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Abstract

Local windows are routinely used in computer vision and

almost without exception the center of the window is aligned

with the pixels being processed. We show that this conven-

tional wisdom is not universally applicable. When a pixel

is on an edge, placing the center of the window on the pixel

is one of the fundamental reasons that cause many filtering

algorithms to blur the edges. Based on this insight, we pro-

pose a new Side Window Filtering (SWF) technique which

aligns the window’s side or corner with the pixel being pro-

cessed. The SWF technique is surprisingly simple yet theo-

retically rooted and very effective in practice. We show that

many traditional linear and nonlinear filters can be easily

implemented under the SWF framework. Extensive analysis

and experiments show that implementing the SWF princi-

ple can significantly improve their edge preserving capa-

bilities and achieve state of the art performances in appli-

cations such as image smoothing, denoising, enhancement,

structure-preserving texture-removing, mutual-structure ex-

traction, and HDR tone mapping. In addition to image fil-

tering, we further show that the SWF principle can be ex-

tended to other applications involving the use of a local win-

dow. Using colorization by optimization as an example, we

demonstrate that implementing the SWF principle can ef-

fectively prevent artifacts such as color leakage associated

with the conventional implementation. Given the ubiquity of

window based operations in computer vision, the new SWF

technique is likely to benefit many more applications.

1. Introduction

In the fields of computational photography and image

processing, many applications involve the concept of image

filtering to denoise [23], deblur [8] and enhance details [9].

For decades, various filters have been developed, such as

box filter, Gaussian filter and median filter, to name a few.

These filters are widely used in image deblurring and sharp-
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Figure 1. Model of ideal edges in 2D piecewise images. The pixel

‘a’∼‘f’ are on edges or near edges. To satisfy the linear assump-

tion, they should be approximated in the side windows which have

the same colors with them, not the local windows centered at them.

ening, edge detection and feature extraction [10].

There are many applications require image filtering that

can preserve edges. Typical examples include tone mapping

of high dynamic range (HDR) images [6], detail enhance-

ment via multi-lighting images [7], and structure-preserving

and texture removing [29][30].

For this reason, many edge-preserving filters have been

proposed. Basically, these edge-preserving filters can be di-

vided into two categories. One is global optimization based

algorithms, such as the total variation (TV) algorithm [23],

its iterative shrinkage approach [17], the relative total varia-

tion algorithm [29] and the weighted least squares algorithm

[18]. The other is local optimization based algorithms, such

as bilateral filter [26], its accelerated versions [5][19][20],

guided filter [11], its extensions [15][13], rolling guidance

filter [30], mutual structure joint filtering [24] and curvature

filter [9]. In general, the local based filters can be calculated

in real time. This is preferred because many real application

scenarios require real-time processing.

1.1. Filtering Fundamentals

Local based filters always attempt to estimate an output

of a pixel based on its neighbors. Almost without exception,

the pixel being processed is located at the center of an oper-

ation window and other pixels in the operation window are

its neighbors. Basically, there are two ways to do estima-

tion: linear approximation, such as box filter and Gaussian
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filter, and non-linear approximation, such as median filter

[12], bilateral filter [26] and guided filter [11].

A common linear approximation based image filtering

operation assumes that the image is piecewise linear and

approximate a pixel as the weighted average of its neighbor

pixels over a local window

I
′

i =
∑

j∈Ωi

ωijqj (1)

where Ωi is the local window (support region) centered at

the pixel i, ωij denotes the weight kernel, qi and Ii are the

intensities of the input image q and the output image I at

location i, respectively.

The discrepancy between the filter output and the origi-

nal image can be formulated as the following cost function

Ei = ||Ii − I
′

i ||
2
2 = (Ii −

∑

j∈Ωi

ωijqj)
2 (2)

Different weight kernels will result in different filtering out-

put images and in most cases the task of designing a filtering

algorithm is that of estimating the weights. Often there is

a trade off between manipulating the input image towards

a desired target and keeping it close to the original. It is

worth noting that optimization problem of the form similar

to eq. (2) is found in many applications including coloriza-

tion [14][22] and image segmentation [25][28], where the

weight functions are usually referred to as affinity functions.

