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Abstract

Synthesizing photo-realistic images from text descrip-

tions is a challenging problem. Previous studies have shown

remarkable progresses on visual quality of the generated

images. In this paper, we consider semantics from the input

text descriptions in helping render photo-realistic images.

However, diverse linguistic expressions pose challenges in

extracting consistent semantics even though they depict the

same thing. To this end, we propose a novel photo-realistic

text-to-image generation model that implicitly disentangles

semantics to both fulfill the high-level semantic consistency

and low-level semantic diversity. To be specific, we design

(1) a Siamese mechanism in the discriminator to learn con-

sistent high-level semantics, and (2) a visual-semantic em-

bedding strategy by semantic-conditioned batch normaliza-

tion to find diverse low-level semantics. Extensive experi-

ments and ablation studies on CUB and MS-COCO datasets

demonstrate the superiority of the proposed method in com-

parison to state-of-the-art methods.

1. Introduction

The rapid progress of the Generative Adversarial Net-

works (GAN) [11, 21, 1, 20] brings a remarkable evolu-

tion in natural image generation with diverse conditions. In

contrast to conditions such as random noises, label maps or

sketches, it is a more natural but challenging way to gener-

ate an image from a linguistic description (text) since (1) the

linguistic description is a natural and convenient medium

for a human being to describe an image, but (2) cross-modal

text-to-image generation is still challenging.

Existing text-to-image generation works [40, 37, 42, 14,

29] mainly focus on increasing the visual quality and res-

olution of the generated images by either a stacked coarse-

to-fine generator structure [40, 14] or an attention-guided

∗Lu Sheng is the corresponding author.
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Figure 1. Given the descriptions in (a-ii), their images are gen-

erated by existing GANs in (a-iii). Compared to the groundtruth

image in (a-i), such holistic subjective text may lead generation

deviation (a-iii) due to the lacking of common and distinct seman-

tic meanings. The proposed SD-GAN in (b) distills the semantic

commons by a Siamese structure and retains semantic diversities

& details via a semantic-conditioned batch normalization.

generation procedure [37]. However, these methods neglect

one important phenomenon that the human descriptions for

a same image are highly subjective and diverse in their ex-

pressions, it means that naively using these texts as unique

descriptions to generate images would often produce unsta-

ble appearance patterns that are far apart from the ground-

truth images. For example, given different descriptions

(Fig 1(a-ii)) for the same ground-truth image in Fig. 1(a-i),

the generated images in Fig. 1(a-iii) by [37] present various

appearance patterns apart from the groundtruth, not even

similar to the same kind of bird. It shows that the rich varia-

tions of linguistic expressions pose challenges in extracting

consistent semantic commons from different descriptions of
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the same image. Variations of descriptions may lead to de-

viated image generation even if they describe the same bird

with very similar semantic expressions.

To address this issue, in this paper, we propose a novel

photo-realistic text-to-image generation method that effec-

tively exploit the semantics in the input text within the gen-

eration procedure, named as Semantics Disentangling Gen-

erative Adversarial Network (SD-GAN). The proposed SD-

GAN distills the semantic commons from texts for image

generation consistency and meanwhile retains the semantic

diversities & details for fine-grained image generation.

Inspired by the advantages of Siamese structure used in

different tasks [32, 33, 4, 10, 43] which can find the simi-

larity between a pair of sequences, we treat our discrimina-

tor as an image comparator so as to preserve the semantic

consistency among the generated images as long as their

descriptions are comprehensive and refer to the same se-

mantic contents. Specifically, the proposed SD-GAN uses

a Siamese scheme with a pair of texts as input and trained

with the contrastive loss shown in Fig. 1(b). Denote intra-

class pair as the same groundtruth image with different de-

scriptions while inter-class pair as the different groundtruth

image with different descriptions. By the SD-GAN, the

intra-class pairs with similar linguistic semantics should

generate consistent images that have smaller distances in the

feature space of the discriminator, while inter-class pairs

have to bear much larger distances. Since we do not have

text-to-semantic embedding structure before our image gen-

erator, this special training strategy also forces the text-

to-image generator has an inherent distillation of semantic

commons from diverse linguistic expressions.

