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Abstract

Deep learning approaches to 3D shape segmentation are
typically formulated as a multi-class labeling problem. Ex-
isting models are trained for a fixed set of labels, which
greatly limits their flexibility and adaptivity. We opt for top-
down recursive decomposition and develop the first deep
learning model for hierarchical segmentation of 3D shapes,
based on recursive neural networks. Starting from a full
shape represented as a point cloud, our model performs
recursive binary decomposition, where the decomposition
network at all nodes in the hierarchy share weights. At each
node, a node classifier is trained to determine the type (ad-
jacency or symmetry) and stopping criteria of its decom-
position. The features extracted in higher level nodes are
recursively propagated to lower level ones. Thus, the mean-
ingful decompositions in higher levels provide strong con-
textual cues constraining the segmentations in lower levels.
Meanwhile, to increase the segmentation accuracy at each
node, we enhance the recursive contextual feature with the
shape feature extracted for the corresponding part. Our
method segments a 3D shape in point cloud into an unfixed
number of parts, depending on the shape complexity, show-
ing strong generality and flexibility. It achieves the state-
of-the-art performance, both for fine-grained and semantic
segmentation, on the public benchmark and a new bench-
mark of fine-grained segmentation proposed in this work.
We also demonstrate its application for fine-grained part
refinements in image-to-shape reconstruction.

1. Introduction

Segmentation is a long-standing problem in 3D shape
analysis, on which data-driven approach has shown clear
advantage over traditional geometric methods [38]. With
the proliferation of deep learning techniques, researchers
have been seeking for exploiting the powerful feature learn-
ing ability of deep neural networks to replace the hand-
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Figure 1. PartNet segments 3D point clouds in a top-down recur-
sive fashion, leading to a hierarchy of fine-grained parts. The
same model trained for Chair class can be used to segment dif-
ferent chair models into different number of parts, depending on
the structure complexity of the input shapes.

crafted features used in previous data-driven approaches. In
these works, deep networks are trained for multi-class label-
ing task, which outputs a semantic label for each geometric
primitive (such as voxels [23] or points [20]).

There are two issues with these existing models. First,
the models are trained targeting a fixed set of labels, which
greatly limits its flexibility and adaptivity. For example, a
model trained to segment a chair into three semantic parts
cannot be used to correctly segment a chair with four parts,
even they both belong to the same shape family. Training
different models for different targeted label sets is neither
general nor efficient. Second, labeling all primitives simul-
taneously cannot exploit the hierarchical nature of shape
decomposition. Hierarchical shape segmentation reduces
the difficulty of shape segmentation through dividing the
multi-class labeling problem into a cascade of binary label-
ing problems [1, 39]. On the other hand, hierarchical seg-
mentation can utilize structural constraints across different
levels: The segmentations in higher levels provide strong
cues constraining those in the lower levels. This enables ac-
curate segmentation into very fine-grained levels (Figure 1).

In this work, we opt for the top-down decomposition and
propose the first deep learning model for hierarchical seg-
mentation of 3D shapes into fine-grained parts, based on re-
cursive neural networks (RvNN). Starting from a full shape
represented as a point cloud, our model performs recursive
binary decomposition, where the decomposition network at
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all nodes in the hierarchy share weights. At each node, a
node classifier is trained to determine the type of its decom-
position (adjacency or symmetry node) and whether the de-
composition should stop (leaf node). The features extracted
in higher level nodes are recursively propagated to lower
level ones through the tree structure, which we refer to as
recursive context features. Therefore, the meaningful de-
compositions in higher levels constrain the segmentations
in lower levels. Meanwhile, to increase the segmentation
accuracy at each node, we enhance the recursive context
feature with the part shape feature extracted for the corre-
sponding point cloud.

The network is trained with point sampled 3D models
from ShapeNet [3] which are typically composed of se-
mantically labeled parts. For each shape, a hierarchy is
constructed with an existing rule-based method [36]. Such
principled training hierarchies help the training converges
faster. The loss is computed at each node, including node
classification loss and binary point labeling loss.