Nonlinear approximation filtering such as median filtering

can also be formulated as a similar form of optimization

problem [21].

1.2. Problem and Motivation

In many applications that using the form of filtering al-

gorithm in eq. (1), it is desired to smooth out genuine

noise and at the same time preserve edges and other sig-

nal details. For analysis convenience, we focus our study

on three types of typical edges [4], step edge, ramp edge

and roof edge, and model them in 2D signal space as shown

in Fig. 1. We use g(x, y) to denote the intensity value at

(x, y). The functions g(x, y) shown in this figure are con-

tinuous but non-differentiable. Considering the locations

where the intensity changes (an edge), for example, at lo-

cation ‘a’. We use ‘a-’ and ‘a+’ to denote the left limit

(x − ǫ, y) and right limit (x + ǫ, y), respectively, where

ǫ > 0. Clearly, g(x − ǫ, y) 6= g(x + ǫ, y) and (or)

g′(x − ǫ, y) 6= g′(x + ǫ, y) due to the edge jump. There-

fore, the Taylor expansion at these two regions are differ-

ent: g(x − 2ǫ, y) ≈ g(x − ǫ, y) + g′(x − ǫ, y)(−ǫ) and

g(x+ 2ǫ, y) ≈ g(x+ ǫ, y) + g′(x+ ǫ, y)ǫ. Therefore, any

approximation at location ‘a-’ must come from the left re-

gions of ‘a’ while any approximation at location ‘a+’ must

come from the right regions of ‘a’. Similar statements apply

for other edge locations such as ‘b’, ‘c’, and ‘d’ in Fig. 1.

Based on the analysis and eq. (1), if a pixel i is on an

edge, the support region Ωi must be restricted to one side of

the edge, otherwise, it is not possible to use a linear com-

bination of the neighbors to approximate i. In other words,

we cannot place the center of Ωi over i but rather we must

place the side of Ωi over i. Inspired by this discovery, a

new edge-preserving strategy, termed side window filter-

ing (SWF) technique, is proposed. We consider each target

pixel as a potential edge and generate multiple local win-

dows (named as side windows) around it, each of which

aligns the target pixel with a side or a corner (instead of the

center) of the window. The output of SWF is a linear com-

bination of the neighbors in one of the side windows which

can best approximate the target pixel.

1.3. Our Contributions

The novel contributions of this paper are:

1. Using Taylor expansion, we show that in order to re-

construct an edge pixel using a linear combination of its

neighbors, the neighbor pixels must come from one side of

the edge. Based on this insight, we propose the side win-

dow filtering (SWF) technique as an effective and practical

edge preserving filtering solution.

2. We show how traditional linear filters such as box

filter and Gaussian filter, popular non-linear filters such as

median filter, bilateral filter and guided filter can easily be

implemented under the SWF framework. Through exten-

sive analysis, we show that implementing these popular fil-

ters based on the new SWF framework can significantly im-

prove their edge preserving capabilities.

3. We show that the implementing traditional filters un-

der the new SWF framework provides state of the art per-

formances in a variety of real world applications includ-

ing image smoothing, denoising, enhancement, structure-

preserving texture-removing, mutual-structure extraction,

and high dynamic range image tone mapping.

4. We show that the new SWF framework can be ex-

tended to other applications involving a local window and

a linear combination of a neighborhood of pixels. Using

colorization by optimization as an example we demonstrate

that implementing the SWF principle can effectively pre-

vent artifacts such as color leakage.

5. The SWF technique is very simple but theoretically

rooted and in practice surprisingly effective. Given the

ubiquity of window based operations, the SWF principle

has the potential of benefiting many areas in image process-

ing and computer vision.

