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Abstract

Computed tomography (CT) can provide a 3D view of the

patient’s internal organs, facilitating disease diagnosis, but

it incurs more radiation dose to a patient and a CT scan-

ner is much more cost prohibitive than an X-ray machine

too. Traditional CT reconstruction methods require hun-

dreds of X-ray projections through a full rotational scan of

the body, which cannot be performed on a typical X-ray ma-

chine. In this work, we propose to reconstruct CT from two

orthogonal X-rays using the generative adversarial network

(GAN) framework. A specially designed generator network

is exploited to increase data dimension from 2D (X-rays)

to 3D (CT), which is not addressed in previous research of

GAN. A novel feature fusion method is proposed to com-

bine information from two X-rays. The mean squared error

(MSE) loss and adversarial loss are combined to train the

generator, resulting in a high-quality CT volume both visu-

ally and quantitatively. Extensive experiments on a publicly

available chest CT dataset demonstrate the effectiveness of

the proposed method. It could be a nice enhancement of a

low-cost X-ray machine to provide physicians a CT-like 3D

volume in several niche applications.

1. Introduction

Immediately after its discovery by Wilhelm Rntgen in

1895, X-ray found wide applications in clinical practice. It

is the first imaging modality enabling us to non-invasively

see through a human body and diagnose changes of internal

anatomies. However, all tissues are projected onto a 2D im-

age, overlaying each other. While bones are clearly visible,

soft tissues are often difficult to discern. Computed tomog-

raphy (CT) is an imaging modality that reconstructs a 3D

volume from a set of X-rays (usually, at least 100 images)

captured in a full rotation of the X-ray apparatus around

the body. One prominent advantage of CT is that tissues
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Figure 1. Illustration of the proposed method. The network takes

2D biplanar X-rays as input and outputs a 3D CT volume.

are presented in the 3D space, which completely solves the

overlaying issue. However, a CT scan incurs far more radi-

ation dose to a patient (depending on the number of X-rays

acquired for CT reconstruction). Moreover, a CT scanner

is often much more cost prohibitive than an X-ray machine,

making its less accessible in developing countries [37].

With hundreds of X-ray projections, standard recon-

struction algorithms, e.g., filtered back projection or itera-

tive reconstruction, can accurately reconstruct a CT volume

[14]. However, the data acquisition requires a fast rotation

of the X-ray apparatus around the patient, which cannot be

performed on a typical X-ray machine. In this work, we

propose to reconstruct a CT volume from biplanar X-rays

that are captured from two orthogonal view planes. The

major challenge is that the X-ray image suffers from severe

ambiguity of internal body information, where numbers of

CT volumes can exactly match the same input X-rays once

projected onto 2D. It seems to be unsolvable if we look for

general solutions with traditional CT reconstruction algo-

rithms. However, human body anatomy is well constrained

and we may be able to learn the mapping from X-rays to

CT from a large training set through machine learning tech-

nology, especially deep learning (DL) methods. Recently,

the generative adversarial network (GAN) [11] has been

10619



used for cross-modality image transfer in medical imag-

ing [3, 5, 30, 39] and has demonstrated the effectiveness.

However, the previous works only deal with the input and

output data having the same dimension. Here we propose

X2CT-GAN that can reconstruct CT from biplanar X-rays,

surpassing the data limitations of different modalities and

dimensionality (Fig. 1).

The purpose of this work is not to replace CT with X-

rays. Though the proposed method can reconstruct the gen-

eral structure accurately, small anatomies still suffer from

some artifacts. However, the proposed method may find

some niche applications in clinical practice. For example,

we can measure the size of major organs (e.g., lungs, heart,

and liver) accurately, or diagnose ill-positioned organs on

the reconstructed CT scan. It may also be used for dose

planning in radiation therapy, or pre-operative planning and

intra-operative guidance in minimally invasive intervention.