Our method produces accurate segmentation, even for
highly fine-grained decomposition into arbitrary number of
parts, due to the flexibility of dynamic, RvINN-based ar-
chitecture. Moreover, it recovers the part relations (adja-
cency or symmetry) which further improves the labeling
accuracy, e.g., symmetric parts can be identified and thus
correctly labeled (Figure 1). Our method achieves state-of-
the-art performance, both on the public benchmark and a
new benchmark of fine-grained segmentation proposed in
this work. We also demonstrate its utility in image-to-shape
reconstruction with fine-grained structure recovery.

Our contributions include:

* A deep learning model for top-down hierarchical, fine-
grained segmentation of 3D shapes based on dynamic
RvNN-based architecture.

* A part feature learning scheme which integrates both
contextual information and per-part shape geometry.

* A benchmark for fine-grained, part instance segmenta-
tion of 3D shapes.

* An application of our fine-grained structure recovery
for high-quality image-to-shape reconstruction.

2. Related work

Learning 3D shape segmentation. Semantic segmenta-
tion of 3D shapes has gained significant research progress in
recent year, benefiting from the advances in machine learn-
ing techniques [10, 24, 35, 37]. A comprehensive survey on
learning-based 3D shape segmentation can be found in [38].
The basic idea of these approaches is to learn a shape prim-
itive (e.g., a triangle, a point or a voxel) classifier, based on
the geometric features of the shape primitives.

Recently, several deep learning models have been de-
veloped for supervised segmentation of 3D shapes in var-
ious representations including volumetric grid [23, 32],

point cloud [20, 11, 7], multi-view rendering [9] or surface
mesh [41, 31]. The main idea is to replace the hand-crafted
geometric features employed in the traditional methods with
data-driven learned ones. All these models, however, are
trained targeting a fixed set of semantic labels. Given a dif-
ferent set of targeting labels, the model has to be re-trained,
using a training dataset annotated with the new labels.

Hierarchical segmentation of 3D shapes. 3D shapes are
usually modeled with parts in a hierarchical construction
manner. This is evidenced in part by the wide availabil-
ity of scene graphs in human-created 3D models of ob-
jects or scenes, and by the well-known hierarchical model-
ing paradigm of Constructive Solid Geometry (CSG) [21].
This naturally leads to the idea of hierarchical decomposi-
tion of 3D shapes. Hierarchical shape segmentation can be
achieved either with a bottom-up grouping approach [1, 34],
or in a top-down fashion based on a global topological anal-
ysis [22, 8, 42]. Given a pre-segmented 3D shape, Wang et
al. [36] infer a hierarchical organization of the parts based
on proximity and symmetry relations. Later, this heuris-
tic method is improved with an unsupervised learning ap-
proach [30]. Yi et al. [39] propose a supervised learning
approach to hierarchical segmentation of 3D shapes. Their
model is, again, trained for a fixed set of semantic tags.
The tag sets are determined in a pre-processing of part la-
bel analysis and organized with a pre-defined canonical hi-
erarchy. Our method, on the other hand, does not require
a prescribed canonical hierarchy and learns the decompo-
sition hierarchies in a data-driven manner, thank to the re-
cursively trained node classification. Our method is, to our
knowledge, the first end-to-end trainable model for hierar-
chical shape segmentation.

Recursive neural networks. Recursive neural nets
(RVNN) are developed by Socher et al. [25], for text and
image understanding [27], and for 3D shape classifica-
tion [26]. Recently, Li et al. [12] introduce a generative
recursive auto-encoder for generating 3D shape structures.
Given a collection of pre-segmented 3D shapes, a varia-
tional auto-encoder (VAE) model is learned with RvNN-
based encoding and decoding of part structures. Follow-
ing that, RvNN-based VAE is also trained for 3D scene
generation [ 13], structure-aware single-view 3D reconstruc-
tion [ 18] and substructure prior learning for part group com-
position [43]. We are not aware of a previous work on using
RvNN for hierarchical 3D shape segmentation.

3. Method

We first introduce the overall architecture of PartNet,
which is a recursive part decomposition network. Several
key designs in the network will then follow.
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Figure 2. The architecture of PartNet. At each node, there are three
modules devised for context propagation, hierarchy construction
and point cloud segmentation, respectively. Being a recursive net-
work, these modules are shared by all node in the hierarchy.