2. Side Window Filtering Technique

First of all we define the side window in a continuous

case. The definition of a side window is shown in Fig. 2(a),

with parameters θ and r. θ is the angle between the window

and the horizontal line, r is the radius of the window, ρ ∈
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Figure 2. Definition of side window. r is the radius of the window. (a) The definition of side window in continuous case. (b) The left

(red rectangle) and right (blue rectangle) side windows. (c) The up (red rectangle) and down (blue rectangle) side windows. (d) The

northwest (red rectangle), northeast (blue rectangle), southwest (green rectangle) and southeast (orange rectangle) side windows.

{0, r} and (x, y) is the position of the target pixel i. r is a

user-defined parameter and it will be fixed for all the side

windows. By changing θ and fixing (x, y), we can change

the direction of the window while aligning its side with i.

To simplify the calculation, we only define eight side

windows in a discrete case, as shown in Fig. 2(b)∼(d).

These eight specific windows correspond to θ = k× π
2 , k ∈

[0, 3]. By setting ρ = r, we have the down(D) , right(R),
up(U), left(L) side windows, denoted as ωD

i , ωR
i , ωU

i and

ωL
i . They align i with their sides. By setting ρ = 0, we have

the southwest (SW ), southeast (SE), northeast (NE) and

northwest (NW ) side windows, as shown in Fig. 2(d) and

denoted as ωSW
i , ωSE

i , ωNE
i and ωNW

i . They align i with

their corners. It is worth pointing out that there is significant

flexibility in designing the size, shape and orientation of the

side windows. And the only specific requirement is that the

pixel under consideration is placed on the side or corner of

the window.

Algorithm 1 Calculate the SWF for each pixel

Require: wij is the weight of pixel j, which is in the neigh-

borhood of the target pixel i, based on kernel function

F . S = {L,R,U,D,NW,NE, SW,SE} is the set of

side window index.

1: In = 1
Nn

∑

j∈ωn

i
wijqj , Nn =

∑

j∈ωn

i
wij , n ∈ S

2: find Im, such that Im = argminn∈S ||qi − In||
2
2

Ensure: Im

By applying a filtering kernel F in each side window,

we can obtain eight outputs, denoted as I
′θ,ρ
i , where θ =

k × π
2 , k ∈ [0, 3] and ρ ∈ {0, r}

I
′θ,ρ,r
i = F (qi, θ, ρ, r) (3)

To preserve the edges means that we want to minimize the

distance between the input and the output at an edge, i.e.,

the filter output should be the same as or as close as possible

to the input at an edge. Therefore, we choose the output of

the side window that has the minimum L2 distance to the

input intensity as the final output,

I ′SWF = argmin
∀I

′θ,ρ,r
i

||qi − I
′θ,ρ,r
i ||22 (4)

where I ′SWF is the output of SWF. Eq. (4) is referred to as

the SWF technique. Details of the procedure is described in

Algorithm 1.

Table 1. Summary of the output of BOX and S-BOX

Input BOX S-BOX

(a)
(r+1)u+rv

2r+1 u

(d)
(r+1)u+rv

2r+1 u

(g)
(r+1)u+rv

2r+1 u

(j)
(r+1)2u+((2r+1)2−(r+1)2)v

(2r+1)2 u

(m) u+ r(r+1)△v

2(2r+1) u

(p) v − r(r+1)△u

2r+1 v − r
2 △ u

2.1. Analysis of SWF

In this section, we present a detailed analysis of the edge-

preserving property of SWF technique. For analysis conve-

nience, we use box filter (BOX) as an example and similar

analysis can be performed on other forms of filter. This

means that F in eq. (3) is averaging and the resulting filter

is called side window box filter (S-BOX).

We compare the edge-preserving property of BOX and

S-BOX filters. First of all, testing images with typical edges

are generated, as shown in Fig. 3. There are six typical

edges, including vertical edge (a), horizontal edge (d), di-

agonal edge (g), corner (j), ramp edge (m) and roof edge

(p). For the vertical edge, horizontal edge, diagonal edge

and corner, the pixel values for the black part of the edge is

u and the white part of the edge is v. For the ramp edge, the

pixel values are increased from u to v with a step of △ v.

