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Abstract

As an indicator of human attention gaze is a subtle

behavioral cue which can be exploited in many applica-

tions. However, inferring 3D gaze direction is challeng-

ing even for deep neural networks given the lack of large

amount of data (groundtruthing gaze is expensive and ex-

isting datasets use different setups) and the inherent pres-

ence of gaze biases due to person-specific difference. In this

work, we address the problem of person-specific gaze model

adaptation from only a few reference training samples. The

main and novel idea is to improve gaze adaptation by gen-

erating additional training samples through the synthesis

of gaze-redirected eye images from existing reference sam-

ples. In doing so, our contributions are threefold: (i) we

design our gaze redirection framework from synthetic data,

allowing us to benefit from aligned training sample pairs

to predict accurate inverse mapping fields; (ii) we proposed

a self-supervised approach for domain adaptation; (iii) we

exploit the gaze redirection to improve the performance of

person-specific gaze estimation. Extensive experiments on

two public datasets demonstrate the validity of our gaze re-

targeting and gaze estimation framework.

1. Introduction

Gaze, as a subtle non-verbal human behaviour, not only

indicates the visual content people perceive but also con-

veys information about the level of attention, mental state

or even higher level psychological constructs of human. As

a consequence, gaze cues have been exploited in many ar-

eas like social interaction analysis [10], stress analysis [8],

human robot interaction (HRI) [1,20], the emerging Virtual

Reality industry [21, 24], and they are expected to find a

wide range of application in mobile interactions with smart

phones [9, 14, 30].

However, gaze extraction from non invasive visual sen-

sors is challenging and has attracted an increased amount

of research in recent years. Approaches can be classified in

two general categories: geometric based methods (GBM)

Figure 1. Approach overview. A few reference eye images (with

gaze ground truth) from a user are used as input to a gaze redi-

rection synthesis module to generate further training samples. The

latter (and reference samples) are used to fine-tune a generic gaze

estimator to obtain a user-specific gaze estimator.

and appearance based methods (ABM). The former ones

rely on a geometrical model of eyes whose parameters can

be inferred from localized eye landmarks like iris or eye

corners. Although they can be very accurate, they usually

require high resolution data to reliably extract eye features.

The latter ABM ones directly learn a mapping from the

eye images to the gaze directions and have been shown to

be more robust against low eye image resolution and other

variability factors (illumination, head pose, gaze range,...).

Nevertheless, in spite of recent progresses partly due to the

use of deep neural networks [2, 14, 16, 23, 44, 45], vision

based gaze estimation is still a challenging and open prob-

lem due to at least three main factors:

• Lack of data. The sizes of benchmark gaze

datasets [3, 28, 44] are relatively small compared to

other vision tasks like image classification, since accu-

rate gaze annotation is complex and expensive. To ad-

dress the lack of data, domain adaptation methods [27]

have proposed to use synthetic images for training, but

completely eliminating the domain discrepancies be-

tween real and synthetic eye images is hard.

• Systematic bias. Existing gaze datasets usually

use different gaze coordinate systems and data pre-

processing methods, in particular for geometric nor-

malization (rectification) relying on different head

pose estimators. This introduces a between-dataset
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systematic bias regarding the gaze groundtruth [41].

• Person-specific bias. Liu et al. [16] legitimaly argue

that gaze can not be fully estimated from the visual

appearance since the alignment difference between the

optical axis (the line connecting the eyeball center and

the pupil center) and the visual axis (the line connect-

ing the fovea and the nodal point [4]) is person specific,

and vary within -2 to 2 degrees across the population.

Therefore, it is not optimal to train a single generic

model for accurate cross-person gaze estimation.