It could be a nice enhancement of a low-cost X-ray machine

as physicians may also get a CT-like 3D volume that has

certain clinical values.

Though the proposed network can also be used to recon-

struct CT from a single X-ray, we argue that using bipla-

nar X-rays is a more practical solution. First, CT recon-

struction from a single X-ray subjects to too much ambigu-

ity while biplanar X-rays offer additional information from

both views that is complementary to each other. More accu-

rate results, 4 dB improvement in peak signal-to-noise ratio

(PSNR), are achieved in our comparison experiment. Sec-

ond, biplanar X-ray machines are already clinically avail-

able, which can capture two orthogonal X-ray images si-

multaneously. And, it is also clinically practicable to cap-

ture two orthogonal X-rays with a mono-planar machine,

by rotating the X-ray apparatus to a new orientation for the

second X-ray imaging.

One practical issue to train X2CT-GAN is lacking of

paired X-ray and CT 1. It is expensive to collect such paired

data from patients and it is also unethical to subject patients

to additional radiation doses. In this work, we train the net-

work with synthesized X-rays generated from large public-

available chest CT datasets [1]. Given a CT volume, we

simulate two X-rays, one from the posterior-anterior (PA)

view and the other from the lateral view, using the digi-

tally reconstructed radiographs (DRR) technology [28]. Al-

though DRR synthesized X-rays are quite photo-realistic,

there still exits a gap between real and synthesized X-rays,

especially in finer anatomy structures, e.g., blood vessels.

Therefore we further resort CycleGAN [41] to learn the

genuine X-ray style that can be transferred to the synthe-

sized data. More information about the style transfer oper-

ation can be found in supplement materials.

1Sometimes X-rays are captured as topogram before a CT scan. How-

ever, without the calibrated back-projection matrix, we cannot perfectly

align the two modalities.
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Figure 2. Overview of the X2CT-GAN model. RL and PL are

abbreviations of the reconstruction loss and projection loss.

To summarize, we make the following contributions:

• We are the first to explore CT reconstruction from bi-

planar X-rays with deep learning. To fully utilize the

input information from two different views, a novel

feature fusion method is proposed.

• We propose X2CT-GAN, as illustrated in Fig. 2, to

increase the data dimension from input to output (i.e.,

2D X-ray to 3D CT), which is not addressed in previ-

ous research on GAN.

• We propose a novel skip connection module that could

bridge 2D and 3D feature maps more naturally.

• We use synthesized X-rays to learn the mapping from

2D to 3D, and CycleGAN to transfer real X-rays to

the synthesized style before feeding into the network.

Therefore, although our network is trained with syn-

thesized X-rays, it can still reconstruct CT from real

X-rays.

• Compared to other reconstruction algorithms using

visible light [7, 9, 18], our X-ray based approach can

reconstruct both surface and internal structures.

2. Related Work

Cross-Modality Transfer A DL based model often suf-

fers from lacking enough training data so as to fall into a

suboptimal point during training or even overfit the small

dataset. To alleviate this problem, synthetic data has been

used to boost the training process [33, 39]. So synthesiz-

ing realistic images close to the target distribution is a critic

premise. Previous research such as pix2pix [17] could do

the pixel level image to image transfer and CycleGAN [41]

has the ability to learn the mapping between two unpaired

datasets. In medical imaging community, quite some efforts

have been put into this area to transfer a source modality to

a target modality, e.g., 3T MRI to 7T MRI [3], MRI to CT

[5, 30], MRI and CT bidirectional transfer [39] etc. Our

approach differs from the previous cross-modality transfer

works in two ways. First, in all the above works, the di-

mensions of the input and output are consistent, e.g., 2D to
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Figure 3. Network architecture of the X2CT-GAN generator. Two encoder-decoder networks with the same architecture work in parallel for

posterior-anterior (PA) and lateral X-rays, respectively. Another fusion network between these two encoder-decoder networks is responsible

for fusing information coming from two views. For more details about Connection-A, B and C, please refer to Fig. 4.