3.1. Recursive part decomposition network

Figure 2 shows the architecture of PartNet. Taking a
point cloud of 3D shape as input, PartNet performs a top-
down decomposition and and outputs a segmented point
cloud at the level of part instances. At each node, three
modules are devised:

* Node decoding module used to pass the global con-
textual information from the current node to its chil-
dren. Such information constraints the segmentation
of a node with higher level context.

* Node classification module devised to construct the
topological structure of the decomposition hierarchy.
This is achieved by learning to predict the node type
which determines how to decompose a node and when
to stop the decomposition.

* Node segmentation module used for performing actual
segmentation of the point cloud of the current node.
This is achieved by learning a point classification net-
work shared across all nodes.

Below we elaborate the discussion on these modules.

Node decoding module. To bootstrap, we first extract a
128D PointNet [19] feature for the full shape point cloud,
which is then duplicated and concatenated, forming a 256D
the root node feature. This 256D feature is then decoded
into two 128D features, one for each of its two child nodes,
which we refer to as recursive context feature. At each
non-root node, we also extract a 128D PointNet feature for
the partial point cloud corresponding to that node, which
is called part shape feature. This 128D part shape feature
is then concatenated with the 128D recursive context fea-
ture passed down from the parent node, forming the current
node feature. Please see Figure 3 for a visual explanation of
these features. The decoding module is implemented with a
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Figure 3. Network design of the node decoding module and the
node classification module. The recursive contextual feature and
part shape feature are concatenated and fed into the node classifier.

two-layer fully connected network with tanh nonlinearity.
This PointNet used in this module is referred to as Point-
Net_1, to distinguish with the one to be used in the node
segmentation module (see below).

Node classification module. At a given node, taking its
current node feature as input, the node classification mod-
ule predicts its node type as one of the following three
ones: adjacency, symmetry or leaf. Through determining
the how and whether a node is split, this module constructs
the topological structure of the hierarchy. This node clas-
sification module is implemented with two fully-connected
layers with tanh nonlinearity. It can be trained with the
ground-truth hierarchical segmentation of a point cloud.

Note that when a node is classified as a symmetry node,
we interpret its left child as a symmetry generator (repre-
senting a part) and its right child as symmetry parameters,
similar to [12]. Applying the symmetry parameters on the
symmetry generator part obtains the complete point cloud
of that symmetry node. For example, the node correspond-
ing to the spokes in the leg part of a swivel chair (Figure 1,
left) is a rotational symmetry node. Its left child represents
the point cloud of one of the spokes and the right child en-
codes the symmetry axis and symmetry fold.

Node segmentation module. This module performs point
labeling based on both the current node feature and per-
point PointNet features. Specifically, we use another Point-
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Figure 4. Network design of the node segmentation module. The
concatenation of recursive contextual feature and part shape fea-
ture is enhanced with point-wise PointNet features for the purpose
of point label prediction (point cloud segmentation).
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Net (denoted as PointNet_2) to extract per-point feature,
leading to a IV x 128 feature matrix, with /N being the num-
ber of points of the current node. Then for each row (point
feature), we enhance it by concatenating the 256D current
node feature. This results in a NV x 384 feature matrix, which
is fed into a point classification network to produce point-
wise binary labels. This point classifier is implemented with
the last five layers of a PointNet. Note that these layers do
not share weight with PointNet_1 or PointNet_2.

For a symmetry node, only its left child, i.e., the symme-
try generator, needs to be segmented. After the segmenta-
tion, the point labels are transferred to all other symmetric
counterparts, based on the predicted symmetry parameters.

3.2. Loss function

For each training point cloud, the overall loss function
for PartNet, Lparmet, consists of the average node classifica-
tion loss and average node segmentation loss over all rele-
vant nodes:

1 1
Lpartnet = 57 Z Lclass(n) + = Z Lseg(n) (1)
|H| neM ‘T| neT

where Liaes () and Ly, (n) are the classification loss and
segmentation loss of node n, respectively. Both losses are
defined as the cross-entropy loss. H is the set of all nodes
in the hierarchy, and 7 the set of all non-leaf nodes.