In this paper, we focus on the problem of person-specific

gaze adaptation which has not received enough attention

compared to cross person gaze estimation. More specifi-

cally, the aim is to only rely on few samples since collect-

ing training samples for a new subject is expensive. In this

context, a first and interesting result that we show is that a

direct and simple fine tuning of a neural network gaze re-

gressor can improve person-specific gaze estimation by a

good margin, even if the number of person-specific sam-

ples is as small as 9. We then propose to further improve

the performance of such gaze adaptation method by using

as additional training data gaze-redirected samples synthe-

sized from the given reference samples, as illustrated in

Fig. 1. Compared with domain adaptation methods like

SimGAN [27], which work by retargeting synthetic images

into subject specific eye images, we firmly believe that a

gaze redirection framework relying on reference eye im-

ages and user defined gaze changes (redirection angles) can

generate samples with more realistic appearance (since they

are directly derived from real eye images of the subject)

and more reliable groundtruth (less systematic and person-

specific bias), thus demonstrating better performance when

used for person-specific gaze adaptation. By investigating

the aboves ideas, we make the following contributions:

• Gaze redirection network training. Unlike previ-

ous approaches [6, 12], our redirection network is

pre-trained with synthetic eye images so that a large

amount of well aligned image pairs (the same eye po-

sition, eye size, head pose and illumination) can be ex-

ploited. As a result, thanks to the large amount of data,

the network does not require the eye landmarks as an-

choring points. Besides, we also propose to exploit the

segmentation map of synthetic samples for regulariza-

tion during training.

• Gaze redirection domain adaptation. Training with

synthetic data results in the domain shift problem.

However, as we do not have aligned pairs of real im-

ages to do domain adaptation, we proposed instead a

self-supervised method relying on a cycle consistency

loss and a gaze redirection loss.

• Person-specific gaze adaptation using gaze-

redirected samples. We hypothesize that these

samples will provide more diverse visual content

and gaze groundtruth compared to the reference

samples they originated from, thus improving the

person-specific gaze adaptation. To the best of our

knowledge, we are the first to propose this idea and a

series of experiments to validate its efficacy.

The rest of the paper is organized as follows. We first

summarize the related works in Section 2 and then introduce

our method in Section 3. Experimental results are reported

in Section 4 while a brief discussion is made in Section 5.

The final conclusion is given in Section 6.

2. Related Works

Gaze Estimation. As stated in introductionm, non-invasive

vision based gaze estimation methods can be divided

into geometric ones (GBM) and appearance based ones

(ABM) [7]. GBMs build eye models based on some eye

features, such as eye corners or iris localization and infer

gaze direction using geometric relationship between ele-

ments like the line joining the eyeball center to the iris cen-

ter [4, 31–33, 37, 40]. Usually they do not require much

training samples except for a few calibration points, but they

suffer from low resolution imaging, noise and variable light-

ing conditions.

ABMs are more robust to those factors [5,17,18,29,36],

as they learn a regressor from annotated data samples and

estimate gaze directly from the images. In particular, re-

cently deep learning approaches [2, 14, 22, 33, 42, 43, 45]

have been shown to work well because they train a re-

gression network leveraging large amounts of data. They

can capture what are the image features essential for gaze

estimation under various conditions, such as various eye

shapes, illumination, glasses and head pose.

Gaze Adaptation. However, when testing on unknown per-

son, the different personal eye structures such as eye shapes

and visual axis limit the performance of both GBMs and

ABMs [16]. Some straightforward solutions to this problem

have been proposed, such as to learn person-specific mod-

els [15, 29, 43], fine-tune a pre-trained model [19], learn a

SVR using a few samples for calibration [14] or learn a dif-

ferential gaze model [16].

Training a person-specific model or fine-tuning a pre-

trained model can achieve very high accuracy for such per-

son, but it usually requires relatively large amount of anno-

tated data from this person, which is not wanted in practice.

Calibrating person-specific model with an SVR or relying

on differential gaze only require a few reference annotated

samples, but those samples do not reflect the global gaze

map, and the estimation error will increase when the gaze

difference between the test sample and the reference sample

becomes large.

Under this circumstance, we propose a gaze redirection

method that can alleviate the drawbacks from the aforemen-
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tioned methods. More precisely, our algorithm can gener-

ate more diverse and realistic images using a few annotated

samples from this person. Then these data can be used to

fine-tune a pre-trained gaze model.

