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Abstract

Metric learning networks are used to compute image em-

beddings, which are widely used in many applications such

as image retrieval and face recognition. In this paper, we

propose to use network distillation to efficiently compute

image embeddings with small networks. Network distilla-

tion has been successfully applied to improve image classi-

fication, but has hardly been explored for metric learning.

To do so, we propose two new loss functions that model the

communication of a deep teacher network to a small stu-

dent network. We evaluate our system in several datasets,

including CUB-200-2011, Cars-196, Stanford Online Prod-

ucts and show that embeddings computed using small stu-

dent networks perform significantly better than those com-

puted using standard networks of similar size. Results on

a very compact network (MobileNet-0.25), which can be

used on mobile devices, show that the proposed method

can greatly improve Recall@1 results from 27.5% to 44.6%.

Furthermore, we investigate various aspects of distillation

for embeddings, including hint and attention layers, semi-

supervised learning and cross quality distillation. 1

1. Introduction

Deep neural networks obtain impressive performance for

many computer vision applications, some of which have

subsequently been turned into products for the general pop-

ulation. However, the applicability of these techniques is

often limited by their high computational cost. To reduce

network traffic and server costs, as well as for scalability, it

is desirable to place as much of the computation as possi-

ble on the end-user side of the application. However, this

is often a mobile device with limited computing power and

battery life, and thus cannot compute large networks in real-

time. This creates a strong demand for methods that trans-

1Code is available at https://github.com/yulu0724/

EmbeddingDistillation.

fer the knowledge from large networks to smaller ones, but

without a significant drop in performance.

One important class of deep networks learns feature em-

beddings. To be successful, feature embeddings must pre-

serve semantic similarity, i.e. items deemed similar by users

must be close in the embedding space, despite significant

visual differences such as point of view, illumination, or

image quality. To bridge this gap between the semantic

and visual domains, pairs or triplets of related and unrelated

items are used to teach the network how to organize the out-

put embedding space [5, 35, 12]. Embeddings were found

efficient on the tasks of out-of-distribution detection [19]

and transfer learning [26]. Furthermore, embedding net-

works are essential for computer vision, as evidenced by

the large variety of tasks in which they are used, including

feature-based object retrieval [9], face recognition [25], fea-

ture matching [6], domain adaptation [27], weakly super-

vised learning [36], ranking [35], or zero-shot learning [32].

Large networks are known to provide excellent feature

embeddings [23, 25], but are often impractical for real-life

applications, as mentioned before. To obtain efficient neu-

ral networks, research has focused on two main research

directions: network compression and network distillation.

Network compremossion reduces the number of parameters

in the network [17, 10], while network distillation uses a

teacher-student setup in which a, typically large, teacher

network is used to guide a small student network [2, 11].

This is done by using a loss function that minimizes cross-

entropy between the outputs of the student and teacher net-

work for classification. The main idea underlying network

distillation is that uncertainty in the estimates of the teacher

network, e.g. about whether an image contains a cat and

dog, provides relevant information for the student. There

are several differences between network compression and

knowledge distillation. First of all, the underlying assump-

tion of network compression is that the knowledge of the

network is in the weights, whereas knowledge distillation

assumes that the knowledge of the network is in the acti-

vations which arise from particular data. A second impor-
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tant difference is that compression algorithms typically end

up with a similar network architecture than the initial large

network but with less parameters (i.e. same number of lay-

ers, and layer types). In contrast, network distillation puts

no restrictions on the student network design. Therefore,

we focus on network distillation techniques for the efficient

computation of feature embeddings with small networks.

In this paper, we use network distillation to obtain effi-

cient networks to learn feature embeddings. We propose

two different ways of teaching metrics to students: one

based on an absolute teacher, where the student aims to

produce the same embeddings as the teacher, and one based

on a relative teacher, where the teacher communicates only

the distances between pairs of data points to the student.

Using the CUB-200-2011 (birds), Cars-196 and Stanford

Online Products datasets, we show that network distillation

can significantly improve retrieval performance compared

to directly training the student network on the data. We also

found that the relative teacher consistently outperforms the

absolute teacher. We evaluate various aspects of knowledge

distillation, namely the usage of hint and attention layers,

and the possibility to train from unlabelled data. We also

show that a teacher with access to high-quality images can

be used to improve embeddings learned with a student net-

work with access to low-quality images.

2. Related work

There is a large number of works on metric learning, see

for example the survey [16]. Here we focus on metric learn-

ing using deep networks.

Metric Learning Initially metric learning with deep net-

works was based on Siamese architecture with contrastive

loss [5]. Later Triplet networks were proposed which allow

more local modifications of the embedding space, and do

not require that all the observations of the same class col-

lapse to the same point [12, 35]. The progress of Siamese

and Triplet networks has been hampered because of the pair

(or triplet) sampling problem which arises from the huge

potential space from which pairs can be sampled. For in-

stance, in a dataset with N samples, N2 pairs could be pos-

sibly sampled, and it is therefore unfeasible to consider all

of them. Therefore, hard negative mining was proposed to

focus only on the pairs which induced the highest loss [29],

with the expectation that the network would learn the most

from them. Unfortunately, this led to severe overfitting in

many cases, and semi-hard negative mining was introduced

as a solution [25]. However, both hard and semi-hard nega-

tive mining have a high computational cost, which led sev-

eral authors to limit the hard negative mining process to the

current mini-batch [18, 31, 32, 36].