3.3. Training details

The PointNet_1 for node classification (Figure 3) uses
six point convolution layers with 64, 128, 128, 256, 256 and
128 filters, respectively. The PointNet_2 for node segmen-
tation (Figure 4) uses four point convolution layers with 64,
64, 128 and 128 filters, respectively. The point cloud seg-
mentation network in Figure 4 consists of four point con-
volution layers, with 512, 256, 128 and 128 filters, respec-
tively, plus the output layer with a 2 filters for binary label
prediction. 20% random feature dropout are used between
every two of the last three layers in all these networks.
Batch normalization are used between every two layers. We
use the Adam optimizer for training, with a batch size of 10
and the initial learning rate of 0.001.

The size of input point cloud is 2048. The training point
clouds are obtained by point sampling 3D models. Gaus-
sian noise is added for data enhancement. All PointNets
use point normals to improve fine-grained part segmenta-
tion performance. Therefore, the dimension of input tensors
to PartNet is 2048 x 6.

4. Results and evaluations
4.1. Benchmark

The Fine-grained Segmentation Benchmark (FineSeg).
With the advances in deep learning based 3D shape seg-

mentation, a benchmark for instance segmentation of fine-
grained parts is called for. A nice benchmark for evaluat-
ing fine-grained shape segmentation is recently proposed
in a concurrent work in [17]. In this work, we propose
FineSeg. The dataset contains about 3000 3D shapes over
six shape categories: chair (1000), table (500), airplanes
(600), sofa (600), helicopter (100) and bike (140). The
models are collected from a subset of ShapeNet [3] used
in the work of Sung et al. [29]. These models are con-
sistently aligned and uniformly scaled. For those model
whose segmentation is not fine-grained enough (e.g., no in-
stance part segmentation), we manually segment the mod-
els. We then build a part hierarchy for each shape, using
the method proposed in [36]. We point sample each 3D
model, thus generating a ground-truth fine-grained segmen-
tation of the corresponding 3D point cloud. The hierarchies
can be used for training our recursive part decomposition
network. This benchmark can be used to quantitatively eval-
uate fine-grained segmentation of 3D point clouds, based
on Average Precision (AP) for part detection (with the IoU
against ground-truth greater than a threshold). The bench-
mark is publicly available at: www.kevinkaixu.net/
projects/partnet.html.

4.2. Segmentation results and evaluation

Our PartNet model is trained with 80% models of Fine-
Seg, leaving the rest 20% for testing. The discussion of
complexity and timing (for both training and testing) can be
found in the supplemental material.

Visual results on FineSeg. We first show in Figure 5
some visual examples of fine-grained point cloud segmen-
tation obtained by PartNet. For side-by-side comparison,
we also show the ground-truth segmentation for each exam-
ple. Our method produces precise fine-grained segmenta-
tion on the noisy point clouds with complicated part struc-
tures. Furthermore, once trained, the same model can be
used to segment the test (unseen) point clouds into varying
number of parts, demonstrating its flexibility and general-
ity. Figure 6 demonstrates how the same model of PartNet
can segment different shapes in a category into for an ar-
bitrary number of targeting parts, depending on structure
complexity. More results can be found in the supplemen-
tal material. In the supplemental material, we also show
a visual comparison of hierarchical segmentation with two
traditional (non-learned) baseline methods.

Quantitative evaluation with ablation study. In quanti-
tative evaluation on FineSeg, we compare to two baselines
which are ablated versions of our method. Specially, we are
interested in the effect of the two important node features
used in PartNet: recursive context feature (RCF) and part
shape feature (PSF).
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Figure 5. Fine-grained point cloud segmentation by PartNet. For comparison, we show for each shape the fine-grained segmentation result

(bottom) and the corresponding ground-truth (top).
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Figure 6. The same PartNet model trained on the Chair set, can
be used to segment different chair models into different number of
parts, depending on the structure complexity of the input shapes.