For the roof edge, the top of the roof is v and is decreased

with a step of △ u. Based on these conditions, the outputs

of BOX and S-BOX are deduced and the results are shown
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Figure 3. Comparing BOX and S-BOX on the testing images with different edges. The first and forth columns (a), (g), (m), (d), (j) and (p)

are input images with edge or corner. The second and fifth columns are middle line profiles for input, BOX filter and S-BOX filter. The

third and sixth columns are the zoomed in region at the edge or corner location.

Table 2. Summary of the output of each side window in S-BOX

Case L R U D NW NE SW SE

(a) u u+rv

r+1
(r+1)u+rv

2r+1
(r+1)u+rv

2r+1
u u+rv

r+1
u u+rv

r+1

(d)
(r+1)u+rv

2r+1
(r+1)u+rv

2r+1
u u+rv

r+1
u u u+rv

r+1
u+rv

r+1

(g)
( 3r

2
+1)u+ r

2
v

2r+1

( r
2
+1)u+ 3r

2
v

2r+1

( 3r
2

+1)u+ r
2
v

2r+1

( r
2
+1)u+ 3r

2
v

2r+1
u

( r
2
+1)u+ r

2
v

r+1

( r
2
+1)u+ r

2
v

r+1
((r+1)2−1)v+u

(r+1)2

(j)
(r+1)u+rv

2r+1
u+2rv
2r+1

(r+1)u+rv

2r+1
u+2rv
2r+1

u u+rv

r+1
u+rv

r+1
((r+1)2−1)v+u

(r+1)2

(m) u u+
r

2
△ v u+

r(r+1)△v

2(2r+1)
u+

r(r+1)△v

2(2r+1)
u u

r+1
+

r

2
△ v u u

r+1
+

r

2
△ v

(p) v −
r

2
△ u v −

r

2
△ u v −

r(r+1)△u

2r+1
v −

r(r+1)△u

2r+1
v −

r
2

△ u v −
r

2
△ u v −

r

2
△ u v −

r

2
△ u

in Table 1. From Table 1, we can easily see that S-BOX bet-

ter preserves the edges in (a)∼(m) than BOX. It is also easy

to prove r
2 <

r(r+1)
2r+1 , so S-BOX can better preserve the roof

edge than BOX, too.

In order to observe the details of the edge-preserving

property of each side window in S-BOX, the output of each

side window is shown in Table 2. The results which pre-

serve the edges are shown in bold. We can make the follow-

ing observations:

• the L,NW,SW side windows can preserve the edges

on the left of the vertical edge. It is easy to deduce that

the R,NE, SE side windows can preserve the edges

on the right of the vertical edge.

• the U,NW,NE side windows can preserve the edges

above the horizontal edge. Again, it is easy to de-

duce that the D,SW,SE side windows can preserve

the edges below the horizontal edge.

• the NW side window can preserve the edges above the

diagonal edge and on the corner. It is easy to deduce

that the NE,SW,SE side windows can preserve the

diagonal edges and corner with other directions.

• the L,NW,SW side windows can preserve the ramp

edge.

• although the side windows can not preserve the roof

edge completely, seven of them have better results than

BOX.

We also show the experimental results in Fig. 3. In the

experiments, we set u = 0, v = 1 and r = 7. One line (or

column or diagonal) of pixels is extracted from each result

and zoomed in. The results are consistent with the theoreti-

cal deduction. Visually, the sharp edges are smoothed away

by BOX while preserved very well by S-BOX.
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(a) Input (b) BOX vs. S-BOX (c) GAU vs. S-GAU (d) MED vs. S-MED (e) BIL vs. S-BIL (f) GUI vs. S-GUI

Figure 4. Image smoothing (r = 7, σ = 4 for GAU and S-GAU, σs = 7, σr = 0.3 for BIL and S-BIL, ǫ = 0.1 for GUI and S-GUI). The

upper left part of each result is from the traditional filter and the zoomed in patch is with red rectangle. The lower right part of each result

is from the side window version and the zoomed in patch is with green rectangle. The number shown on each image is the SSIM[27] value.