Gaze Redirection. As far as we know, the computer vision

and graphics based gaze redirection for video-conferencing

was first studied in [47], in which two components are in-

cluded to solve this task. The first is tracking the user’s

head pose and eye ball motion, and the second consists

of manipulating the head orientation and eye gaze. Fol-

lowing this work, Weiner et.al. [34] evaluated and proved

the overall feasibility of gaze redirection in face images

via eye synthesis and replacement by integrating the vision

and graphical algorithm within a demonstration program.

But changes in the eyelid configuration were not consid-

ered. Then a simple solution that detects eyes and replaces

them with eye images in a front gaze direction was pro-

posed in [26, 35]. Kononenko et.al. proposed a pixel-wise

replacement method using an eye flow tree and could syn-

thesize realistic views with a gaze systematically redirected

upwards by 10 to 15 degrees [13]. Then they updated the

eye flow tree by a deep warping network trained on pairs of

eye images corresponding to eye appearance before and af-

ter the redirection [6, 12]. However, these methods require

large amount of annotated data for training.

To circumvent this issue, Wood [39] proposed a model

based method that does not need any training samples. It

first builds and fits a multi-part eye region model using an

analysis-by-synthesis method to simultaneously recover the

eye region shape, texture, pose, and gaze for a given image.

Then, it manipulates the eyes by warping the eyelids and

rendering eyeballs in the output image. It achieves better

results especially for large redirection angles.

3. Gaze Adaptation approach

Our overall approach for user-specific gaze adaptation

is illustrated in Fig. 1. It consists in fine-tuning a generic

neural network using labeled training samples. However,

rather than only using the very few (less than 10) reference

samples, we propose to generate additional samples using

a gaze redirection model. As this redirection model is the

main component of our approach, we describe it with more

details in the sections 3.1 to 3.4. The gaze adaptation part is

then described in section 3.5.

3.1. Gaze Redirection Overview

Our framework for gaze redirection is shown in Fig. 2.

It is composed of the redirection network itself and a do-

main adaptation module. The left part of Fig. 2 illustrates

the redirection network which takes the eye image, the user

defined redirection angle and the head pose as input. It is

designed as an encoder-decoder manner where the output of

the decoder is an inverse warping field. The gaze-redirected

sample is then generated by warping the input eye image

with the predicted inverse warping field (via a differentiable

sampler). The right part of Fig. 2 is the domain adapta-

tion module which is conducted in a self-supervised way

through a cycle consistency loss and a gaze redirection loss.

3.2. Synthetic Data for Gaze Redirection Learning

In principle, the training of a gaze redirection network

needs well aligned image pairs where the two images (the

input one and the redirection groundtruth for supervision)

share the same overall illumination condition, the same

person-specific properties (skin color, eye shape, iris color,

pupil color) and the same head pose. The only difference

should be gaze-related features such as eye ball orientation

and eyelid status. This strict requirement make it hard fto

collect real data. In this paper, we propose to use synthetic

samples instead. Concretely, we use the UnityEyes En-

gine [38] to produce 3K eye image groups, each containing

10 images generated with the same illumination, the same

person-specific parameter, the same head pose, but different

gaze parameters, as shown in Fig. 3. A totol of 10*9 image

pairs can thus be drawn from each group. In our work, we

used 10K image pairs for training.

3.3. Gaze Redirection Network

Architecture. It is illustrated in Fig. 2. The network takes

three variables as input, the eye image I, the head pose h

and the user defined redirection angle ∆g. Among them, I

is processed by an image branch and encoded as a semantic

feature, while h and ∆g are processed with another two

branches and encoded as features which will guide the gaze

related visual changes. Note that the head pose input is a

must since it is one of the elements which determine the

appearance of eye images. The three output features are

then stacked in a bottleneck layer and further decoded into

two inverse warping maps mx and my:

mx,y = Rθ(I,∆g,h) (1)

where R is the redirection network and θ is the network

parameter. Similarly to [12], we then use a differentiable

grid sampler s [11] to warp the input image and generate

the gaze-redirected image I∆g whose gaze groundtruth is

g+∆g (g is the gaze of the original image I) according to:

I∆g(x, y) =
∑

i

∑

j

I(i, j) ·max(0, 1− |i−mx(x, y)|)

·max(0, 1− |j −my(x, y)|).
(2)

For simplicity, we rewrite the above formulas as:

I∆g = I ◦Rθ(I,∆g,h) (3)

where ◦ represents the warping operation. Compared with

direct synthesis, this strategy projects the pixels of the input
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Figure 2. Gaze redirection network (top left), along with learning components (eye segmentation for semantic consistency, cycle consis-

tency, gaze prediction consistency).

Figure 3. Aligned UnityEyes samples (placed in rows)

to the output, which guarantees that the input and the output

will share similar color and illumination distributions.

For training, we use an L1 loss to measure the difference

between the redirection output I∆g and the groundtruth GI.

Therefore, generating the required inverse warping field for

redirection is learned in an indirect supervised way.

Semantic consistency. So far, the network can be evalu-

ated by measuring the reconstruction loss between the pre-

dicted gaze-redirected eye image I and the corresponding

groundtruth GI. If the predicted inverse warping field is ac-

curate, then the different semantic parts of the eye (pupil,

sclera and background) should also be well redirected. We

thus propose to enforce the warping consistency at the se-

mantic level. To do so, for each synthetic image I, we ex-

tract the semantic map as follows: we first fit convex shapes

to the eyelid landmarks and the iris landmarks (provided by

UnityEyes) to get the maps of the iris + pupil region, the

sclera region and the background region. We then merge

these three maps into a segmentation map SI, as shown in

Fig. 4a. It is important to note that this step is determinis-

tic and is not a part of the network. Then, any segmentation

map SI can then be redirected with the inverse warping field

Rθ(I,∆g,h) (which is predicted from the original image I)

and compared with the segmentation map SGI
of the target

Figure 4. Semantic consistency. (a) Deterministic segmentation of

a synthetic sample, red: background, blue: sclera, green: iris +

pupil. (b) the gaze redirection of a segmentation map.

redirected eye GI.

Overall loss. According to previous paragraphs, our overall

redirection loss LR (for synthetic data) can be defined as the

sum of a reconstruction loss and of the semantic loss, using

in each case L1 norms. It is thus defined as:

LR = ||I ◦Rθ(I,∆g,h)−GI||1 + ||SI ◦Rθ(I,∆g,h)− SGI
||1 (4)

Please note that the segmentation map is not processed by

the network (looking at Fig. 4b) and will not be required at

user gaze adaptation time for generating redirected samples.

3.4. Gaze Redirection Domain Adaptation

Because of the domain difference between synthetic and

real data, the performance of the network Rθ learned only

from synthetic data degrades when it is applied to real data.

A straightforward solution to solve this issue would be to

fine tune Rθ with real image pairs. However, as mentioned

above, collecting real image pairs for gaze redirection is dif-

ficult. In this section, we introduce a self-supervised do-

main adaptation method relying on two principles. The first

one is gaze redirection cycle consistency, and the second
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one is based on the consistency of the estimated gaze from

the gaze redirected image.

Cycle consistency loss. It has been used for applications

like domain adaptation [46] and identity preserving [25].

The main idea is that when a sample is transferred to a new

domain and then converted back to the original domain, the

cycle output should be the same as the input. Similarly, in

our case, if a gaze redirected sample I∆g is further redi-

rected with the inverse redirection angle -∆g, the cycle out-

put should be close to the original image I.

In this paper, we apply this cycle consistency scheme to

the set of real images, and define the cycle loss as:

Lcycle = ||I∆g ◦Rθ(I∆g,−∆g,h)− I||1 (5)

where I∆g = I ◦Rθ(I,∆g,h).

