• The proposed FTL method consistently improves over

softmax and sfmx+m-L2 with significant margins.

• Our method is more beneficial when more UR classes

are used for training as more training data usually lead to

better face recognition performance.

4.4. One-Shot Face Recognition

As our method has tangential relation to low-shot

learning, we evaluate on the MS-celeb-1M one-shot chal-

lenge [11]. The training data consists of a base set with

20K classes each with 50∼100 images and a novel set of 1K

classes each with only 1 image. The test set consists of 1
image per base (regular) class and 5 images per novel (UR)

class. The goal is to evaluate the performance on the novel
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Test → LFW IJB-A: Verif. IJB-A: Identif. MS1M: NN

Train↓ Method↓ g f FAR@.01 @.001 Rank-1 Rank-5 Reg. UR

10K0K
sfmx 97.15 97.45 69.39 33.04 81.63 90.35 87.17 82.47

sfmx+m-L2 97.00 97.88 73.00 44.78 83.77 91.49 90.21 84.68

10K10K

sfmx – 97.85 72.96 49.22 82.38 90.46 85.87 85.25

sfmx+m-L2 97.08 97.85 74.07 46.27 83.70 91.74 89.48 84.10

FTL (Ours)∗ 96.72 98.33 80.25 54.95 85.88 92.83 92.27 88.16

10K30K

sfmx – 97.80 74.03 47.93 83.04 91.25 86.14 85.47

sfmx+m-L2 97.13 98.08 76.92 47.17 84.81 91.93 90.60 86.40

FTL (Ours)∗ 96.87 98.42 81.80 61.04 86.08 92.62 91.76 88.72

10K50K

sfmx – 97.93 72.87 49.04 82.40 91.15 85.28 84.21

sfmx+m-L2 97.32 98.10 78.52 53.44 84.95 92.17 90.24 87.11

FTL (Ours)∗ 96.95 98.48 82.60 62.60 86.53 93.08 92.08 89.36

60K0K
sfmx 97.52 98.30 82.75 62.33 87.11 93.78 90.43 89.54

sfmx+m-L2 97.90 98.85 86.38 74.44 89.34 94.65 93.68 93.46

Table 1. Controlled experiments by varying the ratio between regular and UR classes in training sets. FTL (Ours)∗: model trained on subsets.

Method Ext #Models Base Novel

MCSM [45] YES 3 – 61.0

Cheng et al. [5] YES 4 99.74 100

Choe et al. [6] NO 1 ≥ 95.00 11.17

UP [11] NO 1 99.80 77.48

Hybrid [44] NO 2 99.58 92.64

DM [33] NO 1 – 73.86

FTL (Ours) NO 1 99.21 92.60

Table 2. Comparison on one-shot learning challenge. Result on

base classes are reported as rank-1 accuracy and on novel classes

as Coverage@Precision = 0.99. “Ext” means “External Data”.

Method Acc Method Acc

L-Softmax [25] 98.71 ArcFace [8] 99.53

VGG Face [28] 98.95 FaceNet [32] 99.63

DeepID2 [36] 99.15 CosFace [41] 99.73

NormFace [40] 99.19 sfmx 98.60

CenterLoss [42] 99.28 sfmx + L2 98.53

SphereFace [24] 99.42 sfmx + m-L2 (Ours) 99.18

RangeLoss [50] 99.53 FTL (Ours) 99.55

Table 3. Performance comparisons on LFW. Methods of sfmx,

sfmx+L2, sfmx+m-L2 are our implementations.

classes while monitoring the performance on base classes.

We use the output from softmax layer as the confidence

score and achieve 92.60% coverage at precision of 0.99 with

single-model single-crop testing, as in Table 2. Note that

both methods [5, 44] use model ensemble and multi-crop

testing. Compared to methods [6, 11] with similar setting,

we achieve competitive performance on the base classes and

much better accuracy on the novel classes by 15%.