2D or 3D to 3D. Here, we want to transfer 2D X-rays to a

3D volume. To handle this challenge, we propose X2CT-

GAN, which incorporates two mechanisms to increase the

data dimension. Second, our goal is to reconstruct accurate

3D anatomy from biplanar X-rays with clinical values in-

stead of enriching the training set. A photo-realistic image

(e.g., one generated from pure noise input [11]) may already

be beneficial for training. However, our application further

requires the image to be anatomically accurate as well.

3D Model Extraction from 2D Projections 3D model

extraction from 2D projections is a well studied topic in

computer vision [7, 9, 18]. Since most objects are opaque

to light, only the outer surface model can be reconstructed.

X-ray can penetrate most objects (except thick metal) and

different structures overlay on a 2D image. Therefore, the

methods used in 3D model extraction from X-rays are quite

different to those used in the computer vision community.

Early in 1990, Caponetti and Fanelli reconstructed a bone

model from two X-rays based on back-lighting projections,

polygon mesh and B-spline interpolation [6]. In recent

years, several works have investigated the reconstruction of

bones, rib cages and lungs through statistical shape models

or other prior knowledge [8, 2, 19, 24, 21, 23, 22]. Different

to ours, these methods could not generate a 3D CT-like im-

age. Furthermore, although they may be able to get precise

models, if we generalize these to reconstruct other organs,

an elaborate geometric model has to be prepared in advance,

which limits their application scenarios.

CT Reconstruction from X-ray Classical CT recon-

struction algorithms, e.g., filtered back projection and it-

erative reconstruction methods [14], require hundreds of

X-rays captured during a full rotational scan of the body.

Methods based on deep learning have also been used to im-

prove the performance in recent works [38, 12]. The input

of [38] is an X-ray sinogram, while ours are human readable

biplanar X-rays. And, [12] mainly deals with the limited-

angle CT compensation problem. More relevant to our work

is [13], which uses a convolutional neural network (CNN) to

predict the underlying 3D object as a volume from a single-

image tomography. However, we argue that a single X-ray

is not enough to accurately reconstruct 3D anatomy since

it is subject to too much ambiguity. For example, we can

stretch or flip an object along the projection direction with-

out changing the projected image. As shown in our experi-

ments, biplanar X-rays with two orthogonal projections can

significantly improve the reconstruction accuracy, benefit-

ing from more constraints provided by an additional view.

Furthermore, the images reconstructed by [13] are quite

blurry, thus with limited clinical values. Combining adver-

sarial training and reconstruction constraints, our method
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could extract much finer anatomical structures (e.g. blood

vessels inside lungs), which significantly improves the vi-

sual quality.

3. Objective Functions of X2CT-GAN

GAN [11] is a recent proposal to effectively train a gen-

erative model that has demonstrated the ability to capture

real data distribution. Conditional GAN [29], as an exten-

sion of the original GAN, further improves the data gener-

ation process by conditioning the generative model on ad-

ditional inputs, which could be class labels, partial data, or

even data from a different modality. Inspired by the suc-

cesses of conditional GANs, we propose a novel solution

to train a generative model that can reconstruct a 3D CT

volume from biplanar 2D X-rays. In this section, we first

introduce several loss functions that are used to constrain

the generative model.

3.1. Adversarial Loss

The original intention of GAN is to learn deep genera-

tive models while avoiding approximating many intractable

probabilistic computations that arise in other strategies, i.e.,

maximum likelihood estimation. The learning procedure is

a two-player game, where a discriminator D and a genera-

tor G would compete with each other. The ultimate goal is

to learn a generator distribution pG(x) that matches the real

data distribution pdata(x). An ideal generator could gener-

ate samples that are indistinguishable from the real samples

by the discriminator. More formally, the minmax game is

summarized by the following expression:

min
G

max
D

V (G,D) =Ex∼pdata
[logD(x)]+

Ez∼noise[log (1−D(G(z)))],
(1)

where z is sampled from a noise distribution.

