This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Single-Image Piece-wise Planar 3D Reconstruction via Associative Embedding

Zehao Yul* Jia Zheng'*
!ShanghaiTech University

{yuzh, zhengjia, liandz, gaoshh}@shanghaitech.edu.cn

Abstract

Single-image piece-wise planar 3D reconstruction aims
to simultaneously segment plane instances and recover
3D plane parameters from an image. Most recent ap-
proaches leverage convolutional neural networks (CNNs)
and achieve promising results. However, these methods are
limited to detecting a fixed number of planes with certain
learned order. To tackle this problem, we propose a novel
two-stage method based on associative embedding, inspired
by its recent success in instance segmentation. In the first
stage, we train a CNN to map each pixel to an embedding
space where pixels from the same plane instance have sim-
ilar embeddings. Then, the plane instances are obtained
by grouping the embedding vectors in planar regions via
an efficient mean shift clustering algorithm. In the sec-
ond stage, we estimate the parameter for each plane in-
stance by considering both pixel-level and instance-level
consistencies. With the proposed method, we are able to
detect an arbitrary number of planes. Extensive experi-
ments on public datasets validate the effectiveness and effi-
ciency of our method. Furthermore, our method runs at 30
Jfps at the testing time, thus could facilitate many real-time
applications such as visual SLAM and human-robot inter-
action. Code is available at https://github.com/
svip—lab/PlanarReconstruction.

1. Introduction

Single-image 3D reconstruction is a fundamental prob-
lem in computer vision, with many applications in emerg-
ing domains such as virtual and augmented reality, robotics,
and social media. In this paper, we address this challeng-
ing problem by recovering a piece-wise planar 3D model of
a scene, that is, to find all the plane instances in a single
RGB image and estimate their 3D parameters, as shown in
Figure 1. The piece-wise planar model provides a compact
representation of the 3D scene, which could benefit many
applications such as SLAM and human-robot interaction.

*Equal contribution
tCorresponding author

Dongze Lian'

Zihan Zhou? Shenghua Gao'f
>The Pennsylvania State University

zzhou@ist.psu.edu

Input image

Plane instance segmentation

B

Depth map

Piece-wise planar 3D model

Figure 1: Piece-wise planar 3D reconstruction.

In the literature, most existing methods tackle this prob-
lem in a bottom-up manner [6, 2, 24, 31, 15, 10, 12].
They first extract geometric primitives such as straight line
segments, vanishing points, corners, junctions, and image
patches from the image. These primitives are then grouped
into planar regions based on their geometric relationships.
However, in practice, detecting the constituent geometric
primitives itself is highly challenging, often resulting in a
large number of missed detections (e.g., due to poorly tex-
tured surfaces, lighting conditions) and outliers (e.g., due
to the presence of non-planar objects). As a result, statisti-
cal techniques such as RANSAC or Markov Random Field
(MRF) are commonly employed to produce the final 3D
models. But such techniques often break down when the
percentage of missed and irrelevant detections is high, and
are only applicable to restrictive scenarios (e.g., Manhattan
world scenes). Further, the optimization of the statistical
model is time-consuming, which greatly limits their appli-
cation in real-time tasks.

Different from bottom-up methods, a top-down ap-
proach [13] overcomes the aforementioned difficulties by
analyzing the image in a holistic fashion, without resorting

1029

to local geometric primitives. Recently, [23, 30] train CNNs
to directly predict plane segmentation and plane parameters
from a single image. These methods are shown to achieve
the state-of-the-art performance on multiple indoor and out-
door datasets. Despite their advantages, current learning-
based methods come with their own limitations. In partic-
ular, due to the lack of prior knowledge about the number
and specific order of planes in an image, they are limited
to detecting a fixed number of planes with certain learned
order, thus may be not flexible enough to handle variations
in real-world scene structure.