(a) Input (b) BOX vs. S-BOX (c) GAU vs. S-GAU (d) MED vs. S-MED (e) BIL vs. S-BIL (f) GUI vs. S-GUI

Figure 5. Image denoising (r = 10, σ = 5 for GAU and S-GAU, σs = 10, σr = 0.3 for BIL and S-BIL, ǫ = 0.1 for GUI and S-GUI,

iteration = 5 ). The left part of each result is from the traditional filter and the zoomed in patch is with red rectangle. The right part of

each result is from the side window version and the zoomed in patch is with green rectangle. The number shown on each image is PSNR.

3. Popular Filters under the SWF Framework

By changing F to other kernels, one can easily embed

the side window technique into other filters. In this sec-

tion, we will discuss how to embed side window technique

into Gaussian filter, median filter, bilateral filter and guided

filter. To simplify expression, the filters’ name are abbrevi-

ated by their first three letters and their SWF versions are

abbreviated by adding another ‘S-’. For example, the Gaus-

sian filter and side window Gaussian filter are abbreviated

as GAU and S-GAU, respectively.

In S-GAU, F is a half of or a quarter of the Gaussian

kernel. Because the kernel of GAU crosses over the poten-

tial edges, it may blur the edges. By contrast, the kernel of

S-GAU alleviates this problem so it can better preserve the

edges.

In S-MED, F is the operation of calculating the median

value. Since the output has the minimal distance from the

input intensity, S-MED can better preserve the edges than

MED. That is, it selects a window under which the median

of the pixels is closest to the input.

In S-BIL, the kernel is calculated based on the geometric

closeness and photometric similarity as in BIL. Since S-BIL

can prevent the diffusion from crossing the edges, it can

improve the edge-preserving property of BIL.

GUI averages the values of the parameters in all the win-

dows that cover the target pixel. Again, this operation may

blur potential edges. To avoid this problem, S-GUI ensures

that the side windows do not cross over the target pixel. It

slides each side window along its side on which the target

pixel is located until the target pixel is outside of the side

window. In this way, 2r + 1 sliding windows are obtained

for the L,R,U,D side window and averaged to obtain the

outputs of these side windows. For the NW,NE, SW,SE

side windows, sliding can only get one output for each. The

final output is chosen according to eq. (4).

4. Applications

In this section, the side window technique is applied to

various image processing applications and its performance

is compared with traditional filters and methods. More re-

sults are presented in the Supplement. The images are best

viewed electronically on a high resolution monitor.

4.1. Image smoothing

Fig. 4 shows the smoothing results of the filters on an

image [2]. The upper left part of each result is from the tra-

ditional filter and the zoomed in patch is with red rectangle.

The lower right part of each result is from the side window

version and the zoomed in patch is with green rectangle. As

can be seen, the corresponding side window filter outper-

8762



(a) Input (b) BIL (c) GUI

(d) S-BIL (e) S-GUI

Figure 6. Image enhancement (σs = 7, σr = 0.3 for BIL and S-

BIL, r = 7, ǫ = 0.1 for GUI and S-GUI). The number shown on

each image is the SSIM value.

forms the original filter in preserving edges. This is more

clearly shown in the zoomed in patches that the side win-

dow filters can better preserve the tiger’s whiskers. When

comparing the non-linear filters, this improvement is also

obvious. This means that the side window technique can

also improve the edge-preserving property of non-linear fil-

ters. This shows the potential for the side window technique

to be widely used in more applications.