As we want to learn a non-linear mapping from X-rays to

CT, the generated CT volume should be consistent with the

semantic information provided by the input X-rays. After

trying different mutants of the conditional GAN, we find out

that LSGAN [27] is more suitable for our task and apply it

to guide the training process. The conditional LSGAN loss

is defined as:

LLSGAN (D) =
1

2
[Ey∼p(CT )(D(y|x)− 1)2+

Ex∼p(Xray)(D(G(x)|x)− 0)2],

LLSGAN (G) =
1

2
[Ex∼p(Xray)(D(G(x)|x)− 1)2],

(2)

where x is composed of two orthogonal biplanar X-

rays, and y is the corresponding CT volume. Compared

to the original objective function defined in Eq. (1), LS-

GAN replaces the logarithmic loss with a least-square loss,

which helps to stabilize the adversarial training process and

achieve more realistic details.

3.2. Reconstruction Loss

The conditional adversarial loss tries to make prediction

look real. However, it does not guarantee that G can gener-

ate a sample maintaining the structural consistency with the

input. Moreover, CT scans, different from natural images

that have more diversity in color and shape, require higher

precision of internal structures in 3D. Consequently, an ad-

ditional constraint is required to enforce the reconstructed

CT to be voxel-wise close to the ground truth. Some pre-

vious work has combined the reconstruction loss [32] with

the adversarial loss and got positive improvements. We also

follow this strategy and acquire a high PSNR as shown in

Table 1. Our reconstruction loss is defined as MSE:

Lre = Ex,y‖y −G(x)‖22. (3)

3.3. Projection Loss

The aforementioned reconstruction loss is a voxel-wise

loss that enforces the structural consistency in the 3D space.

To improve the training efficiency, more simple shape pri-

ors could be utilized as auxiliary regularizations. Inspired

by [18], we impel 2D projections of the predicted volume to

match the ones from corresponding ground-truth in differ-

ent views. Orthogonal projections, instead of perspective

projections, are carried out to simplify the process as this

auxiliary loss focuses only on the general shape consistency,

not the X-ray veracity. We choose three orthogonal projec-

tion planes (axial, coronal, and sagittal, as shown in Fig.

2, following the convention in the medical imaging com-

munity). Finally, the proposed projection loss is defined as

below:

Lpl =
1

3
[Ex,y‖Pax(y)− Pax(G(x))‖1+

Ex,y‖Pco(y)− Pco(G(x))‖1+

Ex,y‖psa(y)− Psa(G(x))‖1],

(4)

where the Pax, Pco and Psa represent the projection in the

axial, coronal, and sagittal plane, respectively. The L1 dis-

tance is used to enforce sharper image boundaries.

3.4. Total Objective

Given the definitions of the adversarial loss, reconstruc-

tion loss, and projection loss, our final objective function is

formulated as:

D∗ = argmin
D

λ1LLSGAN (D),

G∗ = argmin
G

[λ1LLSGAN (G) + λ2Lre + λ3Lpl],
(5)

where λ1, λ2 and λ3 control the relative importance of

different loss terms. In our X-ray to CT reconstruction

task, the adversarial loss plays an important role of encour-

aging local realism of the synthesized output, but global
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shape consistency should be prioritized during the opti-

mization process. Taking this into consideration, we set

λ1 = 0.1, λ2 = λ3 = 10 in our experiments.

4. Network Architecture of X2CT-GAN

In this section, we introduce our proposed network de-

signs that are used in the 3D CT reconstruction task from

2D biplanar X-rays. Similar to other 3D GAN architectures,

our method involves a 3D generator and a 3D discriminator.

These two models are alternatively trained with the super-

vision defined in previous section.