To some extent, the Siamese structure indeed distills the

semantic commons from texts but meanwhile ignores the se-

mantic diversities & details of these descriptions even from

the same image. To maintain the semantic diversities from

the texts, the detailed linguistic cues are supposed to be em-

bedded into visual generation. Previous works try to guide

visual generation by taking the text features as the input to

the generator [40, 41, 37]. From another perspective, we re-

formulate the batch normalization layer within the genera-

tor, denoted as Semantic-Conditioned Batch Normalization

(SCBN) in Fig. 1(b). The proposed SCBN enables the de-

tailed and fine-grained linguistic embedding to manipulate

the visual feature maps in the generative networks.

Our contributions are summarized as follows:

1) Distill Semantic Commons from Text – The proposed

SD-GAN distills semantic commons from the linguistic de-

scriptions, based on which the generated images can keep

generation consistency under expression variants. To our

best knowledge, it is the first time to introduce the Siamese

mechanism into the cross-modality generation.

2) Retain Semantic Diversities & Details from Text –

To complement the Siamese mechanism that may lose

unique semantic diversities, we design an enhanced visual-

semantic embedding method by reformulating the batch

normalization layer with the instance linguistic cues. The

linguistic embedding can further guide the visual pattern

synthesis for fine-grained image generation.

3) The proposed SD-GAN achieves the state-of-the-art per-

formance on the CUB-200 bird dataset [34] and MS-COCO

dataset [22] for text-to-image generation.

2. Related Works

Generative Adversarial Network (GAN) for Text-to-

Image. Goodfellow et al. [11] first introduced the adversar-

ial process to learn generative models. The Generative Ad-

versarial Network (GAN) is generally composed of a gener-

ator and a discriminator, where the discriminator attempts to

distinguish the generated images from real distribution and

the generator learns to fool the discriminator. A set of con-

straints are proposed in previous works [28, 16, 26, 9, 36]

to improve the training process of GANs, e.g., interpretable

representations are learned by using additional latent code

in [3]. GAN-based algorithms show excellent performance

in image generation [21, 1, 20, 25, 35, 2, 23]. Reed et

al. [30] first showed that the conditional GAN was capa-

ble of synthesizing plausible images from text descriptions.

Zhang et al. [40, 41] stacked several GANs for text-to-

image synthesis and used different GANs to generate im-

ages of different sizes. Their following works [42, 37] also

demonstrated the effectiveness of stacked structures for im-

age generation. Xu et al. [37] developed an attention mech-

anism that enables GANs to generate fine-grained images

via word-level conditioning input. However, all of their

GANs are conditioned on the language descriptions with-

out disentangling the semantic information under the ex-

pression variants. In our work, we focus on disentangling

the semantic-related concepts to maintain the generation

consistency from complex and various natural language de-

scriptions as well as the details for text-to-image generation.

Conditional Batch Normalization (CBN). Batch normal-

ization (BN) is widely used to improve neural network

training by normalizing activations with respect to each

mini-batch, which has been shown to accelerate training and

improve generalization by reducing covariate shift through-

out the network [17]. Dumoulin et al. [6] proposed a condi-

tional instance normalization layer that learns the modula-

tion parameters with the conditional cues. These parameters

are used to control the behavior of the main network for the

tasks such as image stylization [15], visual reasoning [27],

video segmentation [38], question answering [5] and etc. In

our work, conditional batch normalization is firstly adopted

for visual feature generation and the semantic-conditioned

batch normalization layers enhance the visual-semantic em-

bedding and the proposed layers are implemented in the

generators of GANs for the purpose of the efficient visual
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Figure 2. The architecture of SD-GAN. The robust semantic-related text-to-image generation is optimized by contrastive losses based on a

Siamese structure. The Semantic-Conditioned Batch Normalization (SCBN) is introduced to further retain the unique semantic diversities

from text and embed the visual features modulated to the textual cues.

generation based on the linguistic conditions.

3. Semantics Disentangling Generative Adver-

sarial Network (SD-GAN)

We propose a novel cross-modal generation network

named as Semantics Disentangling Generative Adversarial

Network (SD-GAN) for text-to-image generation, as shown

in Fig. 2. It aims at distilling the semantic commons from

texts for image generation consistency and meanwhile re-

taining the semantic diversities & details for fine-grained

image generation: (1) Thanks to the Siamese structure, the

generated images are not only based on the input description

at the current branch, but also influenced by the descrip-

tion at the other branch. In other words, the Siamese struc-

ture distills the common semantics from texts to handle the

generation deviation because of the expression differences.