Gaze redirection loss. As a weakness, the cycle loss alone

could push the redirection network to collapse to an identity

mapping (the output of the redirection network is always

equal to the input). To prevent this collapse, we propose

to exploit a gaze redirection loss. More concretely, given a

set of real data, we first train a generic gaze estimator Eφ

using them. We then freeze the parameters of Eφ and use

it to define a loss on the gaze-redirected image, enforcing

that the gaze predicted from this image should be close to

its target groundtruth (see bottom of Fig. 2). More formally:

Lgaze = ||Eφ(I ◦Rθ(I,∆g,h))− (g +∆g)||2 (6)

Besides preventing the collapse, the real data trained gaze

estimator Eφ can help reducing the systematic bias in the

gaze redirection network (arising from intially training the

network with only synthetic data) and therefore help the do-

main adaptation of Rθ.

Network adaptation optimization. To conduct network

adaptation, we do not consider the two losses in the same

minibatches, as they are of different nature. In addition,

to balance the domain adaptation and the gaze redirection,

not all parts of the network need to be adapted simultane-

ously. In practice, we thus optimize the two losses alter-

natively according to the following scheme. For the cycle

loss Lcycle, we only optimize the image encoding branch

since i) domain shift usually occurs when encoding an in-

put image into semantic features; ii) the fixed decoder part

can further prevent the redirection network from collapsing.

For the gaze redirection loss Lgaze, only the head pose and

gaze branches are updated. The image encoder and decoder

remain frozen in this case to prevent an overfitting to Lgaze.

We use Stochastic Gradient Descent (SGD) to optimize the

network.

3.5. Gaze Estimation Adaptation

As stated earlier, the aim of the gaze redirection is to

generate more person-specific samples for gaze adaptation.

In our work, we first train a generic gaze estimator using

the real data from several identities. We then adapt the es-

timator with the samples of a new person and their gaze-

redirected outputs. This adaptation is conducted in a few-

shot setting, meaning the number of original samples of

this new person is few (less than 10). More concretely, the

generic estimation network is fine tuned with the person-

specific samples during 10 epochs. In the first 5 ones, we

use both the original and the gaze-redirected samples, while

in the last 5 ones we only use the original samples to min-

imize the effects of potentially wrong redirected samples.

Since the number of samples is small, we use Batch Gradi-

ent Descent instead of Stochastic Gradient Descent. Further

details about the generic gaze estimator and its adaptation

can be found in the Experiment Section.

4. Experiment

In experiments, our main aim is to evaluate the perfor-

mance of the person-specific gaze estimators adapted from

a generic estimator using few reference samples and their

gaze-redirected samples. Nevertheless, we also conduct a

subjective test to evaluate to which extent the redirected

samples are realistic enough for humans. Note that in this

paper, we only target single eye image gaze estmtion (and

redirection and adaptation), leaving the full-face case as fu-

ture work.

4.1. Experimental Setting

Datasets. We use the ColumbiaGaze Dataset [28] and the

MPIIGaze Dataset [43] for experiment. The former one

contains the gaze samples of 56 persons while the latter con-

tains eye images of 15 persons.

Generic gaze estimator. As our gaze estimator, we use

GazeNet [45]. It is is based on a vgg16 architecture. To train

it, we follow the protocols of the ColumbiaGaze and MPI-

IGaze datasets (i.e. as for cross-subject experiments), using

respectively a 5-fold and 15-fold training scheme. The er-

ror of our generic gaze estimator on ColumbiaGaze is 3.54◦

(3.9◦ in [23]) while the error on MPIIGaze is 5.35◦ (5.5◦

in [45]), showing better performance than the state-of-the-

art results. Please note that the generic gaze estimator1 is

also exploited as Eφ to define the gaze redirection loss, as

defined in section 3.4.