Network Distillation Bucila et al. [2] compress a large

network into a small one. Their method aims to approxi-

mate a large teacher network with a single fast and com-

pact student network. This was further improved by Hin-

ton et al. [11] by moving the teacher signal from the logits

(just before the softmax) to the probabilities (after the soft-

max), and introducing temperature scaling to increase the

influence of small probabilities. With these improvements,

they achieved some surprising results on MNIST, and also

showed that the acoustic model of a heavily used commer-

cial system could be significantly improved by distilling the

joint knowledge of an ensemble of models into a single one.

FitNet [24] introduced hint layers with additional losses on

intermediate layers of the network to communicate knowl-

edge of the teacher to the student. They show that this helps

to train deep and thin networks, which cannot be trained

from scratch without teacher supervision. In addition, these

students can outperform the teacher network while using

less memory. Zhang et al. [38] show that a group of stu-

dents, without a teacher, which are jointly trained with sim-

ilar losses as between teacher and student, can outperform

standard ensemble learning. Network distillation can also

be used to compress multiple teachers into a single student

network [8]. Most literature on network distillation focuses

on image classification, but recently several works have in-

vestigated applying the theory to object detection [3] and

pedestrian detection [28].

Only two works have previously addressed knowledge

distillation for embeddings. Chen et al. [4] bring the ’learn-

ing to rank’ technique into deep metric learning for knowl-

edge transfer. It is formalized as a rank matching problem

between teacher and student networks. Their list-wise loss

can easily overflow due to the product operation when com-

puting the probability of the permutation, which severely

limits the batch size that can be used. PKT [21] applies

a different approach where they model the interactions be-

tween the data samples in the feature space as a probability

distribution. In our experiments we show that our proposed

relative teacher outperforms the DarkRank and PKT signif-

icantly.

3. Preliminaries

In this paper, we will apply network distillation to metric

learning networks. This section will briefly introduce both.

3.1. Metric Learning

A fundamental step in most computer vision applica-

tions is transforming the initial representation of the images

(i.e. pixels) into another one with more desirable proper-

ties. This process is often denoted as feature extraction,

and projects the images to a high-level representation that

captures the semantic characteristics relevant to the task.

How images are organized in this high-level representation

is crucial to the success of many applications. For example,

image retrieval, k-NN or Nearest Class Mean classifiers are
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Figure 1. Graphical illustration of the two knowledge distillation

losses we propose for metric learning. L
abs

KD aims to minimize

the distance between the student and teacher embedding of the

same image. L
rel

KD compares the distance in the embedding of

the teacher between two images, with the distance of the same

two images in the student embedding. It aims to make the two

distances as similar as possible.

directly based on the distances between these high-level im-

age representations. Metric learning addresses this problem

and intends to map the input feature representations to an

embedding space where the L2 distance correlates with the

desired notion of similarity. In this work we will focus on

deep, or end-to-end, metric learning, where the whole fea-

ture extraction network is trained jointly to generate the best

possible representation.

Siamese networks map data to an output space where

distance represents the semantic dissimilarity between the

images [1, 5]. Triplet networks were proposed by Hoffer et

al. [12] based on the work of Wang et al. [35]. In contrast

to Siamese networks, they use triplets formed by an anchor

(xa), a positive instance (xp) and a negative instance (xn),

as input. The anchor and the positive instances correspond

to the same category, while the negative instance is from a

different one. The objective is to guarantee that the negative

instance is further away from the anchor than the positive

(plus a margin m). The Triplet loss is given by:

LT = max(0, d+ − d− +m), (1)

where d+ and d− are the distances between the anchor and

the positive and negative instances respectively. The Triplet

network imposes only local constraints on the output em-

bedding, which can simplify convergence when compared

to the Siamese network, reportedly harder to train. In the

experiments we will show results of network distillation for

embeddings learned with triplet losses.

3.2. Network Distillation

Network distillation [11, 24] aims to transfer the knowl-

edge of a large teacher network T to a small student network

S. The objective for network distillation for classification

networks is defined as:

LKD = H(ytrue, P
S
τ=1) + λH(PT

τ , PS
τ ), (2)

where λ is used to balance the importance of two cross-

entropy losses H: the first one corresponds to the traditional

loss between the predictions of the student network and the

ground-truth labels ytrue, and the second one between the

annealed probability outputs of the student and teacher net-

works. This loss encourages the student to make similar

predictions as the teacher network. The information of the

teacher PT
τ could be more valuable than the ground truth

ytrue for the student network, because it also contains in-

formation of which classes could possibly be confused with

the true label for a particular image. More precisely, PT
τ

and PS
τ are:

PT
τ = softmax(

aT

τ
), PS

τ = softmax(
aS

τ
), (3)

where aS and aT are the (pre-softmax) activations of the

student and teacher networks respectively, and temperature

τ is a relaxation which is introduced to soften the signal

arising from the output of the networks. It was found that

for complex classification tasks τ = 1 obtained good re-

sults [3]. PS
τ=1 is equal to the output of the standard student

network without any temperature scaling.