(2) To generate fine-grained visual patterns, the model also

needs to retain the detailed and diverse semantics of the in-

put texts. We modulate neural activations with linguistic

cues by the proposed Semantic-Conditioned Batch Normal-

ization (SCBN), which will be introduced in Sec. 3.2.

3.1. Siamese Structure with Contrastive Losses

Although existing methods [40, 37] achieved excellent

performances on high-resolution image generation, the gen-

eration deviations from language expression variants still

pose great challenges for the text-semantic image genera-

tion. To address the issues, the proposed SD-GAN adopts

a Siamese structure for distilling textual semantic informa-

tion for the cross-domain generation. The contrastive loss

is adopted for minimizing the distance of the fake images

generated from two descriptions of the same groundtruth

image while maximizing those of different groundtruth im-

ages. During the training stage, the generated image is in-

fluenced by the texts from both two branches.

For constructing the backbone architecture for each

Siamese branch, we adopt the sequential stacked generator-

discriminator modules used in most previous works [40, 37,

14]. As shown in Fig. 2, it consists of 1) a text encoder

E (in orange) for text feature extracting from descriptions,

and 2) hierarchical generative adversarial subnets (in green)

for image generation which contains a bunch of generators,

i.e., G0,G1,G2, and the corresponding adversarial discrimi-

nators, i.e., D0,D1,D2.

Text Encoder. The input of each branch is a sentence of

natural language description. The text encoder E aims at

learning the feature representations from the natural lan-

guage descriptions and following [40, 41, 37], we adopt a

bi-directional Long Short-Term Memory (LSTM) [13] that

extracts semantic vectors from the text description. Gen-

erally, in the bi-directional LSTM, the hidden states are uti-

lized to represent the semantic meaning of a word in the sen-

tence while the last hidden states are adopted as the global

sentence vector, i.e., wt denotes the feature vector for the

tth word and s̄ denotes the sentence feature vector.

Hierarchical Generative Adversarial Networks. Inspired

by [40, 37, 14, 41], we adopt hierarchical stages from low-

resolution to high-resolution for the photo-realistic image

generation. Given the sentence feature s̄ from the text en-

coder E and a noise vector z sampled from a standard nor-

mal distribution, the low resolution (64× 64) image is gen-

erated at the initial stage, as shown in Fig. 3 (a). ( The

SCBN layer in Fig. 3 will be introduced in Sec. 3.2. ) The

following stage uses the output of the former stage as well

as the sentence feature s̄ to generate the image with higher-

resolution, as shown in Fig. 3 (b). At each stage, the genera-

tor is followed by a discriminator that distinguishes whether

the image is real or fake. These discriminators D0,D1,D2

are independent for extracting the visual features and will

not share parameters.
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Figure 3. The generators in the proposed SD-GAN: (a) G0, the gen-

erator at the initial stage from the linguistic to vision, (b) G1/G2,

the generator at the second/third stage for generating higher-

resolution images based on generated visual features at the former

stage. The SCBNs operate at the end of each up-sampling layer.

Contrastive Loss. The purpose of the proposed Siamese

structure is to enhance the generation consistency regard-

less of the expression variants of the input descriptions dur-

ing the training procedure. We input two different text de-

scriptions to the two branches of the Siamese structure. If

the visual features generated from two branches are textual

semantic-aware, the two generated images should be similar

(i.e. with a small distance). Otherwise, the two generated

images should be different (i.e. with a large distance). To

this end, we adopt the contrastive loss to distill the semantic

information from the input pair of descriptions.

The contrastive loss is firstly introduced in [12] and the

loss function is formulated as

Lc =
1

2N

N∑

n=1

y · d2 + (1− y)max(ε− d, 0)2, (1)

where d = ‖v1 − v2‖2 is the distance between the visual

feature vectors v1 and v2 from the two Siamese branches

respectively, and y is a flag to mark whether the input de-

scriptions are from the same image or not, i.e., 1 for the

same and 0 for different. The hyper-parameter N is the

length of the feature vector and its value is set as 256 em-

pirically in the experiments. The hyper-parameter ε is used

to balance the distance value when y = 0 and its value is

set as 1.0 in the experiments.