Evaluated models. Starting from the generic gaze estima-

tor, we develop a series of adaptation methods to contrast

with our approach. The first two methods are the linear

(LinAdap, [16]) and the SVR (SVRAdap, using the features

of the second last layer [14, 16]) gaze adaptation methods

which learn additional regressors from the gaze estimator

output (LinAdap) or features (SVRAdap), and thus do not

1A generic estimator is trained for each fold. In none of the experi-

ments, data from the test subject is used in either part of the training phase.
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a) b) c)

Figure 5. Redirection qualitative results from the ColumbiaGaze (a) and MPIIGaze (b) datasets. In (a) and (b), the first image of each row is

an original sample, whereas the remaining images in the row are redirected samples from this original sample. Subfigure (c) displays pairs

of images used in the subjective test: in each pair, the left image is an original image from the dataset, while the right one is a redirected

sample (obtained from another original sample) which has the same gaze label (i.e. direction) as the left one.

change (or adapt) the generic gaze estimator. In contrast,

the third and fourth approaches directly fine tune the generic

estimator using either only the reference samples (FTAdap,

FT for fine tuning) or as well the gaze redirected samples

(RedFTAdap, Red for redirection).

In addition, we also implement a differential gaze esti-

mator DiffNet [16] for comparison. The DiffNet is trained to

predict gaze differences, and it exploits the reference sam-

ples to predict the gaze of a new eye image. For a fair

comparison, we replace the three convolution layers used

as feature extractor in [16] with the vgg16 feature extrac-

tor. Please note that the DiffNet approach can be regarded

as a person-specifc network since person-specific samples

(at least one) are required to estimating the gaze of new eye

image.

Gaze redirection parameters. For each person, we ran-

domly draw n (n =1, 5 or 9) person-specific samples and

generate t · n gaze-redirected samples where the default

value of t is 10. For the MPIIGaze dataset in which the

gaze groundtruth is continuous, the yaw and pitch compo-

nents (∆gp,∆gy) of the redirection angle ∆g are randomly

chosen with the range [−10, 10] × [−15, 15] ([−10, 10]
for pitch, and [−15, 15] for yaw). For the Columbi-

aGaze dataset, where the annotated gaze is discrete, ∆g

is chosen from the same range but with discrete values

(±5◦,±10◦,±15◦). The impact of t and of the redirection

ranges are further studied in the result section.

Performance measurement. We use the angle (in degree)

between the predicted gaze vector and the groundtruth gaze

vector as the error measurement. Note that gaze vectors are

Table 1. ColumbiaGaze dataset: gaze adaptation performance

#sample

error approach
Cross

Subject
LinAdap SVRAdap FTAdap DiffNet RedFTAdap

1

3.54

- - 5.53 4.64 3.92

5 4.65 7.67 3.11 3.63 2.88

9 3.78 5.39 2.79 3.50 2.60

Table 2. MPIIGaze dataset: gaze adaptation performance

#sample

error approach
Cross

Subject
LinAdap SVRAdap FTAdap DiffNet RedFTAdap

1

5.35

- - 5.28 5.93 4.97

5 5.43 7.68 4.64 4.42 4.20

9 4.61 5.79 4.31 4.20 4.01

3D unit vectors constructed from the pitch and yaw angles.

To eliminate random factors, we performed 10 rounds of

person-specific sample selection, gaze redirection and gaze

adaptation, and reported the average estimation error.

4.2. Results

Gaze redirection qualitative results. We show some qual-

itative results of the redirection network in Fig. 5(a) and

(b). As can be seen, our redirection network does a real-

istic synthesis for samples with different skin or iris color.

Furthermore, we also found that the redirection model is ro-

bust when working with noisy eye images, as illustrated in

several rows of Fig. 5(b).

Gaze adaptation performance. They are reported in Ta-

ble. 1 (ColumbiaGaze dataset) and Table. 2 (MPIIGaze

dataset). From the tables, we observe that the proposed

approach RedFTAdap achieves the best results while the

LinAdap and SVRAdap methods obtain the worst results,
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Table 3. ColumbiaGaze: Results with different redirection range

∆gp

error ∆gy

[−5, 5] [−10, 10] [−15, 15]

[−10, 10] 2.66 2.62 2.60

Table 4. MPIIGaze: Results with different redirection range

∆gp

error ∆gy

[−5, 5] [−10, 10] [−15, 15]

[−5, 5] 4.15 4.06 4.02

[−10, 10] 4.10 4.03 4.01

sometimes even degrading the generic gaze estimator. The

unsatisfactory performance of the latter models (LinAdap

and SVRAdap) is probably due to the fact that the linear and

SVR regressor do not make changes to the generic gaze es-

timator and thus the capacity of gaze adaptation is limited.