4.2. Image denoising

Fig. 5 shows the results of iteratively applying differ-

ent filters to remove noise of a low light image [3]. The

left part of each result is from the traditional filter and the

zoomed in patch is with red rectangle. The right part of

each result is from the side window version and the zoomed

in patch is with green rectangle. BOX, GAU, MED, BIL

and GUI remove the noises but blur the edges at the same

time. On the other hand, the side window version of these

filters can preserve edges and remove noises at the same

time. These results further demonstrate the excellent edge

preserving property of the new side window technique.

(a) BIL (b) GUI

(c) S-BIL (d) S-GUI

Figure 7. HDR tone mapping (σs = 5, σr = 0.3 for BIL and

S-BIL, r = 5, ǫ = 0.1 for GUI and S-GUI).

4.3. Image enhancement

Image enhancement is often performed in image pro-

cessing [11][15]. An enhanced image can be obtained by

Enhanced = q + α× (q − I
′

) (5)

where α is an amplification parameter and is fixed to 5 in

all the experiments in this section. An example of image

enhancement result is shown in Fig. 6. From the zoomed

in patches, we can see that the halo artifacts exist along the

edges in the results of the filters without implementing the

side window technique. However, the artifacts have dis-

appeared in the results of the side window versions of the

filters. This can once again be attributed to the excellent

edge-preserving property of the side window technique.

4.4. HDR tone mapping

In [5] a technique based on bilateral filter was proposed

for displaying HDR images, which reduces the dynamic

range while preserving detail. Briefly the operation works

as follows:

I ′ = γ × qb + qd (6)

qb is the bilateral filter output, qd is the difference between

the original HDR radiance map and qb, and γ ∈ (0, 1) is the

compression factor which determines the scale of dynamic

range compression. For specific details please refer to [5]

and their companion website [1]. In this experiment, we

replace BIL and GUI by their side window versions.
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(a) Input (b) RTV (c) RGF (d) IWGF (e) IS-WGF

Figure 8. Structure-preserving and texture-removing on natural image from BSR Dataset (r = 5, ǫ = 0.005, iteration = 10, λ = 100).

The number shown on each image is the SSIM value.

Fig. 7 shows examples of the results. From the zoomed

in patches, we can see that halo artifacts exist in the results

of filters without side window technique, while they do not

exist in the results of their side window filters. These results

can once again be attributed to the good edge-preserving

property of SWF.

4.5. Structure-preserving and texture-removing on
natural image

The goal of this application is to extract image structures

and remove the textures [29]. The side window technique

is embedded into the weighted guided filter (WGF) [15] to

form a new filter called S-WGF. By combining WGF and S-

WGF in the iteration framework of [30], we propose a new

structure-preserving texture-removing filter, termed iterated

side window weighted guided filter (IS-WGF). In this filter,

an edge-aware weight [15] and a threshold λ is used to eas-

ily distinguish structures from textures. The structures are

preserved by S-WGF and textures are removed by WGF.

IS-WGF is compared with iterated weighted guided fil-

ter (IWGF), relative total variance (RTV) [29] and rolling

guidance filter (RGF) [30]. IWGF is obtained by combin-

ing WGF with the iterative framework of [30], RTV is the

state of art of this application and RGF is the original algo-

rithm in [30]. They are applied to smooth natural images

with obvious textures and structures, as shown in Fig. 8(a).

It is chosen from the BSR Dataset [16]. The wave in the

sea is viewed as textures and the sailing boat on the sea

is viewed as structures. From the results we can see that

only IS-WGF can preserve the structures while all other fil-

ters fail. This example demonstrates the excellent structure-

preserving property of side window technique.

4.6. Mutual structure extraction

In this section, the S-WGF is applied to the iteration

framework of [24], which was proposed to extract struc-

tures co-existed in a reference image and a target image,

to form a new filter termed Mutual-struture S-WGF (MS-

WGF). The method in [24] is referred to as MJF. We apply

MJF and MS-WGF to extract the mutual structures of an

RGB image and a depth image. The results are shown in

Fig. 9. The results of MJF is obtained with 20 iterations

(without post processing by median filter) and the results

of MS-WGF is obtained with 10 iterations. These results

demonstrate that with fewer iterations, MS-WGF performs

as well as MJF. Moreover, the results on the depth image of

MS-WGF is smoother than that of MJF and the non-mutual

structures on the bear’s face are removed more thoroughly

by MS-WGF.