With the contrastive loss, the Siamese structure is op-

timized by minimizing the distance between the generated

images from the descriptions of the same image and maxi-

mizing the distance of those generated from the descriptions

of different images. Due to the input noises, even though

the input descriptions are exactly the same, the generated

images might be different in appearance, e.g., pose, back-

ground and etc. To avoid collapsed nonsensical mode in

the visualization (i.e., the generated images are too close

in appearance), the distance of their feature vectors are not

required to be “zero”. Therefore, we modify the Eq. 1 as

Lc =
1

2N

N∑

n=1

ymax(d, α)2+(1−y)max(ε−d, 0)2, (2)

…𝑤1𝑤2𝑤3𝑤𝑇
𝑥

(a) (b)

𝛾𝑐

𝑥
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Figure 4. Semantic-conditioned batch normalization (SCBN) with

(a) sentence-level cues that consists of a one-hidden-layer MLP to

extract modulation parameters from the sentence feature vector;

and (b) word-level cues that uses VSE module to fuse the visual

features and word features. Note that the illustration only takes γc
as the example and the implementation for βc is alike.

where α is a hyper-parameter to avoid the fake images gen-

erated too closely even though the input two descriptions are

from the same image. We set α = 0.1 in the experiments.

3.2. SemanticConditioned Batch Normalization

Inspired by the instance normalization in the existing

works [15, 5, 38], we modulate the conditional batch nor-

malization with the linguistic cues from the natural lan-

guage descriptions, defined as Semantic-Conditioned Batch

Normalization (SCBN). The purpose of SCBN is to rein-

force the visual-semantic embedding in the feature maps of

the generative networks. It enables the linguistic embedding

to manipulate the visual feature maps by scaling them up or

down, negating them, or shutting them off, etc. It comple-

ments to the Siamese structure introduced in Sec. 3.1 which

only focuses on distilling semantic commons but ignore the

unique semantic diversities in the text.

Batch Norm - Given an input batch x ∈ R
N×C×H×W ,

BN normalizes the mean and standard deviation for each

individual feature channel as

BN(x) = γ ·
x− µ(x)

σ(x)
+ β, (3)

where γ, β ∈ R
C are affine parameters learned from data,

and µ(x), σ(x) ∈ R
C are the mean and standard deviation

which are computed across the dimension of batch and spa-

tial independently for each feature channel.

Conditional Batch Norm - Apart from learning a single set

of affine parameters γ and β, Dumoulin et al. [6] proposed

the Conditional Batch Normalization (CBN) that learns the

modulation parameters γc and βc with the conditional cues

c. The CBN module is a special case of the more general

scale-and-shift operation on feature maps. The modified

normalization function is formatted as

BN(x|c) = (γ + γc) ·
x− µ(x)

σ(x)
+ (β + βc). (4)

Semantic-Conditioned Batch Normalization - To rein-

force the visual-semantic embedding for the visual genera-
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tion, we implement the proposed SCBN layers in the gener-

ators, as shown in Fig. 3. Firstly, we recap the text encoder

(i.e., bi-directional LSTM) to obtain the linguistic features

from the input description. Denote the linguistic features of

the tth word as wt. The last hidden states are adopted as the

global sentence vector s̄. Therefore, the linguistic cues for

SCBN can be obtained from two aspects, i.e., sentence-level

and word-level.

(1) Sentence-level Cues. In order to embed the sentence

feature, we adopt a one-hidden-layer multi-layer perceptron

(MLP) to extract modulation parameters γc and βc respec-

tively from the sentence feature vector s̄ of the input de-

scription, as shown in Fig. 4 (a).

γc = fγ(s̄), βc = fβ(s̄), (5)

where fγ(·) and fβ(·) denote the one-hidden-layer MLPs

for γc and βc respectively. Then we extend the dimension

of fγ(s̄) and fβ(s̄) to the same size as x for embedding

the linguistic cues and visual features with Eq. 4. Then the

instance sentence features modulate the neural activations

of the generated visual features by channel-wise.