We also find that the DiffNet is not always superior to the

simpler FTAdap approach. This is surprising and shows that

the ability of direct network fine tuning with small amount

of data (less than 10) is often overlooked in the literature

and not even unattempted. To the best of our knowledge,

we are the first to report this result which can inspire new

research on user-specific gaze estimation.

When comparing RedFTAdap with the best results of

DiffNet and FTAdap, we note that our approach leads the

performance by around 0.2◦. While this may seem a

marginal improvement, a more detailed analysis of the re-

sults shows that our approach improves the results of 84.2%

of the subjects from the ColumbiaGaze dataset and of 80%

of the subjects from the MPIIGaze dataset (compared with

the best results of both DiffNet and FTAdap), which means

that the improvements brought by RedFTAdap are stable

and rather systematic.

From the two tables, we note that the performances of all

the methods improve as the number of reference samples in-

creases. We can also notice that our approach seems to have

a larger advantage when the number of reference samples is

small, demonstrating that the diversity introduced by our

redirected samples is more important when fewer person-

specific gaze information is provided.

Finally, while in general adaptation methods improve re-

sults, we observe on the ColumbiaGaze dataset that they all

perform worse than the generic estimator (cross-subject re-

sult) when using only one reference sample. This is most

probably due to the large variance of the head pose in this

dataset, which makes it difficult to learn (through adapta-

tion) person-specific characteristics from only one sample.

Redirection range. We use different gaze redirection

ranges to generate samples for gaze adaptation. The se-

lected redirection ranges are shown in Table. 3 and Table. 4.

Note that we only use one redirection range of pitch for the

ColumbiaGaze dataset since the gaze groundtruth in this

dataset is discrete and there are only three values for the

pitch angle, −10◦, 0◦, 10◦. It is thus not necessary to pro-

Figure 6. Gaze adaptation performances w.r.t redirection times t.

Table 5. Impact of the gaze redirection network domain adaptation

(ColumbiaGaze dataset).

#sample

error approach
FTAdap RedFTAdap-noDA RedFTAdap

1 5.53 4.35 3.92

5 3.11 3.01 2.88

9 2.79 2.73 2.60

duce samples with new groundtruth. From the results, we

find that larger redirection ranges do bring an improvement,

especially for the MPIIGaze dataset where the performance

improves from 4.15◦ to 4.01◦. This result is expected since

a larger redirection range will usually bring more gaze di-

versity, provided that the redirection module produces syn-

thesized samples realistic enough for the given user. Be-

sides, we also find from Table. 4 that a larger redirection

range for the yaw angle seems to be more effective than a

larger redirection range for the pitch.

Number t of redirected gaze samples per reference sam-

ple. To study the impact of this parameter (the default value

was 10 in all other experiments), we randomly selected 9

reference samples for each person and generated 9 · t gaze

redirected samples, varying t between 0 and 100. We then

adapted the generic gaze estimator with these samples as in

all other experiments. The corresponding performances are

plotted in Fig. 6 for the MPIIGaze dataset (note that we do

not use the ColumbiaGaze dataset since its groundtruth and

redirection angles are discrete, which limits the number of

generated data).

The curve in Fig. 6 starts from t = 0 (which means

only the initial reference samples are used for adaptation).

As can be seen, the error decreases rapidly at first when

t ∈ [0, 5], remains at a relatively stable point within the

range t ∈ [5, 25], and then progressively degrades beyond

that. This curve shows that when t ≃ 10, the generated sam-

ples provide enough diversity to adapt the network, whereas

beyond that, the use of too many samples results in an over-

fit of the network to the generated data which might not

reflect the actual distribution of eye gaze appearence of the

user.

Domain adaptation. We remove the whole Domain
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Table 6. Impact of the gaze redirection network domain adaptation

(MPIIGaze dataset).