(a) Input (b) MJF (c) MS-WGF

Figure 9. Mutual structure extraction on depth and RGB image

pairs (r = 5, ǫ = 0.05, iteration = 10, λ = 1000).

4.7. Colorization

In addition to image filtering, our new side window tech-

nique can also be used to improve other local patch based

algorithms, such as colorization by optimization [14]. The

algorithm works in the Y UV color space. For a given inten-

sity channel Y (i) as input, the algorithm outputs two color

channels U(i) and V (i), where i denotes a particular pixel,

through optimizing the following cost function
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J(U) =
∑

i

(

U(i)−
∑

j∈N(i)

ωijU(j)
)2

(7)

To implement the above colorization by optimization

method in the SWF framework, we simply change the

neighborhood N(i) to a side window of i (denoted to as

Ns(i)) and keep all other aspects of the algorithm intact.

Instead of a neighborhood centered on i, we choose a suit-

able side window Ns(i) that aligns its side or corner with i.

For each pixel, the best side window is chosen with a box

filtering kernel (eq. 4).

Experiments have been carried out based on the image

data and code provided in the web page of the authors of

[14]. Some results are shown in Fig. 10. From the zoomed

in patches, we can see that color leakage exists in the orig-

inal method. But it is avoided when the original method is

embedded with the side window technique. This is owing

to the edge-preserving property of side window technique

and demonstrating the wider applicability of the new side

window technique.

(a) Input (b) method in [14] (c) ours

(d) Input (e) method in [14] (f) ours

Figure 10. Colorization (r = 3). Color leakage existed in the

original method is avoided by implementing the method under the

SWF framework.

Table 3. The computational time on images with 1 mega pixels

Method BOX GAU MED BIL GUI

Original 0.052 0.023 1.16 8.69 0.131

SWF version 0.215 0.23 3.67 26.2 0.431

5. Complexity Analysis

The order of complexity of side window based filters is

the same as the original filters. However, as the SWF im-

plementation needs to perform calculations over multiple

windows, its computational cost is higher. Our experiments

without code optimization are conducted on a computer

with a 3.5GHz Intel core Xeon(R) CPU. For gray-scale im-

ages with 1 mega pixels, the computational time of the fil-

ters are shown in Table 3. The BIL is the original algorithm

in [26] without modification for acceleration. With code op-

timization and implementing GPU programming, the com-

putational speed can be significantly improved. Our code

will be made available publicly after the paper is published.

6. Conclusion

Window based processing is one of the most common

operations in computer vision. Traditional practices almost

always align the center of the window with the pixel under

processing. In this paper, we show that this widely used

practice is not always the best solution. We show that in

many applications, the side or the corner of the operation

window instead of the center should be aligned with the

pixel under processing and propose the side window fil-

tering (SWF) technique. We have shown that many pop-

ular linear and non-linear filtering algorithms can be imple-

mented based on this principle and the SWF implementa-

tion of these traditional filters can significantly boost their

edge preserving capabilities. We have further shown that

the SWF principle can be extended to other computer vi-

sion problems that involve a local operation window and

a linear combination of the neighbors in this window such

as colorization by optimization. We have shown that SWF

technique can improve their performances and avoid arti-

facts such as color leakage that is often associated with

such algorithm. Window based operations is extensively

used in many areas of computer vision and machine learn-

ing including convolutional neural networks (CNNs). The

SWF principle, i.e., aligning the edge or corner of the opera-

tion window with the pixel being processed, although seem-

ingly trivial, is actually deeply rooted in the fundamental

assumptions of many algorithms. Our theoretical analysis

and state of the art results for many real world applications

have demonstrated its effectiveness. We believe that there

are many more applications can benefit from implementing

the SWF principle.
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