4.1. Generator

The proposed 3D generator, as illustrated in Fig. 3, con-

sists of three individual components: two encoder-decoder

networks with the same architecture working in parallel for

posterior-anterior (PA) and lateral X-rays respectively, and a

fusion network. The encoder-decoder network aims to learn

the mapping from the input 2D X-ray to the target 3D CT in

the feature space, and the fusion network is responsible for

reconstructing the 3D CT volume with the fused biplanar

information from the two encoder-decoder networks. Since

the training process in our reconstruction task involves cir-

culating information between input and output from two

different modalities and dimensionalities, several modifica-

tions of the network architecture are made to adapt to the

challenge.

Densely Connected Encoder Dense connectivity [15]

has a compelling advantage in the feature extraction pro-

cess. To optimally utilize information from 2D X-ray im-

ages, we embed dense modules to generator’s encoding

path. As shown in Fig. 3, each dense module consists

of a down-sampling block (2D convolution with stride=2),

a densely connected convolution block and a compressing

block (output channels halved). The cascaded dense mod-

ules encode different level information of the input image

and pass it to the decoder along different shortcut paths.

Bridging 2D Encoder and 3D Decoder Some existing

encoder-decoder networks [17, 25] link encoder and de-

coder by means of convolution. There is no obstacle in a

pure 2D or 3D encode-decode process, but our special 2D

to 3D mapping procedure requires a new design to bridge

the information from two dimensionalities. Motivated by

[40], we extend fully connected layer to a new connec-

tion module, named Connection-A (Fig. 4a), to bridge the

2D encoder and 3D decoder in the middle of our genera-

tor. To better utilize skip connections in the 2D-3D gen-

erator, we design another novel connection module, named

Connection-B (Fig. 4b), to shuttle low-level features from

encoder to decoder.

To be more specific, Connection-A achieves the 2D-3D

conversion through fully-connected layers, where the last

encoder layer’s output is flattened and elongated to a 1D

2

Flatten

FC

ReLU

Dropout

3

1

1 1

Reshape

Basic2d

Basic3d +
Average

Expand

(a) Connection-A (b) Connection-B (c) Connection-C

Permute Permute

Figure 4. Different types of connections. Connection-A and

Connection-B aim to increase dimensionality of feature maps, and

Connection-C is for fusing information from two different views.

vector that is further reshaped to 3D. However, most of the

2D spatial information gets lost during such conversion so

that we only use Connection-A to link the last encoder layer

and first decoder layer. For the rest of skip connections, we

use Connection-B and take following steps: 1) enforce the

channel number of the encoder being equal to the one on

the corresponding decoder side by a basic 2D convolution

block; 2) expand the 2D feature map to a pseudo-3D one

by duplicating the 2D information along the third axis; 3)

use a basic 3D convolution block to encode the pseudo-3D

feature map. The abundant low-level information shuttled

across two parts of the network imposes strong correlations

on the shape and appearance between input and output.

Feature Fusion of Biplanar X-rays As a common

sense, a 2D photograph from frontal view could not retain

lateral information of the object and vice versa. In our task,

we resort biplanar X-rays captured from two orthogonal di-

rections, where the complementary information could help

the generative model achieve more accurate results. Two

encoder-decoder networks in parallel extract features from

each view while the third decoder network is set to fuse the

extracted information and output the reconstructed volume.

As we assume the biplanar X-rays are captured within a

negligible time interval, meaning no data shift caused by pa-

tient motions, we can directly average the extracted features

after transforming them into the same coordinate space, as

shown in Fig. 4c. Any structural inconsistency between

two decoders’ outputs will be captured by the fusion net-

work and back-propagated to two networks.