(2) Word-level Cues. Denote W = {wt}
T
t=1

∈ R
D×T as

the set of word features, where wt is the feature of the t-th

word, and X ∈ R
C×L as the visual features where C is the

channel size and L = W × H . Inspired by [39, 8, 7, 37],

the visual-semantic embedding (VSE) module is adopted

for mutual fusion of word features and visual features, as

shown in Fig. 4 (b). We first use a perception layer (i.e.,

f(wt)) to match the dimension of textual features and visual

features. Then the VSE vector vsej is computed for each

sub-region j of the image based on its embedded features vj
which is a dynamic representation of word vectors {wt}

T
t=1

relevant to its visual feature vj .

vsej =

T−1∑

t=0

σ(v⊤j · f(wt))f(wt), (6)

where σ(v⊤j · f(wt)) indicates the visual-semantic embed-

ding weight of tth word vector wt for the jth sub-region vj
of visual feature maps, similar as the dot-product similar-

ity of cross correlation. σ(·) is the softmax function in

the experiments. We then adopt two conv 1× 1 layers for

computing the word-level modulation parameters γc and βc

respectively from the VSE matrix.

4. Experiments

4.1. Experiment Settings

Datasets. Following previous text-to-image methods [37,

40, 41], our method is evaluated on CUB [34] and MS-

COCO [22] datasets. The CUB dataset contains 200 bird

species, it includes 11788 images with 10 language descrip-

tions for each image. Following the settings in [37, 40, 41],

we split the CUB dataset into class-disjoint training and test

sets, i.e., 8855 images for training and 2933 for test. All im-

ages in CUB dataset are preprocessed and cropped to ensure

that bounding boxes of birds have greater-than-0.75 object-

image size ratios. The MS-COCO dataset is more challeng-

ing for text-to-image generation. It has a training set with

80k images and a validation set with 40k images. It has 5
language descriptions for each image.

Training Details. Apart from the contrastive losses intro-

duced in Sec. 3.1, the generator and the discriminator losses

of the proposed SD-GAN follow those in [37] due to its ex-

cellent performance. The text encoder and inception model

for visual features used in visual-semantic embedding are

pretrained by [37] and fixed during the end-to-end training.

The network parameters of the generator and discriminator

are initialized randomly.

Evaluation Details. It is not easy to evaluate the perfor-

mance of the generative models. Following prior arts on

text-to-image generation [37, 40, 41, 14, 42, 18], we apply

the numerical assessment approach “inception score” [31]

for quantitative evaluation. In our experiments, we directly

use the pre-trained Inception model provided in [40] to eval-

uate the performance on CUB and MS-COCO datasets.

Although the inception score has shown well correlated

with human perception on visual quality [31], it cannot tell

whether the generated images are well conditioned on the

text descriptions. Therefore, as a complementary, we also

design a subjective test to evaluate the generation perfor-

mance. We randomly select 50 text descriptions for each

class in the CUB test set and 5000 text descriptions in the

MS-COCO test set. Given the same descriptions, 50 users

(not including any author) are asked to rank the results by

different methods. The average ratio ranked as the best are

calculated to evaluate the compared methods.

4.2. Comparing with the stateofthearts

We compare our results with the state-of-the-art text-to-

image methods on CUB and MS-COCO dataset. The in-

ception scores for our proposed SD-GAN and other com-

pared methods are listed in Tab. 1. On the CUB dataset, our

SD-GAN achieves the inception score 4.67 ± .09 , which

significantly outperforms the previous best method with an

inception score 4.36 ± .03. More impressively, our SD-

GAN boosts the best reported inception score on the MS-

COCO dataset from 25.89 ± .47 to 35.69 ± .50. The ex-

cellent performances on the datasets demonstrate the effec-

tiveness of our proposed SD-GAN, thanks to the semantics-

disentangling generation and visual-semantic embedding.

The results of subjective test are shown in Tab. 2. We

compared the proposed SD-GAN with the previous meth-

ods, i.e., StackGAN [40] and AttnGAN [37]. When users

are asked to rank images based on their relevance to input

text, they choose the generated images by SD-GAN as the
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Figure 5. Qualitative examples of the proposed SD-GAN comparing with StackGAN [40] and AttnGAN [37] on CUB (top) and MS-COCO

(bottom) test sets. For each example, the images are generated by the methods based on two randomly-selected descriptions (Text) from

the same ground-truth image (GT).