4. Distillation for Metric Learning

Wide and deep networks with large amounts of parame-

ters are known to obtain excellent results [30], however they

are very time consuming and memory demanding. Network

distillation is proven to be one of the solutions to handle this

problem in the classification field [11]. In this section we

extend the theory of knowledge distillation to networks that

aims to project images into an embedding space. In addi-

tion we will discuss the incorporation of hint and attention

transfer between student and teacher.

4.1. Knowledge distillation for embedding networks

Traditional network distillation has focused on networks

which perform classification, and are trained with a cross-

entropy loss [11, 24]. During training the output class dis-

tribution produced by the student is enforced to be close

to that of the teacher. This is shown to obtain much bet-

ter results than directly training the student on the available

data; the main reason for this performance difference is that

confusions between classes of the teacher reveal relevant in-

formation to the student, thereby providing a richer training

signal than ground truth labels would provide [11].

Here we extend the technique of knowledge distillation

to networks that are used to project input data into an em-

bedding (from now on called embedding networks). These

embeddings are then typically used to perform distance
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Figure 2. Illustration of difference between absolute and relative teacher. (left) Example of four data points in the embedding space of

teacher. We consider two samples from two classes (indicated by square and star). (middle and right) show the absolute and relative loss

for two student embeddings S1 and S2 (the teacher location of the points is given in dashed lines). The (right) embedding is preferable

since it is exactly equal to the teacher (except for a translation). This is only appreciated by the relative teacher, whereas the absolute

teacher assigns equal loss to both.

computation. For example, to provide a ranked list of simi-

lar data (ordered according to the distance). For knowledge

distillation it is important to consider what is the knowledge

that is contained in the embedding network. One could con-

sider the actual embedding (meaning the coordinates of the

embedding) to be the knowledge of the network. Another

point of view would be to consider the distances which are

computed based on the embedding network to be the actual

knowledge, since this is actually the main purpose of the

embedding network. We will consider both these points of

view and design two different teachers: one teacher, called

absolute teacher which teaches the exact coordinates to the

student and one teacher, called relative teacher which only

teaches the distance between data pairs to the student.

In the first approach, the absolute teacher, we directly

minimize the distance between the student (FS) and teacher

(FT ) embeddings. This is done by minimizing:

Labs
KD =

∥

∥FS (xi)− FT (xi)
∥

∥ , (4)

where ‖.‖ refers to the Frobenius norm.

As a second approach, we consider the relative teacher,

which enforces the student network to learn any embedding

as long as it results in similar distances between the data

points. This is done by minimizing the following loss:

Lrel
KD =

∣

∣dS − dT
∣

∣ , (5)

where dS and dT are, respectively, the distances between

the student and teacher embeddings of images xi and xj :

dS =
∥

∥FS (xi)− FS (xj)
∥

∥ ,

dT =
∥

∥FT (xi)− FT (xj)
∥

∥ ,
(6)

The minimization loss in Eq. 5 is equal to the loss

used in the classical problem of multidimensional scaling

(MDS) [7]. There the dissimilarities between points is

known and the goal is to find coordinates for the points in

some (low-dimensional) space where the dissimilarities be-

tween the points is equal to their dissimilarity.

A graphical illustration which shows the relevant dis-

tances that are used by the absolute and relative teacher is

provided in Fig. 1. The teacher networks are frozen during

training of the student network. The absolute teacher mini-

mizes the distance between the student and teacher embed-

ding for each training sample. In case of the relative teacher,

one should consider pairs of data points, since during train-

ing the student network is optimized to obtain similar dis-

tances between instances of data points.

As reported by several other authors [11, 38], we train

the student network by simultaneously considering the stan-

dard metric learning loss LML (see Eq. 1) and the loss LT
KD

imposed by the teacher, according to:

L = LML + λLT
KD, (7)

where T ∈ {abs, rel} and λ is a trade-off parameter be-

tween the different losses, which is learned by cross valida-

tion.

In Fig. 2 an illustration of the two distillation losses is

given for two different student embeddings, indicated by

S1 and S2. The embedding S2 is preferable because it

is equal to the teacher embedding except for a translation

which does not influence the ranking of data points. The S1

embedding actually changes the relation between samples,

and would not obtain similar results as the teacher network.

However, if we consider the absolute loss for these two

scenarios we see it assigns equal loss to both embeddings.