4.2. Discriminator

PatchGANs have been used frequently in recent works

[26, 17, 25, 41, 35] due to the good generalization prop-

erty. We adopt a similar architecture in our discriminator

network from Phillip et al. [17], named as 3DPatchDis-
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criminator. It consists of three conv3d − norm − relu

modules with stride = 2 and kernelsize = 4, another

conv3d − norm − relu module with stride = 1 and

kernelsize = 4, and a final conv3d layer. Here, conv3d
denotes a 3D convolution layer; norm stands for an in-

stance normalization layer [34]; and relu represents a rec-

tified linear unit [10]. The proposed discriminator architec-

ture improves the discriminative capacity inherited from the

PatchGAN framework and can distinguish real or fake 3D

volumes.

4.3. Training and Inference Details

The generator and discriminator are trained alternatively

following the standard process [11]. We use the Adam

solver [20] to train our networks. The initial learning rate

of Adam is 2e-4, momentum parameters β1 = 0.5 and

β2 = 0.99. After training 50 epochs, we adopt a linear

learning rate decay policy to decrease the learning rate to 0.

We train our model for a total of 100 epochs.

As instance normalization [34] has been demonstrated to

be superior to batch normalization [16] in image generation

tasks, we use instance normalization to regularize interme-

diate feature maps of our generator. At inference time, we

observe that better generating results could be obtained if

we use the statistics of the test batch itself instead of the

running average of training batches, as suggested in [17].

Constrained by GPU memory limit, the batch size is set to

one in all our experiments.

5. Experiments

In this section, we introduce an augmented dataset built

on LIDC-IDRI [1]. We evaluate the proposed X2CT-GAN

model with several widely used metrics, e.g., peak signal-

to-noise ratio (PSNR) and structural similarity (SSIM) in-

dex. To demonstrate the effectiveness of our method, we

reproduce a baseline model named 2DCNN [13]. Fair com-

parisons and comprehensive analysis are given to demon-

strate the improvement of our proposed method over the

baseline and other mutants. Finally, we show the real-world

X-ray evaluation results of X2CT-GAN. Input images to

X2CT-GAN are resized to 128×128 pixels, while the input

of 2DCNN is 256 × 256 pixels as suggested by [13]. The

output of all models is set to 128× 128× 128 voxels.

5.1. Datasets

CT and X-ray Paired Dataset Ideally, to train and val-

idate the proposed CT reconstruction approach, we need a

large dataset with paired X-rays and corresponding CT re-

constructions. Furthermore, the X-ray machine needs to be

calibrated to get an accurate projection matrix. However, no

such dataset is available and it is very costly to collect such

real paired dataset. Therefore, we take a real CT volume

(a) (b) (c) (d)

Figure 5. DRR [28] simulated X-rays. (a) and (c) are simulated

PA view X-rays of two subjects, (b) and (d) are the corresponding

lateral views.

and use the digitally reconstructed radiographs (DRR) tech-

nology [28] to synthesize corresponding X-rays, as shown

in Fig. 5. It is much cheaper to collect such synthesized

datasets to train our networks. To be specific, we use the

publicly available LIDC-IDRI dataset [1], which contains

1,018 chest CT scans. The heterogeneous of imaging pro-

tocols result in different capture ranges and resolutions. For

example, the number of slices varies a lot for different vol-

umes. The resolution inside a slice is isotropic but also

varies for different volumes. All these factors lead to a non-

trivial reconstruction task from 2D X-rays. To simplify, we

first resample the CT scans to the 1 × 1 × 1 mm3 resolu-

tion. Then, a 320 × 320 × 320 mm3 cubic area is cropped

from each CT scan. We randomly select 916 CT scans for

training and the rest 102 CT scans are used for testing.

Mapping from Real to Synthetic X-rays Although

DRR synthetic X-rays are quite photo-realistic, there is still

a gap between the real and synthetic X-rays, especially

for those subtle anatomical structures, e.g., blood vessels.