In this paper, we propose a novel CNN-based, bottom-up
approach which takes the best of both worlds, while avoid-
ing the limitations of existing methods. To make this pos-
sible, our key insight is that we can detect plane instances
in an image by computing the likelihood that two pixels be-
long to the same plane instance and then use these likeli-
hoods to group similar pixels together. Unlike traditional
bottom-up methods which perform grouping on geometric
primitives, our similarity metric is based on a deep em-
bedding model, following its recent success in pose esti-
mation [25], object detection [19], and instance segmenta-
tion [9, 5, 17]. Next, we mask the non-planar pixels with a
planar/non-planar segmentation map generated by another
CNN branch. Finally, an efficient mean shift clustering al-
gorithm is employed to cluster the masked pixel embed-
dings into plane instances.

Following the plane instance segmentation, we design a
plane parameter network by considering both pixel-level ac-
curacy and instance-level consistencies. We first predict the
plane parameter at each pixel, then combine those predic-
tions with the plane instances to generate the parameter of
each plane. Note that, unlike existing CNN methods, we
restrict our networks to make local predictions (i.e., pixel-
wise embedding vectors, and plane parameters) and group
these predictions in a bottom-up fashion. This enables our
method to generate an arbitrary number of planes and avoid
being restricted to any specific order or spatial layout.

In summary, our contributions are as follows: i) We
present a novel two-stage deep learning framework for
piece-wise planar 3D reconstruction. Based on the deep
associate embedding model, we design a multi-branch, end-
to-end trainable network which can detect an arbitrary num-
ber of planes and estimate their parameters simultaneously.
ii) We propose a fast variant of mean shift clustering algo-
rithm to group pixel embeddings into plane instances, which
achieves real-time performance at the testing time. iii)
Extensive experiments on two challenging datasets, Scan-
Net [4] and NYUv2 [27], validate the effectiveness and ef-
ficiency of our method.

2. Related Work
2.1. Single-View Planar Reconstruction

Geometry-based methods. Geometry-based methods [6,

, 24, 20] recover 3D information based on geometric cues
in 2D image. For example, Delage et al. [6] first extract
line segments, vanishing points, and superpixels from the
image. Then an MRF model is used to label the superpixels
with a predefined set of plane classes (i.e., three dominant
plane orientations under the Manhattan world assumption).
Similarly, Barinova et al. [2] assume that the environment
is composed of a flat ground and vertical walls, and use a
Conditional Random Field (CRF) model to label the de-
tected primitives. Lee ef al. [20] detect a collection of line
segments and vanishing points in an image, and search for
the building model in a hypothesis set that best matches the
collection of geometric primitives. However, all these ap-
proaches rely on strong assumptions about the scene, which
limit their applicability in practice.

Appearance-based methods. Appearance-based methods
infer geometric properties of an image based on its appear-
ance. Early works [15, 10, 12] take a bottom-up approach.
They first predict the orientations of local image patches,
and then group the patches with similar orientations to form
planar regions. Hoiem et al. [15] define a set of discrete
surface layout labels, such as “support”, “vertical”, and
“sky”, and use a number of hand-crafted local image fea-
tures (e.g., color, texture, location, and perspective) to train
a model to label each superpixel in an image. Haines and
Calway [12] learn to predict continuous 3D orientations for
pre-segmented regions and cast plane detection as an opti-
mization problem with an MRF model. Fouhey et al. [10]
first detect convex/concave edges, occlusion boundaries, su-
perpixels, and their orientations, then formulate the group-
ing problem as a binary quadratic program under the Man-
hattan world assumption. Our method also falls into this
category. Different from existing methods, we cast plane
detection as an instance segmentation problem, in which
we learn a similarity metric to directly segment plane in-
stances in an image, and then estimate plane parameter for
each plane instance.

Recently, several CNN-based methods have been pro-
posed to directly predict global 3D plane structures. Liu et
al. [23] propose a deep neural network that learns to in-
fer plane parameters and assign plane IDs (segmentation
masks) to each pixel in a single image. Yang and Zhou [30]
cast the problem as a depth prediction problem and pro-
pose a training scheme which does not require ground truth
3D planes. However, these approaches are limited to pre-
dicting a fixed number of planes, which could lead to a
degraded performance in complex scenes. Concurrently,
Liu et al. [22] address this problem using a proposal-based
instance segmentation framework, i.e., Mask R-CNN [14].