The relative loss does correctly assign a lower (zero) loss to

the S2 embedding. By focusing on the relevant parameter

(namely the distance), we expected that relative teachers are

able to better guide the student to a similar embedding than

the student network.
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Figure 3. Schematics of teacher-student hint/attention transfer.

4.2. Learning from hints and attention

In this section we consider two techniques that have

shown to improve results for distillation of classification

networks. The techniques we consider are: the introduc-

tion of hint layers [24] and the usage of attention [37]. Both

were proposed to improve the learning of student networks.

We are interested to know if these techniques also general-

ize to knowledge distillation for embedding networks.

Romero et al. [24] propose to improve knowledge dis-

tillation by introducing an additional loss on intermediate

representations learned by the teacher (called hints). The

loss which incorporates the hint layers is given by:

Lhint =
∥

∥FS
hint (xi)− FT

hint (xi)
∥

∥ , (8)

where FT
hint ∈ Rw×h×d where w, h and d are dimensions

of the activation map of the hint layer.

In this work [24], they first train the network until the

hint loss, and then train the whole network only based on the

distillation loss. In contrast, we propose to learn with both

losses simultaneously, as was also done in [3, 28]. Combin-

ing the knowledge distillation loss of either the absolute or

relative teacher we would obtain as a final objective func-

tion:

L = LML + λLT
KD + µLhint, (9)

where T ∈ {abs, rel} and µ is used to balance the relative

weight of the hint loss.

Zagoruyko and Komodakis [37] improve the perfor-

mance of student networks by forcing them to mimic inter-

mediate attention maps of a powerful teacher network. At-

tention maps convey what spatial locations in the image are

considered relevant to the teacher network for its interpreta-

tion. Communicating this information can therefore guide

the student network in learning the task at hand. They pro-

pose to compute activation-based spatial attention accord-

ing to:

AT
sum(xi) =

Ck

∑

l=1

∣

∣FT
kl(xi)

∣

∣

2
, (10)

where FT
kl(xi) ∈ Rw×h refers to the l-th map of the acti-

vation of the k-th layer for image i. Here Ck denotes the

number of feature maps in the k-th layer of the teacher net.

We use |.| to refer to the pixel-wise absolute value, as a re-

sults AT
sum(xi) ∈ Rw×h. A similar equation is used to

compute AS
sum(xi) from the student activation maps FS .

The attention loss is then defined as:

LAT =

∥

∥

∥

∥

AT
sum(xi)

‖AT
sum(xi)‖2

−
AS

sum(xi)

‖AS
sum(xi)‖2

∥

∥

∥

∥

. (11)

This enforces the student to assign its attention to the same

locations which were deemed important by the teacher.

The full objective function for the attention based metric

learning network becomes:

L = LML + λLT
KD + κLAT , (12)

where κ defines the relative weight of the attention loss.

In Fig. 3 we show how the hint and attention layers are

incorporated between a ResNet-101 teacher and a ResNet-

18 student network. Both hint and attention losses are ap-

plied on multiple layers2. Results for this scheme will be

presented in the experimental section.

5. Experimental Results

We show results on several benchmark datasets. Our

method is implemented with the PyTorch framework [22].

We will release a GitHub page with code upon acceptation.

5.1. Retrieval on Fine-grained Datasets

Datasets: We evaluate our framework for the task of image

retrieval on three fine-grained datasets:

• CUB-200-2011: this dataset was introduced in [34]. It

has 200 classes with 11, 788 images in total.

• Cars-196: this dataset contains 16, 185 images of 196
cars classes and was introduced in [15].

• Stanford Online Products: this dataset introduced

in [32] contains 120, 053 images of 22, 634 products

collected from eBay.com.

Example images of CUB-200-2011 and Cars-196 are

shown in Fig. 5. We follow the evaluation protocol pro-

posed in [32]. By excluding some classes from the training

of the embedding, we can evaluate at testing time how good

2For the student we take the output of each block, and compare it to

the last but one layer for each block of the teacher. The dimensionality of

these layers is the same.
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Table 1. Retrieval Performance on the CUB-200-2011 and Cars-196 dataset. ’ML’:metric learning loss, ’hint’:hint loss; ’AT’: attention

loss; KD (abs): absolute teacher loss; KD (rel):relative teacher loss

CUB-200-2011 Cars-196

Recall@K 1 2 4 8 16 1 2 4 8 16

Student (ResNet-18) 51.7 63.7 74.2 83.7 90.9 46.7 59.5 71.6 82.3 90.6

PKT [21] 53.1 64.2 75.4 84.6 91.6 46.9 59.9 72.1 82.8 90.8

DarkRank [4] 56.2 67.8 77.2 85.0 91.5 74.3 83.6 90.0 94.2 96.9

ML+KD (abs) 54.9 66.5 76.5 85.0 91.3 70.6 80.7 88.0 93.2 96.0

ML+KD (rel) 58.0 69.0 79.4 87.8 93.6 76.6 85.4 91.2 95.0 97.3

ML+KD (abs)+hint 55.0 66.5 76.6 84.9 91.1 71.3 81.2 88.1 92.7 95.9

ML+KD (rel)+hint 57.4 68.8 79.1 87.4 93.1 76.4 85.5 91.3 95.1 97.2

ML+KD (abs)+AT 55.0 66.3 76.9 85.3 91.8 71.1 81.3 88.3 93.1 96.0

ML+KD (rel)+AT 58.1 69.2 79.6 85.3 91.3 76.4 85.7 91.7 95.0 97.2

Teacher (ResNet-101) 58.9 70.4 80.7 88.2 93.5 74.8 83.6 89.9 93.8 96.5

Table 2. Comparison on Stanford Online Products dataset.