Methods CUB MS-COCO

GAN-INT-CLS [29] 2.88± .04 7.88± .07

GAWWN [30] 3.62± .07 -

StackGAN [40] 3.70± .04 8.45± .03

StackGAN++ [41] 4.04± .05 -

PPGN [24] - 9.58± .21

AttnGAN [37] 4.36± .03 25.89± .47

HDGAN [42] 4.15± .05 11.86± .18

Cascaded C4Synth [19] 3.92± .04 -

Recurrent C4Synth [19] 4.07± .13 -

LayoutSynthesis [14] - 11.46± .09

SceneGraph [18] - 6.70± .01

SD-GAN 4.67± .09 35.69± .50

Table 1. Quantitative results of the proposed method against the

state-of-the-arts on CUB and MS-COCO test sets. The bold results

are the highest and the underline ones are the second highest.

Methods CUB MS-COCO

StackGAN [40] 10.70% 6.53%

AttnGAN [37] 20.54% 17.69%

SD-GAN 68.76% 75.78%

Table 2. Human evaluation results (ratio of 1st by human ranking)

of SD-GAN comparing with StackGAN [40] and AttnGAN [37].

best mostly, wining about 70% of the presented texts. This

is consistent with the improvements of inception score listed

in Table 1. Furthermore, the qualitative results are shown in

Fig. 5. For each example, we compare the generation results

from the descriptions of the same ground-truth image. Due

to the lacking of the word-level details, StackGAN fails to

predict the important semantic structure of object and scene.

Although AttnGAN adopts the attention mechanism to ex-

tract details from the text, it is difficult to generate the cor-

responding visual concepts under linguistic expression vari-

ants, e.g., gray wings of white bird in Fig. 5(b), sheep on

the grass in Fig. 5(c), and etc. Comparing to them, the pro-

posed SD-GAN generates more recognizable and semanti-

cally meaningful images based on the input texts.

Transferable Siamese structure and SCBN. Furthermore,

Methods CUB MS-COCO

AttnGAN [37] 4.36± .03 25.89± .47

AttnGAN [37] + Siamese 4.47± .09 29.77± .51

AttnGAN [37] + SCBN 4.48± .08 29.42± .45

AttnGAN [37] + Siamese + SCBN 4.62± .09 35.50± .56

Table 3. Quantitative results of the combined models that incorpo-

rate the proposed Siamese structure and SCBN into the previous

state-of-the-art architecture on CUB and MS-COCO test sets.

we demonstrate the benefits of the proposed Siamese struc-

ture and SCBN for image generation by plugging them into

the existing works. Here we take the previous method,

i.e., AttnGAN [37], as the backbone because of its excel-

lent performance. We compare three configurations, i.e.,

AttnGAN + Siamese, AttnGAN + SCBN and AttnGAN +

Siamese + SCBN under the same hyper-parameters for fair

comparisons. As shown in Tab. 3, the performance of At-

tnGAN is improved by a considerable margin on the in-

ception score after applying the Siamese structure (i.e., At-

tnGAN + Siamese). The results again suggest the superior-

ity of the proposed Siamese structure which is applied on

AttnGAN. AttnGAN with SCBNs (i.e., AttnGAN + SCBN)

achieves a better performance than AttnGAN as well. Note

that the overall performance by adding both Siamese struc-

ture and SCBN (i.e., AttnGAN + Siamese + SCBN) sur-

passes that of AttnGAN itself and achieves the approximate

results with our proposed SD-GAN.

4.3. Component Analysis

In this section, to evaluate the effectiveness of the pro-

posed SCBN and Siamese structure with contrastive losses,

we first quantitatively evaluate SD-GAN and its variants

by removing each individual cue step by step, i.e., 1) SD-

GAN w/o SCBN (Model 2), SD-GAN without the pro-

posed SCBNs, 2) SD-GAN w/o Siamese (Model 3), SD-

GAN without Siamese structure, 3) SD-GAN w/o SCBN &
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“this bird has 
white belly and 

blue wings with 

stripes”
“a colorful blue 
bird has striped 

wings and a light 

white belly”

“the little red bird 
has dark wings 

and small eyes ”

“this bird is dull 
red in appearance 

with black wings ”

GT Text Baseline +SCBN&Sia.+SCBN +Sia. GT Text Baseline +SCBN&Sia.+SCBN +Sia.