1030

Stage | Stage 11

Planar/non-planar
segmentation mask

Plane
embed.
decoder

Mean shift

Input image

Plane embeddings

Plane

Plane instance
segmentation

|

Piece-wise planar
3D model

Instance-

param.
decoder

Pixel-level
plane params.

aware pooling

Figure 2: Network architecture. In the first stage, the network takes a single RGB image as input, and predicts a planar/non-
planar segmentation mask and pixel-level embeddings. Then, an efficient mean shift clustering algorithm is applied to
generate plane instances. In the second stage, we estimate parameter of each plane by considering both pixel-level and

instance-level geometric consistencies.

Instead, we leverage a proposal-free instance segmentation
approach [5] to solve this problem.

2.2. Instance Segmentation

Popular approaches to instance segmentation first gener-
ate region proposals, then classify the objects in the bound-
ing box and segment the foreground objects within each
proposal [14]. Recent work on associative embedding [25]
and their extensions in object detection [19] and instance
segmentation [9, 5, 17] provide a different solution. These
methods learn an embedding function that maps pixels into
an embedding space where pixels belonging to the same
instance have similar embeddings. Then, they use a sim-
ple cluster technique to generate instance segmentation re-
sults. Newell er al. [25] introduce associative embedding
in the context of multi-person pose estimation and extend it
to proposal-free instance segmentation. De Brabandere et
al. [5] propose a discriminative loss to learn the instance
embedding, then group embeddings to form instances using
a mean shift clustering algorithm. Kong and Fowlkes [17]
introduce a recurrent model to solve the pixel-level cluster-
ing problem. Our method is particularly inspired by these
work where we treat each plane in an image as an instance,
and utilize the idea of associative embedding to detect plane
instances. But we further propose i) an efficient mean shift
algorithm to cluster plane instances, and ii) an end-to-end
trainable network to jointly predict plane instance segmen-
tation and plane parameters, which is not obvious in the
context of original instance segmentation problem.

3. Method

Our goal is to infer plane instances and plane parameters
from a single RGB image. We propose a novel two-stage
method with a multi-branch network to tackle this prob-
lem. In the first stage, we train a CNN to obtain planar/non-
planar segmentation map and pixel embeddings. We then
mask the pixel embeddings with the segmentation map and
group the masked pixel embeddings by an efficient mean
shift clustering algorithm to form plane instances. In the
second stage, we train a network branch to predict pixel-
level plane parameters. We then use an instance-aware
pooling layer with the instance segmentation map from the
first stage to produce the final plane parameters. Figure 2
shows the overall pipeline of our method.

3.1. Planar/Non-Planar Segmentation

We first design an encoder-decoder architecture to dis-
tinguish the planar and non-planar regions. We use an ex-
tended version of ResNet-101-FPN [21] as an encoder.'
The ResNet-101 implemented by [32, 33] is pretrained on
ImageNet [7] for image classification. The decoder predicts
planar/non-planar segmentation map for each pixel. Since
the two classes are imbalanced in man-made environments,
we use the balanced cross entropy loss as adopted in [29, 3]:

Ls=—(1—w)) logpi—wY log(1—p;), (1)

ieF i€B

I'See supplementary materials for more details of network architecture.

1031

..."s',;ﬁ

Figure 3: The distribution of plane embeddings. The points
with different colors denote learnt embeddings from differ-
ent plane instances.

where F and B are the set of foreground and background
pixels, respectively. p; is the probability that ¢-th pixel be-
longs to foreground (i.e., planar regions), and w is the fore-
ground/background pixel-number ratio.

3.2. Embedding Model

Our plane instance segmentation is inspired by recent
work on associative embedding [25, 9, 5, 17]. The main
idea of associative embedding is to predict an embedding
vector for each visual unit such that if some visual units be-
long to the same instance label, the distance between their
embedding vectors should be small so that they can be eas-
ily grouped together.

For our task, we use a plane embedding branch to map
pixels to some embedding space, as shown in Figure 3. This
branch shares the same high-level feature maps with the
plane segmentation branch. To enforce pixels in the same
plane instance are closer than those in different planes, we
use the discriminative loss in [5]. The loss consists of two
terms, namely a “pull” loss and a “push” loss. The “pull”
loss pulls each embedding to the mean embedding of the
corresponding instance (i.e. the instance center), whereas
the “push” loss pushes the instance centers away from each
other.