Stanford Online Products

Recall@K 1 10 100 1000

Student (ResNet-18) 61.7 78.6 90.2 96.8

ML+KD (abs) 68.0 82.7 92.1 97.4

ML+KD (rel) 67.7 83.0 92.0 97.2

Teacher (ResNet-101) 69.5 84.4 93.1 97.9

the embedding generalizes to unseen classes. Therefore, the

first half of classes are used for training and the remaining

half for testing. For instance, on CUB-200-2011 dataset,

100 classes (5,864 images) are for training and the remain-

ing 100 classes (5,924 images) are for testing. We divide

the training set into 80% as training and 20% as validation.

Experimental Details: For these experiments, we use a

ResNet-101 as the teacher network and a ResNet-18 as the

student network (see also Fig. 3). The comparison of the

number of parameters of these two networks is shown in

Table 4. After the average pooling layer, a linear 512-

dimensional embedding layer is added and the triplet loss

is used for training both teacher and student networks. The

Adam [14] optimizer is used with a learning rate of 1e−5,

and a mini-batch of 32 images. We apply hard negative min-

ing [29] on triplet loss. For preprocessing, we follow the

previous work [20], we resize all images to 256×256, and

crop 224×224 patches randomly. Horizontal flip is used for

data augmentation. We fine-tune both student and teacher

networks from pre-trained ImageNet models with the same

preprocessing. During test time, we only use the 224×224

pixel center crop to predict the final feature representation

used for retrieval. The optimal parameters are selected ac-

cording to the performance on the validation set for all of

the experiments. We use the whole training set to retrain

with optimal parameters for a fixed number of epochs.

For evaluation, we use the Recall@K metric [32]: each

image in the test set is projected using the trained network,

and if one of the K closest images in the embedding space

has the same label, it is considered as a positive result. The

final score is the fraction of positive results obtained on all

the test images. Furthermore, the reported results in all ta-

bles are the average over three repeated experiments.

Baselines: We start by considering the results of the stu-

dent and teacher network in Table 1 and Table 2. Not sur-

prisingly, the teacher network is able to leverage the addi-

tional capacity to learn better embeddings. On the CUB-

200-2011 dataset, we obtain a R@1 accuracy of 58.9% for

the teacher and 51.7% for the student. This is consistent

for the other evaluated recall levels, although the gap nar-

rows with higher K. This shrinking performance gap is mir-

rored in the Car-196 dataset, with the teacher net attaining a

28.1% better R@1, and a 5.9% better R@16. On the Stan-

ford Online Products dataset, the gap between the teacher

and student network is 7.8%.

We also compare our method with the DarkRank

method [4] and PKT [21]3. The experiments show that

the relative teacher network significantly outperforms Dark-

Rank and PKT , obtaining 1.8% and 4.9% more on CUB-

200-2011 and 2.3% and 29.7% on Cars-196.

Absolute and Relative Loss: Next we incorporate the ad-

ditional knowledge distillation losses to the student metric

learning objective (indicated by ML+KD). Table 1 shows

that results improve for every dataset and recall level, re-

gardless of the loss used. The performance improvement

at Recall@1 is 3.2% and 6.3% respectively for the absolute

and relative teacher on CUB-200-2011. On Cars-196 we

see a similar behavior, again the relative teacher is outper-

forming the absolute teacher. The student trained with the

relative teacher has an stunning performance gain of almost

30.0%. It is interesting to note that the relative teacher even

outperforms the teacher by 1.8% while having less parame-

ters. On Stanford Online Product dataset, both absolute and

relative teacher obtain similar results, and outperform the

direct training of the student network with 6.0%. In conclu-

sion, the proposed distillation methods consistently manage

to improve the performance of student network, especially

3For these results we used the code made available by the authors.
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Figure 4. R@1 as a function of λ on CUB-200-2011 dataset.

Table 3. Semi-supervised results on CUB-200-2011.
Recall@K 1 2 4

50% labeled

Student (ResNet-18) 51.0 63.0 74.0

ML+KD (abs) 51.7 63.2 73.9

ML+KD (rel) 56.0 66.7 77.6

Teacher (ResNet-101) 58.1 70.0 80.1

50% labeled (ML+KD (abs))/KD (abs) 53.9 65.2 75.8

+50% unlabeled (ML+KD (rel))/KD (rel) 57.2 68.0 78.2

50% unlabeled
only KD (abs) 49.8 60.8 71.0

only KD (rel) 55.5 67.0 77.4

those trained with the relative teacher.