In the first baseline (w/o RCF), recursive context feature
is removed from both node classification (see Figure 3) and
node segmentation (see Figure 4). To compensate the miss-

mean | aero | bike | chair | heli. | sofa | table

IoU Full 84.8 [95.297.0|91.1 |83.0|65.4| 77.2
S 0.25 w/oRCF | 79.2 | 92.892.0| 87.1 | 71.1 | 61.6 | 70.8
w/o PSF | 77.6 | 90.8|95.1 | 83.6 | 77.8 | 54.1 | 64.0

IoU Full 72.8 | 88.089.4|80.5 |69.4|46.7 | 62.6
< 0.5 w/o RCF | 66.0 | 85.383.4| 71.8 | 56.7 | 42.5| 56.4
w/o PSF | 64.9 | 85.2|88.4| 65.6 | 57.5|36.9 | 55.6

Table 1. Comparing our full model with two baselines (w/o RCF
and w/o PSF) on FineSeg. AP(%) is measured with IoU threshold
being 0.25 and 0.5, respectively.

ing of recursive context feature, the 128D part shape fea-
ture is duplicated into a 256D feature. The ablated network
is re-trained using the training set of FineSeg. In the sec-
ond baseline (w/o PSF), PSF is removed only from the node
classification module.

Table 1 reports AP on all six categories of the testing set,
with the IoU thresholds being 0.25 and 0.5, respectively.
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Figure 7. Training loss over iterations in the ablation study of the
two key node features (RCF and PSF), on three shape categories
(Bike, Sofa and Airplane). For each category (row), we plot both
node segmentation loss (left) and node classification loss (right).

The consistent superiority of our full model demonstrates
the importance of the two features. Figure 7 plots the train-
ing loss over iterations for the three methods, on three shape
categories (Bike, Sofa and Airplane). The results show that
both features are critical for fast training of the node clas-
sification module and the node segmentation module. This
evidences the importance of both global context informa-
tion and local shape geometry on learning hierarchical seg-
mentation. More results are in the supplemental material.

ShapeNet challenge for fine-grained segmentation. In
addition, we conduct a moderate-scale stress test using
ShapeNet [3] challenge for fine-grained segmentation. We
randomly select a collection of shapes from ShapNet and
use PartNet to segment them. Since we don’t have ground-
truth fine-grained segmentation for ShapeNet models, we
resort to a subjective study to evaluate our segmentation re-
sults. We ask the participants to rate the quality of fine-
grained segmentation in the range from 1 to 5. The user
study shows that our method attains > 4.0 average ratings
for all the categories tested, much higher than the results of
the “w/o RCF” baseline. The details and results of this study
are provided in the supplemental material. In Figure 8, we
show a few visual examples, from which one can see that
our method produces fine-grained segmentation these un-

Vs

P

Figure 8. A few results from the ShapeNet fine-grained segmen-
tation challenge. Besides segmentation, PartNet can also recover
the relations (adjacency and symmetry) between the segmented
parts. We visualize the recovered symmetry relations with colored
arrows (Reflective: Red; Translational: Blue; Rotational: Green).

seen shapes with complicated structures. Moreover, our
method obtains the adjacency and symmetry relations of the
decomposed parts, which can be used for many downstream
structure-aware applications [16].

4.3. Comparison of semantic segmentation

Although PartNet is designed for fine-grained segmen-
tation, the recursive decomposition should work even bet-
ter for semantic segmentation since the latter is usually a
much coarser-level segmentation. We evaluate PartNet for
semantic segmentation of 3D point clouds on the ShapeNet
part dataset [40], through comparing with seven state-of-
the-art methods on this task. Similar to PointNet [19], we
re-sample the point cloud for each shape into 2048 points.
We use the same training/testing split setting as those state-
of-the-arts, and compute part-wise average loU as metric.

Note that PartNet does not produce semantic labels for
points, so it cannot perform labeled segmentation. To en-
able the comparison, we add an extra module to PartNet to
predict a semantic label for each part it decomposes. The
part label prediction module takes the node feature of the
leaf nodes as input and outputs a semantic label for all
points included in that leaf node. This module is imple-
mented with three fully-connected layers and is trained with
cross-entropy loss.