“the sailboats are 
docked in the lake

across the hill ”

“several boats in 

the peaceful 

water besides the 

hill” 

“a couple of skiers 
sliding down the 

hill on the 

pathway ”
“a group of young 
men are skiing 

down a snowy 

slope”

(a) (b)

(c) (d)

Figure 6. Image generation results of SD-GAN on CUB (top) and MS-COCO (bottom) test sets. For each sample, the images are generated

by the methods based on two randomly-selected descriptions (Text) per ground-truth image (GT). The results of of baseline (SD-GAN

without SCBN&Siamese) and its variants by adding the proposed SCBN and Siamese structure (Sia.) step by step.

ID
Components

CUB MS-COCO
Siamese SCBN

1
√ √

4.67± .09 35.69± .50

2
√

- 4.51± .07 30.18± .47

3 -
√

4.49± .06 29.79± .61

4 - - 4.11± .04 23.76± .40

Table 4. Component Analysis of the SD-GAN. Siamese indicates

adopting the Siamese structure and SCBN indicates using the pro-

posed SCBN layer. The bold results are the best.

Siamese (Model 4), SD-GAN without the proposed SCBNs

and Siamese structure, regarded as the baseline of SD-

GAN. The quantitative results are listed in Tab.4.

By comparing Model 3 (with SCBNs) and Model 4
(baseline) in Tab. 4, the proposed SCBN can help to en-

force the visual-semantic embedding, which significantly

improves the inception score from 4.11 to 4.49 on CUB and

23.76 to 29.79 on MS-COCO. When adopting the Siamese

structure (Model 2) based on Model 4, the inception score

can achieve 4.51 (versus 4.11) on CUB dataset. By com-

bining the proposed SCBNs and Siamese structure, Model 1
obtains a significantly improvement and outperforms Model

3 by improving the inception score from 4.49 to 4.67 on

CUB and 29.79 to 35.69 on MS-COCO. The Siamese struc-

ture makes it possible to maintain the generation consis-

tency and handle the generation deviation because of the

input expression variations. The comparisons demonstrate

the superiority of the proposed SCBN and Siamese structure

for text-to-image generation.

To better understand the effectiveness of the proposed

modules, we visualize the generation results of SD-GAN

and its variants. As shown in Fig. 6, the baseline with-

out Siamese structure and SCBN just sketches the prim-

itive shape of objects lacking the exact descriptions. By

adding the proposed SCBN (+SCBN), the models learn to

rectify defects by embedding more linguistic details into

the generation procedure, e.g. “blue wings” in Fig. 6(a),

but the generated birds belong to different categories in ap-

pearance due to the expression variants. The model with

Siamese structure (+Sia.) can generate similar images from

different descriptions of the same image, but might lose

the detailed semantic informations, e.g., “black wings” in

Fig. 6(b). By combining the Siamese structure and SCBN

(+SCBN&Sia.), the models can achieve visibly significant

improvements. On the challenging MS-COCO dataset, we

have similar observations. Although the generation is far

from perfection, the generated images can still be recog-

nized from the text semantics as shown in the bottom of

Fig. 6. Those observations demonstrate that the SD-GAN

not only maintain the generation consistency but also con-

tains the detailed semantics.

Furthermore, to evaluate the sensitivity of the proposed

SD-GAN, we change just one word or phrase in the input

text descriptions. As shown in Fig. 7, the generated images

are modified according to the changes of the input texts,

e.g., bird color (yellow versus blue) and image scene (beach

versus grass field). It demonstrates the proposed SD-GAN

retains the semantic diversities & details from text and has

the ability to catch subtle changes of the text descriptions.

On the other hand, there are no collapsed nonsensical mode

in the visualization of the generated images.

Contrastive Losses. The value of α in Eq. (2) is worth

investigating because it can be used to find a trade-off be-

tween effectiveness of distilling semantic commons and

retaining the semantic diversities from the descriptions

of the same image. We validate the value of α among

0.01, 0.05, 0.1 and 0.2 of SD-GAN. By comparing the re-

sults listed in Tab. 5, we adopt α as 0.1 for further exper-

iments as it has the best performances on both CUB and

MS-COCO datasets.