Hint and attention losses: Here we investigate if hint [24]

and attention [37] layers are beneficial for knowledge dis-

tillation of embedding networks (see also Section 4.2).

We combine them with our proposed absolute and relative

losses according to Eq. 9 and Eq. 12. The results are sum-

marized in Table 1. We found that adding a hint layer was

not stable. This is probably because the hint layer is similar

as the absolute teacher forcing the network to learn the ex-

act same embedding as the teacher, and therefore only helps

when combined with the absolute teacher. Adding attention

layers in general provided a small gain but the gain was not

as large as reported for classification networks [37].

Sensitivity to λ As shown in Figure 4, we compare R@1

performance as a function of different λ values on the val-

idation set of CUB-200-2011 for both absolute and relative

teachers. It is noteworthy that the relative teacher has a sta-

ble performance on a large range of the trade-off parameter

λ, while the absolute teacher only works in a very narrow

range. It suggests that in practice the selection of the λ pa-

rameter is not that essential for the relative teacher.

5.2. Semi-Supervised Learning

One of the interesting properties of network distillation

is that it allows for the usage of unlabeled data. This was ob-

served by [38] and we apply this idea here to distillation for

embedding networks. The knowledge distillation losses of

Eqs. 4 and 5 do not require any labels. Knowing the estima-

tion of the teacher network for unlabeled data can help the

Table 4. Parameter Comparison of Different Networks .
Network ResNet-101 ResNet-18 MobileNet-0.25

Parameters ∼48.1 M ∼11.3 M ∼0.3 M

student network to better approximate the teacher network.

In addition, the existing problems of pair sampling can be

avoided in semi-supervised learning for the student network

because for the unlabeled images we do not apply the triplet

loss as it requires labels. In the experiments we evaluate the

benefit of adding unlabeled data to the student network for

embedding learning on the CUB-200-2011 dataset.

We randomly select half of the training images per class

as labeled data, and consider the rest as unlabeled data.

Thus, here we have two teacher-student learning mecha-

nisms, one is used on the labeled training set with both

the ground truth annotations and information transferred

from the teacher, and the other one is applied to the unla-

beled training set with only information from the teacher

by means of a distillation loss. The results of this experi-

ment can be seen in Table 3. The first row (50% labeled)

shows our approach using only the remaining labeled data,

with similar performance as in the previous experiments:

the performance obtained by the relative teacher is closer to

teacher network and better than the absolute teacher. In the

second row we add the remaining 50% of unlabeled data.

This leads to improved Recall@K with both losses, but es-

pecially for the relative teacher.

Finally, in the third row, we consider the case where we

have access to a trained teacher network, but no labelled

data at all, to train the student network. Here we would

like to highlight the results of the relative teacher, since it

manages to increase performance by 4.5% compared to the

student network trained with 50% of labeled training data.

5.3. Very Small Student Networks

MobileNets [13] are efficient but light-weight networks

that can be easily matched to the design requirements for

mobile and embedded vision applications. To show the po-

tential of our method on very small networks, we propose

to use the MobileNet-0.25 (0.25 is the width multiplier) net-

work as our student network and use ResNet-101 as the

teacher network. The number of parameters per network

is given in Table 4. We can see that the number of parame-

ters of MobileNet-0.25 is almost 40 times smaller than that

of the previous student network (ResNet-18) and 160 times

smaller than that of the teacher network (ResNet-101).

Table 5 shows retrieval performance results on CUB-

200-2011 with MobileNet-0.25 as the student network. We

can observe that the Recall@K for K = 1, 2 of the teacher

network is almost 2 times higher than the student network.

After our relative teacher is applied, the performance gain

is 17.1% at Recall@1 and 15.5% at Recall@16 higher com-

pared to the original student model.
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Figure 5. Example images from two fine-grained datasets CUB-200-2011 and Cars-196 used in our experiments. The top row shows

examples of high-quality images and the bottom row shows examples of the corresponding low-quality images.

Table 5. Performance on CUB-200-2011 with MobileNet-0.25.
Recall@K 1 2 4 8 16

Student (MobileNet-0.25 ) 27.5 35.8 46.0 58.5 70.6

ML+KD (rel) 44.6 56.0 66.4 77.3 86.1

Teacher (ResNet-101) 58.9 70.4 80.7 88.2 93.5

Table 6. Cross quality results on the CUB-200-2011 and Cars-196

datasets with low resolution and unlocalized object degradations.
Low Resolution Unlocalized

Recall@K 1 2 4 1 2 4

CUB-200-2011

Student (ResNet-18) 44.4 54.7 65.3 43.6 54.5 66.9

ML+KD (abs) 45.7 56.8 68.3 43.0 54.5 66.1

ML+KD (rel) 46.2 57.4 68.6 45.9 57.9 69.3

Teacher (ResNet-18) 53.7 65.2 74.7 54.8 67.2 78.7

Cars-196

Student (ResNet-18) 37.5 50.0 62.6 54.0 67.3 78.2

ML+KD (abs) 58.6 70.7 80.7 57.7 70.4 80.6

ML+KD (rel) 58.9 71.0 81.1 61.9 74.4 84.2

Teacher (ResNet-18) 71.0 81.2 88.7 67.8 79.1 87.9

5.4. Cross Quality Distillation

As an additional experiment we do the distillation of em-

beddings to transfer knowledge between different domains.