9496



Method mean | aero | bag | cap | car |chair | eph. | guitar | knife | lamp | laptop | motor | mug | pistol | rocket | skate. | table
PointNet [19] 83.7 |83.4|78.7|825|74.9|89.6 |73.0| 91.5 | 85.9 | 80.8 | 95.3 | 65.2 |93.0| 81.2 | 57.9 | 72.8 | 80.6
PointNet++ [20] | 85.1 | 82.4|79.0 | 87.7 | 77.3|90.8 | 71.8| 91.0 | 85.9 | 83.7| 95.3 | 71.6 |94.1| 81.3 | 58.7 | 76.4 | 82.6
O-CNN [32] 85.9 | 85.5(87.1|84.7|77.0/91.1 |851| 91.9 | 874 |83.3| 954 | 56.9 |96.2| 81.6 | 53.5 | 74.1 | 84.4
SSCN [6] 86.0 [84.1|83.0|84.0|80.8|91.4|78.2| 91.6 | 89.1 | 85.0 | 95.8 | 73.7 |95.2 | 84.0 | 58.5 | 76.0 | 82.7
PCNN [2] 85.1 [82.4180.1|85.5|79.5|90.8 |73.2| 91.3 | 86.0 | 85.0 | 95.7 | 73.2 |94.8 | 83.3 | 51.0 | 75.0 | 81.8
SPLATNet [28] | 85.4 | 83.284.3|89.1|80.3|90.7|75.5| 92.1 | 87.1 |83.9| 96.3 | 75.6 |95.8| 83.8 | 64.0 | 75.5 | 81.8
PointCNN [14] | 86.1 [84.1|86.4|86.0|80.8 | 90.6 | 79.7| 92.3 | 88.4 | 853 | 96.1 | 77.2 |95.3| 84.2 | 64.2 | 80.0 | 83.0
Ours 87.4 | 87.8|86.7|89.780.5|91.9 | 75.7| 91.8 | 85.9 | 83.6 | 97.0 | 74.6 |97.3| 83.6 | 64.6 | 78.4 | 85.8

Table 2. Comparison of semantic segmentation on the ShapeNet part dataset [40]. Metric is part-wise ToU (%).

The results are reported in Table 2. PartNet, augmented
with a part label prediction module, achieves better perfor-
mance in most of the categories, and the highest mean ac-
curacy over all categories. Furthermore, our method works
especially well for those categories with complex structures
such as chair, table, and aeroplane, etc. We believe that the
divide-and-conquer nature of recursive decomposition does
help reduce the difficulty of segmentation learning. Another
key benefit of recursive decomposition is that the segmenta-
tion of higher levels provides contextual cues constraining
that of the lower levels. Similar results can also be observed
in testing our trained model on the Princeton Segmentation
Benchmark [4] (see supplemental material).

For semantic segmentation, PartNet can be trained with
a consistent hierarchy for all shapes in a category. The
training is can be done with any hierarchy that is consis-
tent across all training shapes. Therefore, we do not need
an extra process (such as the one [36] used in fine-grained
segmentation) for hierarchy construction. Taking any ran-
dom hierarchy of one training shape as a “template”, we
unify the hierarchies of all the other shapes based on the se-
mantic part labels. Therefore, PartNet does not require an
extra supervision of part hierarchy for training for seman-
tic segmentation. Consequently, the comparison reported in
Table 2 of the main paper is a fair one.

4.4. Comparison of instance segmentation

SGPN [33] is the first deep learning model that learns
instance segmentation on 3D point clouds. It can segment
object instances and predict a class label for each instance,
which is very similar to our method (augmented the label
prediction module), except that SGPN cannot obtain part
relations as our method does. We make a comparison to
SGPN on our FineSeg dataset, using again AP with IoU
thresholds of 0.25 and 0.5.