LE = Lpull + Lpusha (2)

where

C N
pull - Z Z max ||,U/c xl” - 6va 0) 5 (3)

L ush — maX - H/’(’C — He ||70) .
! C(CAZI CBZI ! ?
caF#cp
)

Here, C' is the number of clusters C (planes) in the ground
truth, N, is the number of elements in cluster ¢, x; is the
pixel embedding, . is the mean embedding of the cluster
¢, and d, and d4 are the margin for “pull” and “push” losses,
respectively.

Intuitively, if the pixel embeddings are easily separable
(i.e., the inter-instance distance is larger then dy, or the dis-
tance between an embedding vector and its center is smaller
than dy), the penalty is zero. Otherwise, the penalty will in-
crease sharply. Thus, the loss acts like hard example mining
since it only penalizes difficult cases in the embedding.

3.3. Efficient Mean Shift Clustering

Once we have the embedding vector for each pixel, we
group them to form plane instances. Mean shift cluster-
ing is suitable for this task since the number of plane in-
stances is not known a priori. However, the standard mean
shift clustering algorithm computes pairwise distance on all
pairs of pixel embedding vectors at each iteration. The com-
plexity of each iteration is O(N?) where N is the number
of pixels in the image. In practice, N is very large even
for a small size image. For example, in our experiments,
N = 192 x 256, making the standard algorithm inapplica-
ble.

To tackle this problem, we propose a fast variant of the
mean shift clustering algorithm. Instead of shifting all pix-
els in embedding space, we only shift a small number of
anchors in embedding space and assign each pixel to the
nearest anchor. Specifically, let k, d denote the number of
anchors per dimension and the embedding dimension, re-
spectively, we generate k¢ anchors uniformly in the embed-
ding space. We then compute pairwise potential between
anchor a; and embedding vector z; as follows:

_ 1 m3; 5
pm—ﬁexp o |)

where b is the bandwidth in mean shift clustering algorithm
and m;; = ||aj — x;||2 is the distance between a; and ;.
The shift step of each anchor in each iteration ¢ can be ex-
pressed as:

N
DR 6)

1=1

m .

where Z! = SN p}; is a normalization constant. To fur-
ther speed up the process, we filter out those anchors with
low local density at the beginning of clustering.

After the algorithm converges, we merge nearby anchors
to form clusters é where each cluster ¢ corresponds to a
plane instance. Specifically, we consider two anchors be-
longs to the same cluster if their distance less than band-
width b. The center of this cluster is the mean of anchors
belonging to this cluster.

Finally, we associate pixel embeddings to clusters using
soft assignment:

exp (—my;)

z .
Zj:l exp (—mi;)

Sij = @)

1032

Algorithm 1 Efficient Mean Shift Clustering.

1: Input: pixel embeddings {x;},, hyper-parameters k, d, b,
and T
initialize k% anchors uniformly in the embedding space
fort=1to 7 do
compute pairwise potential term pﬁj with Eq. (5)
conduct mean shift for each anchor with Eq. (6)
: end for
merge nearby anchors to form clusters c
Output: instance segmentation map S with Eq. (7)

AN A R ol

The details of the proposed algorithm are shown in Al-
gorithm 1. Note that the bandwidth b can be determined by
the desired margin in the training stage of vector embed-
ding. The complexity of each iteration of our algorithm is
O(k%N). As long as k < N, our algorithm can be per-
formed much more efficiently.

3.4. Plane Parameter Estimation

Given an image, the previous stage provides us a plane
instance segmentation map. Then we need to infer the 3D
parameter for each plane instance. To this end, we further
design a plane parameter branch to predict the plane pa-
rameter for each pixel. Then, using the instance segmenta-
tion map, we aggregate the output of this branch to form an
instance-level parameter for each plane instance.

Specifically, the branch output a H x W x 3 plane pa-
rameter map. Following [30], we define the plane parame-
ter as n € R®. For 3D points @ lies on this plane, we have
nT@Q = 1.> We use L1 loss to supervise the learning of
per-pixel plane parameters:

1 N
Lpp = N;Hnrni\l, ®)

where n; is the predicted plane parameter and n; is the
ground truth plane parameter for i-th pixel.