#sample

error approach
FTAdap RedFTAdap-noDA RedFTAdap

1 5.28 4.99 4.97

5 4.64 4.22 4.20

9 4.31 4.04 4.01

a) b)
Figure 7. Subjective test. (a) decision accuracy w.r.t redirection

angles. (b) decision time w.r.t redirection angles.

Adaptation step from the redirection network and report the

corresponding gaze adaptation results (RedFTAdap-noDA)

in Table. 5 and Table. 6. On one hand, surprisingly, we

note that exploiting the redirection network learned only

from synthetic data still helps improving the gaze adapta-

tion process (FTAdap vs RedFTAdap-noDA). On the other

hand, when comparing RedFTAdap-noDA and RedFTAdap,

we find that the domain adaptation further improves the

gaze adaptation results. This is particularly the case for the

ColumbiaGaze dataset. A possible reason why the domain

adaptation is less usefull on the MPIIGaze dataset is that

the domain difference between MPIIGaze and the synthetic

data (all processed with histogram equalization to match

MPIIGaze) is comparatively smaller.

Subjective test. To evaluate whether the gaze redirected

samples are realistic, we invited 24 participants for a subjec-

tive test. During the test, participants were shown 50 pairs

of ColumbiaGaze samples, where one image of the pair did

correspond to an actual real data sample, and the second

one was a gaze redirected sample. Note that as a result, the

eyes in each image pair share the same identity, the same

gaze and the same head pose. Some pairs are illustrated in

Fig. 5c where the real images are all placed on the left for

the purpose of demonstration. In the test, the places of the

real and redirected images were selected at random. Par-

ticipants were asked to choose the sample which they think

was real. A software was recording their choices as well as

the time they took to make the decisions.

Results are as follows. The average accuracy of making

a correct choice is 66%, showing that distingusing genuine

samples from redirected ones is difficult. This is further

confirmed by the average time to reach a decision, which is

around 4 seconds and shows that people have to take some

time to make a careful decision.

We also plot the decision precision and the decision time

w.r.t redirection angles in Fig. 7. From Fig. 7a, we find

a general and expected trend that comparing samples with

smaller redirection angles leads to more confusion, i.e. a

low accuracy (and although as an artefact, the accuracy de-

clines when ∆yaw = 15). The same trend is observed in

Fig. 7b, where a smaller redirection angle corresponds to a

longer decision time. Nevertheless, in general, more partic-

ipants and samples should be used to confirm these results,

which we leave as a future work.

5. Discussion

In this section, we discuss techniques we attempted when

developing the approach.

More realistic redirected samples. Ganin et al. [6] used

a lighness correction refinement module on the gaze image

redirected from the inverse warping field to produce a more

realistic final redirected image. It indeed removed a lot of

artifacts in our case. However, we found out that it was also

degrading the performance of gaze adaptation, because the

refinement through a set of convolutional layers was alter-

ing too much the distribution of color and illumination.

GAN. We also attempted to use GAN (or CycleGAN when

combined with the cycle loss) for domain adaptation. How-

ever, as our redirected images are already of high quality,

the GAN did not further improve the gaze adaptation step.

6. Conclusion

We proposed to improve the adaptation of a generic gaze

estimator to a specific person from few shot samples via

gaze redirection synthesis. To do so, we first designed a

redirection network that was pretrained from large amounts

of well aligned synthetic data, making it possible to predict

accurate inverse warping fields. We then proposed a self-

supervised method to adapt this model to real data. Finally,

for the first time to the best of our knowledge, we exploited

the gaze redirected samples to improve the performance of

a person-specific gaze estimator. Along this way, as a minor

contribution, we also showed that the simple fine tuning of a

generic gaze estimation network using a very small amount

of person-specific samples is very effective.

Notwithstanding the obtained improvements, a limita-

tion of our method is that the redirection synthesis is not

good enough for large redirection angles. It hinders further

improvements of gaze adaptation because generated sam-

ples can not cover the full space of gaze directions and illu-

mination conditions. We leave gaze redirection with larger

angles and more illumination variabilities as future work.
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