Figure 9 shows a few visual comparisons, where incor-
rectly segmented regions are marked out. Table 3 shows the
quantitative comparison on our datasets. We attribute the
consistent improvement over SGPN to two factors. First,
the instance group learning of SGPN is based on point
clustering. Such a one-shot point grouping over the entire
shape is hard to learn. Our method, on the other hand, per-
forms top-down recursive decomposition which breaks the

GT

Figure 9. Visual comparison of fine-grained part instance segmen-
tation with SGPN [33]. Left: Ground-truths. Middle: Segmenta-
tion results by PartNet. Right: Results by SGPN. Incorrect seg-
mentations (w.r.t. ground-truth) are marked with red circles.

mean | acro | bike | chair | heli. | sofa | table

67.8
95.2

75.8
97.0

59.4
83.0

50.4
65.4

ToU
> 0.25

SGPN [12]
Ours

62.2
84.8

66.2
91.1

53.6
7.2

56.7
88.0

63.7
89.4

54.6
80.5

ToU
> 0.5

SGPN [12]
Ours

47.0
72.8

38.9
69.4

29.5
46.7

38.4
62.6

Table 3. Comparison with SGPN [33] on fine-grained instance seg-
mentation over the FineSeg dataset. The metric is AP (%) with
IoU threshold being 0.25 and 0.5, respectively.

full shape segmentation into a cascade of partial shape seg-
mentations. Second, the point features used by SGPN are
solely point convolutional features [19] while our features
accounts for both local part shape and global context.
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5. Applications

We demonstrate an application of the fine-grained seg-
mentation of PartNet in refining 3D point clouds recon-
structed from single view images. The basic idea is a
segment-and-refine process. Given a 3D point cloud recon-
structed in a holistic fashion (using, e.g., the method of Fan
et al. [5]), we first perform a recursive decomposition of
the point cloud, resulting in a hierarchical organization of
part point clouds. We then train a network to refine the part
point cloud at each leaf node, yielding a high-quality point
cloud for that part. These refined part point clouds together
constitute a refined point cloud of the full shape.

The part refiner network used at each leaf node is com-
posed of two channels of PointNet, to encode the point
clouds of the part and the full shape, respectively. The re-
sulting two features are concatenated and fed into a four
layer fully-connected networks to generate a refined part
point cloud. To train this refiner network, we use recon-
struction loss computed as the Chamfer distance and the
earth mover’s distance between point clouds [5]. To gain
more training signals, we opt to train the refiner with a hier-
archical reconstruction loss, through a bottom-up composi-
tion of the refined part point clouds, following the hierarchy
obtained by PartNet segmentation. This way, we can com-
pute a reconstruction loss at each node of the hierarchy, with
the corresponding point cloud composed from the part point
clouds within its subtree. Please refer to the supplemental
material for more details on the network architecture.

Figure 10 shows a few examples of point cloud refine-
ment, guided by the fine-grained, hierarchical segmenta-
tion of PartNet. Although the refinement may sometimes
lose part fidelity w.r.t. the input images, it does produce
highly detailed point clouds and with plausible part struc-
ture, thanks to the fine-grained part decomposition of Part-
Net. See more examples in the supplemental material.

6. Conclusion

We have presented a top-down recursive decomposition
network for fine-grained segmentation of 3D point clouds.
With the hierarchical decomposition scheme, our model
obtains fine-grained and accurate segmentation even for
highly complex shapes. Different from most existing deep-
learning based segmentation models, our method segments
a shape into an arbitrary number of parts, depending on its
structural complexity, instead of producing a labeled seg-
mentation with a fixed label set. Even for semantic segmen-
tation, our model also achieves superior performance, ben-
efiting from our divide-and-conquer segmentation learning.

Limitations and future work. Our current method has a
few limitations. First, although PartNet segments a shape in
a hierarchical fashion, the resulting segment hierarchy is not

Figure 10. A few examples on refining point clouds reconstructed
from single view images, guided by the fine-grained segmentation
of PartNet. In each row, we show from left to right the input image,
result of holistic reconstruction, fine-grained segmentation of the
reconstruction, and the final refinement result by our method.

necessarily as meaningful as the those learned purposively
for shapes [30, 39] or scenes [15]. Second, although our
model can be used to segment different shapes into different
number of parts, instead of targeting a fixed part label set. It
still needs to be trained for each shape category separately.
Learning a more general model for recursive decomposition
of shapes from multiple classes would be a very interesting
future direction to look into. Third, PartNet is trained with
reasonable ground-truth hierarchies built with the method
in [36]. Training with totally random hierarchy would lead
to performance degrading. We show this effect in the sup-
plemental material. Therefore, another future direction is to
learn hierarchical segmentation in a unsupervised manner,
without the need of building ground-truth hierarchies.
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