Furthermore, we explore the effectiveness of contrastive

losses at each stage by removing the contrastive loss stage

by stage, i.e., 1) (D1, D2, D3) indicates the contrastive

losses are implemented at all the stages as shown in Fig. 2,
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“a colorful yellow bird has the wings with dark stripes and small eyes”

“a colorful blue bird has the wings with dark stripes and small eyes”

“a group of people are having a good time on the beach under the blue sky”

“a group of people are having a good time on the grass field under the blue sky”

Figure 7. Examples of SD-GAN on the ability of catching subtle

changes (underline word or phrase in red) of the text descriptions

on CUB (top) and MS-COCO (bottom) test sets.

Methods CUB MS-COCO

α

0.01 4.50± .08 32.53± .77

0.05 4.55± .10 33.18± .62

0.1 4.67± .09 35.69± .50

0.2 4.49± .07 31.74± .91

position

(D1, D2, D3) 4.67± .09 35.69± .50

(D2, D3) 4.59± .10 33.13± .74

(D3) 4.56± .09 32.88± .82

Table 5. Ablation study on the contrastive loss. We compare the

variants of SD-GAN with different values of hyper-parameter α,

i.e. 0.01, 0.05, 0.1, 0.2. Then we compare the variants of SD-

GAN by removing the contrastive loss at the individual stage.

Methods CUB MS-COCO

SCBN - sent 4.39± .06 28.81± 0.53

SCBN - word 4.45± .06 29.79± 0.61

BN - sent 4.19± .05 24.18± .56

BN - word 4.23± .05 25.34± .79

Table 6. Ablation study on SCBN. SCBN-sent indicates using the

SCBN layers conditioned on the sentence-level cues; SCBN-word

indicates using the SCBN layers conditioned on the word-level

cues; BN-sent indicates using BN layers and then concatenating

sentence-level cues by channel-wise; BN-word indicates using BN

layers and then concatenating word-level cues by channel-wise.

2) (D2, D3) indicates only at the last two stages and 3) (D3)

indicates only at the last stage. By comparing (D1, D2, D3)

with (D2, D3) and (D3) in Tab. 5, the model with contrastive

loss implemented at each stage (D1, D2, D3) achieves the

best performances.

Semantic-Conditioned Batch Normalization (SCBN). To

evaluate the benefits of the proposed SCBN layer, we com-

pare the variants of the SCBN layers. We conduct the exper-

iments with the architecture of SD-GAN without Siamese

structure due to the less computational cost during the train-

ing. As introduced in Sec. 3.2, the linguistic cues are from

sentence-level and word-level. Firstly, we compare the

model with SCBN layer on sentence-level linguistic cues,

i.e., SCBN - sent, and that with word-level cues, i.e., SCBN

- word. By comparing the results listed in Tab. 6, the SCBN

layer with word-level cues outperforms that with sentence-

level cues, i.e., 4.45 versus 4.39 on CUB dataset. The word-

level features provide more details than the coarse sentence-

level features and the visual-semantic embedding defined in

Eq. (6) enables the visual modulation in the spatial config-

urations by the linguistic cues.

In addition, we replace the proposed SCBN layer with

the general BN layer. The linguistic cues are embedded into

the visual feature maps as well by concatenating in chan-

nels directly after BN. The BN layers with sentence-level

and word-level cues are represented by BN - sent and BN

- word respectively. By comparing the results of SCBN -

sent versus BN - sent and SCBN - word versus BN - word

in Tab. 6, both of the SCBN layers outperform the corre-

sponding BN layers in the experiments. No doubt that the

proposed SCBN is more efficient and powerful for embed-

ding the linguistic cues into the generated vision.

5. Conclusion

In this paper, we propose an innovative text-to-image

generation framework, named as Semantics Disentangling

Generative Adversarial Networks (SD-GAN). The pro-

posed SD-GAN adopts a Siamese structure to distills se-

mantic commons from the linguistic descriptions, based on

which the generated images can keep generation consis-

tency under expression variants. Furthermore, to comple-

ment the Siamese mechanism that may lose unique seman-

tic diversities, we design an enhanced visual-semantic em-

bedding method by reformulating the batch normalization

layer with the instance linguistic cues. Extensive experi-

ments demonstrate the respective effectiveness and signifi-

cance of the proposed SD-GAN on the CUB dataset and the

challenging large-scale MS-COCO dataset.
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