This was originally proposed in a classification setting by

Su et al. [33] who, in order to improve the recognition on

low-quality data, use distillation with a teacher trained with

high-quality data. The student then is trained with the low-

quality data and the guidance from the teacher which has

access to the high-quality data. Here we will apply cross

quality distillation with the proposed losses for metric learn-

ing. Since in this experiment the objective is not to reduce

the number of parameters but to bridge a domain gap, we

use the same architecture (ResNet-18) for the teacher and

the student. To train the embeddings we use triplet loss and,

as in the previous experiments, we train the students with

two teachers: relative and absolute.

We consider two cross quality distillation experiments

on CUB-200-2011 and Cars-196. The first experiment con-

siders low and high-resolution images. To get the low-

resolution images, we downsample them to 50 x 50 and then

upsample them again to 224 x 224 (see examples in Fig. 5).

The second experiment considers unlocalized signal degra-

dation, where the input images are cropped according to the

given bounding boxes for the teachers, but not cropped for

the students. The results can be seen in Table 6.

It can be seen that incorporating the additional knowl-

edge distillation losses improves the results for most set-

tings, with the relative teachers consistently surpassing the

absolute ones, as in the previous experiments. The improve-

ment by the distillation is more noticeable on the Cars-196

dataset which is also observed in [33]. Since it is a more

challenging dataset which has cars with different colors be-

longing to the same category, the information provided by

the teacher becomes more crucial.

6. Conclusions

We have investigated network distillation with the aim

of computing efficient image embedding networks. We

have proposed two losses with the aim to communicate the

teacher network knowledge to the student network. We

evaluate our approach on several datasets, and report sig-

nificant improvements: we obtain a 6.3% gain on CUB-

200-2011, a 29.9% gain on Cars-196 and a 6.3% gain on

Stanford Online Products for Recall@1 when compared to

a student network of the exact same capacity which was

trained without a teacher network. Furthermore, we ap-

ply our distillation loss to MobileNet-0.25. It greatly im-

proves the Recall@1 by 17.1%. We also verify the benefit

of adding unlabeled data for embedding learning. In addi-

tion, we demonstrate that an embedding learned on high-

quality images can be used to improve the student network

which has only access to low quality images.
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[2] C. Buciluǎ, R. Caruana, and A. Niculescu-Mizil. Model

compression. In Proceedings of the 12th international con-

ference on Knowledge discovery and data mining, pages

535–541. ACM, 2006. 1, 2

[3] G. Chen, W. Choi, X. Yu, T. Han, and M. Chandraker. Learn-

ing efficient object detection models with knowledge distilla-

tion. In Advances in Neural Information Processing Systems,

pages 742–751, 2017. 2, 3, 5

[4] Y. Chen, N. Wang, and Z. Zhang. Darkrank: Accelerating

deep metric learning via cross sample similarities transfer.

In Proceedings of the Conference on Artificial Intelligence,

2018. 2, 6

[5] S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity

metric discriminatively, with application to face verification.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, volume 1, pages 539–546. IEEE,

2005. 1, 2, 3

[6] C. B. Choy, J. Gwak, S. Savarese, and M. Chandraker. Uni-

versal correspondence network. In Advances in Neural In-

formation Processing Systems, pages 2414–2422, 2016. 1

[7] T. F. Cox and M. A. Cox. Multidimensional scaling. Chap-

man and hall/CRC, 2000. 4

[8] J. Gao, Z. Li, R. Nevatia, et al. Knowledge concentration:

Learning 100k object classifiers in a single cnn. In arXiv

preprint arXiv:1711.07607, 2017. 2

[9] A. Gordo, J. Almazán, J. Revaud, and D. Larlus. Deep image

retrieval: Learning global representations for image search.