Since our networks are trained with synthesized X-rays, a

sub-optimal result will be obtained if we directly feed a real

X-ray into the network. We propose to perform style trans-

fer to map real X-rays to the synthesized style. Without

paired dataset of real and synthesized X-rays, we exploit

CycleGAN [41] to learn the mapping. We collected 200 real

X-rays and randomly selected 200 synthetic X-rays from

the training set of the paired LIDC dataset.

5.2. Metrics

PSNR is often used to measure the quality of recon-

structed digital signals [31]. Conventionally, CT value is

recorded with 12 bits, representing a range of [0, 4095]

(the actual Hounsfield unit equals the CT value minus 1024)

[4], which makes PSNR an ideal criterion for image quality

evaluation.

SSIM is a metric to measure the similarity of two

images, including brightness, contrast and structure [36].

Compared to PSNR, SSIM can match human’s subjective

evaluation better.

5.3. Qualitative Results

We first qualitatively evaluate CT reconstruction results

shown in Fig. 6, where X2CT-CNN is the proposed network
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GT 2DCNN X2CT-CNN+S X2CT-CNN+B X2CT-GAN+S X2CT-GAN+B 

Figure 6. Reconstructed CT scans from different approaches. 2DCNN is our reproduced baseline model [13]; X2CT-CNN is our generator

network optimized by the MSE loss alone and X2CT-GAN is our GAN-based model optimized by total objective. ‘+S’ means single-view

X-ray input and ‘+B’ means biplanar X-rays input. The first row demonstrates axial slices generated by different models. The last two

rows are 3D renderings of generated CT scans in the PA and lateral view, respectively.

supervised only by the reconstruction loss while X2CT-

GAN is the one trained with full objectives; ‘+S’ means

single-view X-ray input and ‘+B’ means biplanar X-rays

input. For comparison, we also reproduce the method pro-

posed in [13] (referred as 2DCNN in Fig. 6) as the base-

line, one of very few published works tackling the X-ray

to CT reconstruction problem using deep learning. Since

2DCNN is designed to deal with single X-ray input, no bi-

planar results are shown. From the visual quality evalua-

tion, it is obvious to see the differences. First of all, 2DCNN

and X2CT-CNN generate very blurry volumes while X2CT-

GAN maintains small anatomical structures. Secondly,

though missing reconstruction details, X2CT-CNN+S gen-

erates sharper boundaries of large organs (e.g., heart, lungs

and chest wall) than 2DCNN. Last but not least, models

trained with biplanar X-rays outperform the ones trained

with single view X-ray. More reconstructed CT slices could

be found in Fig. 8.

5.4. Quantitative Results

Quantitative results are summarized in Table 1. Biplanar

inputs significantly improve the reconstruction accuracy,

about 4 dB improvement for both X2CT-CNN and X2CT-

GAN, compared to single X-ray input. It is well known

that the GAN models often sacrifice MSE-based metrics to

achieve visually better results. This phenomenon is also ob-

served here. However, by tuning the relative weights of the

voxel-level MSE loss and semantic-level adversarial loss

Table 1. Quantitative results. 2DCNN is our reproduced model

from [13]; X2CT-CNN is our generator network optimized by the

MSE loss alone; and X2CT-GAN is our GAN-based model opti-

mized by total objective. ‘+S’ means single-view X-ray input and

‘+B’ means biplanar X-rays input.

Methods PSNR (dB) SSIM

2DCNN 23.10(±0.21) 0.461(±0.005)

X2CT-CNN+S 23.12(±0.02) 0.587(±0.001)

X2CT-CNN+B 27.29(±0.04) 0.721(±0.001)

X2CT-GAN+S 22.30(±0.10) 0.525(±0.004)

X2CT-GAN+B 26.19(±0.13) 0.656(±0.008)

is our cost function, we can make a reasonable trade-off.

For example, there is only 1.1 dB decrease in PSNR from

X2CT-CNN+B to X2CT-GAN+B, while the visual image

quality is dramatically improved as shown in Fig. 6. We ar-

gue that visual image quality is as important as (if not more

important than) PSNR in CT reconstruction since eventu-

ally the images will be read visually by a physician.