4.5. Large-Scale Face Recognition

In this section, we train our model on the full MS-celeb-

1M dataset and evaluate on LFW and IJB-A. On LFW (Ta-

ble 3), our performance is strongly competitive, achieving

99.55% whereas the state-of-the-arts show 99.63% from

Test → Verification Identification

Method ↓ 0.01 0.001 1 5 10

PAMs [26] 82.6 65.2 84.0 92.5 94.6

DR-GAN [37] 83.1 69.9 90.1 95.3 –

FF-GAN [48] 85.2 66.3 90.2 95.4 –

TA [7] 93.9 – 92.8 – 98.6

TPE [31] 90.0 81.3 86.3 93.2 97.7

NAN [46] 94.1 88.1 95.8 98.0 98.6

sfmx 91.5 77.4 92.4 96.4 97.3

sfmx + m-L2 (Ours) 92.5 80.2 93.9 97.2 97.9

FTL (Ours) 93.5 82.9 94.8 97.8 98.3

FTL + MP (Ours) 94.3 85.1 95.1 97.8 98.4

FTL + MP + TA (Ours) 95.3 91.2 96.0 98.3 98.7

Table 4. Face recognition results on IJB-A. “MP” and “TA” rep-

resent media pooling and template adaptation. Verification and

identification results are reported at different FARs and ranks.

FaceNet [32] and 99.73% from CosFace [41]. On IJB-A

(Table 4), the softmax loss with our proposed m-L2 regular-

ization already provides good results denoted as sfmx+m-L2.

Our FTL improves the performance significantly, with mar-

gins varying from 0.6% to 2.8%. We further combine media

pooling (MP) and template adaptation (TA) [7] metric learn-

ing with our proposed method (FTL + MP + TA), and achieve

consistently better results than state-of-the-art methods [46].

4.6. Qualitative Results

We apply decoder Dec in our framework for feature vi-

sualization. While skip link between encoder and decoder

improves the visual quality [48], we do not apply it to en-

courage the rich features g to encode intra-class variance.

Center visualization We compute a feature center for a

given class, on which the Dec is applied to generate a center

face. As shown in Figure 6, we confirm the observation that

the center is mostly an identity-preserved frontal neutral face.

It also applies to portrait and cartoon figures.

Feature transfer The transferred features are visualized by
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Input

Recon.

Transfer

Figure 7. Feature transfer visualization between two classes for every two columns. The first row are the input, in which odd column denotes

class 1: x1 and the even column denotes class 2: x2. The second row are the reconstructed images x′

1 and x′

2. In the third row, odd column

image is the decoded image of the transferred feature from class 1 to class 2 and even column image is the decoded image of the transferred

feature from class 2 to class 1. It is clear that the transferred features share the same identity as the target class while obtain the source

image’s non-identity variance including pose, expression, illumination, and etc.

α → 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 8. Transition from top-left image to top-right image via feature interpolation. First row shows traditional feature interpolation; second

row shows our transition of non-identity variance; third row shows our transition of identity variance.

Dec. Let x1,2, x′
1,2, g1,2, c1,2 denote the input images, re-

constructed images, encoded rich features and feature centers

of two classes, respectively. We transfer feature from class

1 to class 2 by: g12 = c2 +QQT (g1 − c1), and visualize

the decoded images. We also transfer from class 2 to class 1
and visualize the decoded images. As shown in Figure 7, the

transferred images preserve the target class’s identity while

retaining intra-class variance of the source image in terms of

pose, expression and lighting, which shows that our feature

transfer is effective in enlarging the intra-class variance.

Feature interpolation The interpolation between two rep-

resentations shows the appearance transition from one to the

other [29, 37]. Let g1,2, c1,2 denote the encoded features

and the centers of two classes. Previous work generates a

new representation as g = g1 + α(g2 − g1) where iden-

tity and non-identity changes are mixed together. In our

work, we can generate transitions of non-identity change

as g = c1 + αQQT (g2 − c2) and identity change as

g = g1 + α(c2 − c1). Figure 8 shows an interpolation

example of a female with left pose and a male with right

pose, where the illumination changes significantly. Com-

pared to traditional interpolation that generates undesirable

artifacts, our method shows smooth transitions, which ver-

ifies that the proposed model is effective at disentangling

identity and non-identity features.

5. Conclusions
In this paper, we propose a novel feature transfer ap-

proach for deep face recognition training which explores the

imbalance issue with UR classes. We observe that generic

face recognition approaches encounter classifier bias due

to imbalanced distribution of training data across classes.

By applying the proposed feature transfer approach, we en-

rich the feature space of the UR classes, while retaining

identity. Utilizing the generated data, our alternating fea-

ture learning method rectifies the classifier and learns more

compact feature representations. Our proposed m-L2 reg-

ularization demonstrates consistent advantages which can

potentially boost performance across different recognition

tasks. The disentangled nature of the augmented feature

space is visualized through smooth interpolations. Exper-

iments consistently show that our method can learn better

representations to improve the performance on regular, UR,

and unseen classes. While this paper focuses on face recog-

nition, our future work will also derive advantages from the

proposed feature transfer for other recognition applications,

such as UR natural species [17].
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