In Proceedings of the European Conference on Computer Vi-

sion, pages 241–257. Springer, 2016. 1

[10] S. Han, H. Mao, and W. J. Dally. Deep compression: Com-

pressing deep neural networks with pruning, trained quanti-

zation and huffman coding. In International Conference on

Learning Representations, 2016. 1

[11] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge

in a neural network. In Advances in Neural Information Pro-

cessing Systems, 2014. 1, 2, 3, 4

[12] E. Hoffer and N. Ailon. Deep metric learning using triplet

network. In International Workshop on Similarity-Based

Pattern Recognition, pages 84–92. Springer, 2015. 1, 2, 3

[13] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,

T. Weyand, M. Andreetto, and H. Adam. Mobilenets: Effi-

cient convolutional neural networks for mobile vision appli-

cations. arXiv preprint arXiv:1704.04861, 2017. 7

[14] D. P. Kingma and L. Ba. J. adam: a method for stochas-

tic optimization. In International Conference on Learning

Representations, 2015. 6

[15] J. Krause, M. Stark, J. Deng, and L. Fei-Fei. 3d object rep-

resentations for fine-grained categorization. In IEEE Inter-

national Conference on Computer Vision Workshops, pages

554–561, 2013. 5

[16] B. Kulis et al. Metric learning: A survey. Foundations and

Trends R© in Machine Learning, 5(4):287–364, 2013. 2

[17] Y. LeCun, J. S. Denker, and S. A. Solla. Optimal brain dam-

age. In Advances in Neural Information Processing Systems,

pages 598–605, 1990. 1

[18] X. Liu, J. van de Weijer, and A. D. Bagdanov. Rankiqa:

Learning from rankings for no-reference image quality as-

sessment. In Proceedings of the International Conference on

Computer Vision, 2017. 2

[19] M. Masana, I. Ruiz, J. Serrat, J. van de Weijer, and A. M.

Lopez. Metric learning for novelty and anomaly detection. In

Proceedings of the British Machine Vision Conference, 2018.

1

[20] M. Opitz, G. Waltner, H. Possegger, and H. Bischof. Bier-

boosting independent embeddings robustly. In International

Conference on Computer Vision (ICCV), 2017. 6

[21] N. Passalis and A. Tefas. Learning deep representations with

probabilistic knowledge transfer. In Proceedings of the Eu-

ropean Conference on Computer Vision (ECCV), pages 268–

284, 2018. 2, 6

[22] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De-

Vito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. Auto-

matic differentiation in pytorch. 2017. 5

[23] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson.

Cnn features off-the-shelf: an astounding baseline for recog-

nition. In IEEE Conference on Computer Vision and Pattern

Recognition Workshops, pages 512–519, 2014. 1

[24] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta,

and Y. Bengio. Fitnets: Hints for thin deep nets. In Interna-

tional Conference on Learning Representations, 2015. 2, 3,

5, 7

[25] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A uni-

fied embedding for face recognition and clustering. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 815–823, 2015. 1, 2

[26] T. Scott, K. Ridgeway, and M. C. Mozer. Adapted deep em-

beddings: A synthesis of methods for k-shot inductive trans-

fer learning. In Advances in Neural Information Processing

Systems, pages 76–85, 2018. 1

[27] O. Sener, H. O. Song, A. Saxena, and S. Savarese. Learning

transferrable representations for unsupervised domain adap-

tation. In Advances in Neural Information Processing Sys-

tems, pages 2110–2118, 2016. 1

[28] J. Shen, N. Vesdapunt, V. N. Boddeti, and K. M. Kitani. In

teacher we trust: Learning compressed models for pedestrian

detection. In arXiv preprint arXiv:1612.00478, 2016. 2, 5

[29] E. Simo-Serra, E. Trulls, L. Ferraz, I. Kokkinos, P. Fua, and

F. Moreno-Noguer. Discriminative learning of deep convo-

lutional feature point descriptors. In Proceedings of the In-

ternational Conference on Computer Vision, pages 118–126,

2015. 2, 6

[30] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In International

Conference on Learning Representations, 2015. 3

[31] K. Sohn. Improved deep metric learning with multi-class n-

pair loss objective. In Advances in Neural Information Pro-

cessing Systems, pages 1857–1865, 2016. 2

[32] O. H. Song, Y. Xiang, S. Jegelka, and S. Savarese. Deep met-

ric learning via lifted structured feature embedding. In Pro-

2915



ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 4004–4012, 2016. 1, 2, 5, 6

[33] J.-C. Su and S. Maji. Adapting models to signal degrada-

tion using distillation. In Proceedings of the British Machine

Vision Conference, 2017. 8

[34] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie.

The caltech-ucsd birds-200-2011 dataset. Computation &

Neural Systems Technical Report, CNS-TR-2011-001, 2011.

5

[35] J. Wang, Y. Song, T. Leung, C. Rosenberg, J. Wang,

J. Philbin, B. Chen, and Y. Wu. Learning fine-grained image

similarity with deep ranking. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 1386–1393, 2014. 1, 2, 3

[36] X. Wang and A. Gupta. Unsupervised learning of visual

representations using videos. In Proceedings of the Inter-

national Conference on Computer Vision, pages 2794–2802,

2015. 1, 2

[37] S. Zagoruyko and N. Komodakis. Paying more attention to

attention: Improving the performance of convolutional neu-

ral networks via attention transfer. In International Confer-

ence on Learning Representations, 2016. 5, 7

[38] Y. Zhang, T. Xiang, T. M. Hospedales, and H. Lu. Deep

mutual learning. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2018. 2, 4, 7

2916