5.5. Ablation Study

Analysis of Proposed Connection Modules To validate

the effectiveness of proposed connection modules, we also

perform an ablation study in the setting of X2CT-CNN.

As shown in Table 2, single view input with Connection-

B achieves 0.7 dB improvement in PSNR. The biplanar
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Table 2. Evaluation of different connection modules. ‘XC’ de-

notes X2CT-CNN model without the proposed Connection-B and

Connection-C module. ‘+S’ means the model’s input is a single-

view X-ray and ‘+B’ means biplanar X-rays. ‘CB’ and ‘CC’ de-

note Connection-B and Connection-C respectively as shown in

Fig. 4.

Combination Metrics

XC+S XC+B CB CC PSNR(dB) SSIM

X 22.46(±0.02) 0.549(±0.002)

X X 23.12(±0.02) 0.587(±0.001)

X 24.84(±0.05) 0.620(±0.003)

X X X 27.29(±0.04) 0.721(±0.001)

Table 3. Evaluation of different settings in the GAN framework.

‘RL’ and ‘PL’ denote the reconstruction and projection loss, re-

spectively. ‘CD’ means that input X-ray information is fed to the

discriminator to achieve a conditional GAN.

Formulation Metrics

GAN RL PL CD PSNR(dB) SSIM

X 17.38(±0.36) 0.347(±0.022)

X X 25.82(±0.08) 0.645(±0.001)

X X X 26.05(±0.02) 0.645(±0.002)

X X X X 26.19(±0.13) 0.656(±0.008)

input, even without skip connections, surpasses the single

view due to the complementary information injected to the

network. And in our biplanar model, Connection-B and

Connection-C are interdependent so that we regard them

as one module. As can be seen, the biplanar model with

this module surpasses other combinations by a large margin

both in PSNR and SSIM.

Different Settings in GAN Framework The effects of

different settings in the GAN framework are summarized in

Table 3. As the first row shows, adversarial loss alone per-

forms poorly on PSNR and SSIM due to the lack of strong

constraints. The most significant improvement comes from

the reconstruction loss being added to the GAN framework.

Projection loss and the conditional information bring addi-

tional improvement slightly.

5.6. Real­World Data Evaluation

Since the ultimate goal is to reconstruct a CT scan from

real X-rays, we finally evaluate our model on real-world

data, despite the model is trained on synthetic data. As we

have no corresponding 3D CT volumes for real X-rays, only

qualitative evaluation is conducted. Visual results are pre-

sented in Fig. 7, we could see that the reconstructed lung

and surface structures are quite plausible.

Figure 7. CT reconstruction from real-world X-rays. Two subjects

are shown here. The first and second columns are real X-rays in

two views. The following two columns are transformed X-rays

by CycleGAN [41]. The last two columns show 3D renderings

of reconstructed internal structures and surfaces. Dotted ellipses

highlight regions of high-quality anatomical reconstruction.

(a)

(b)

Figure 8. Examples of reconstructed CT slices (a) and correspond-

ing groundtruth (b). As could be seen, our method reconstructs the

shape and appearance of major anatomical structures accurately.

6. Conclusions

In this paper, we explored the possibility of reconstruct-

ing a 3D CT scan from biplanar 2D X-rays in an end-to-

end fashion. To solve this challenging task, we combined

the reconstruction loss, the projection loss and the adver-

sarial loss in the GAN framework. Moreover, a specially

designed generator network is exploited to increase the data

dimension from 2D to 3D. Our experiments qualitatively

and quantitatively demonstrate that biplanar X-rays are su-

perior to single view X-ray in the 3D reconstruction process.

For future work, we will collaborate physicians to evaluate

the clinical value of the reconstructed CT scans, including

measuring the size of major organs and dose planning in

radiation therapy, etc.
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