Instance-aware pooling. In practice, we find that pixel-
level parameter supervision is not sufficient, as it may not
produce consistent outputs across the entire plane instance.
Therefore we propose to further aggregate the pixel-level
parameters into an instance-level parameter:

L
nj = 7 ;Sij ‘M, €))

where Z; = Zfil Sij is a normalization constant. It acts
like a global average pooling but with different attention for
different plane instances.

2We represent a 3D plane by n = #/d, where i € S? and d denote
the surface normal and plane distance to the origin.

Following [30], we enforce the instance-level parameter
to be consistent with the scene geometry. To be specific, we
compare the depth map inferred from the plane parameter
with the ground truth depth map using the following loss:

c

1
NOZA

j=11i=1

Lip= Sij - llnj Qi —1ll, (10)

where @); is the 3D point at pixel ¢ inferred from ground
truth depth map.

Note that our approach to plane parameter estimation is
different from previous methods [23, 30]. Those methods
first predict plane parameter and then associate each pixel
with a particular plane parameter. In contrast, we first group
pixels into plane instances and then estimate the parameter
for each plane instance. We argue that our approach is more
adequate because segmentation can uniquely determine an
instance.

Finally, to simultaneously infer plane instance segmen-
tation and plane parameters, the overall training loss of our
method is:

L=Ls+ Lg+ Lpp+ Lip. (11

4. Experiments

In this section, we conduct experiments to evaluate
the performance of the proposed method on two public
datasets: ScanNet [4] and NYUv2 [27]. Due to space limi-
tations, we refer readers to supplementary materials for ad-
ditional experiment results, including ablation studies about
the mean shift clustering algorithm and plane parameter es-
timation.

4.1. Implementation Details

We implement our model with PyTorch [26]. We use
Adam optimizer [16] with a learning rate of 10~ and a
weight decay of 10~°. The batch size is set to 16. The net-
work is trained for 50 epochs on one NVIDIA TITAN XP
GPU device. We train the network with margins §, = 0.5,
da = 1.5. We set the embedding dimension d = 2, num-
ber of anchors per dimension £ = 10, and the bandwidth
b = d, in the mean shift clustering algorithm. The number
of iterations 7T’ is set to 5 in training and set to 10 in testing.
Our model is trained in an end-to-end manner.

4.2. Results on ScanNet Dataset

We first evaluate our method on ScanNet dataset [4] gen-
erated by [23]. The ground truth is obtained by fitting planes
to a consolidated mesh of ScanNet and project them back to
individual frames. The generating process also incorporates
semantic annotations from ScanNet. The resulting dataset
contains 50,000 training and 760 testing images with reso-
lution 256 x 192.

1033

+NYU + Inferred depth #MWS + Inferred depth +PlaneNet <-Ours

PER-PLANE RECALL %

0.8 08 - .
o
0.6 < 0.6
o
w
0.4 0.4
w
x
0.2 & 0.2
o
w
0 o a 0 e
0 0.10.20.30.40.50.6 0 0.1 0.2 0.30.40.50.6
DEPTH THRESHOLD DEPTH THRESHOLD
+NYU + GT depth «MWS + GT depth -+PlaneNet ~Ours

Figure 4: Plane and pixel recalls on the ScanNet dataset. Please see the supplementary materials for exact numbers.

Depth map Segmentation Input image

Planar 3D model

e
Figure 5: Piece-wise planar 3D reconstruction results on the ScanNet dataset. In the plane instance segmentation results,
black color indicates non-planar regions.

Methods for comparison. We compare our method
with the recent CNN-based method PlaneNet [23], and
two bottom-up methods NYU-Toolbox [27] and Manhat-
tan World Stereo (MWS) [11].> NYU-Toolbox [27] is
a popular plane detection algorithm that uses RANSAC
to extracts plane hypotheses and Markov Random Field
(MRF) to optimize plane segmentation. Manhattan World
Stereo (MWS) [1 1] employs Manhattan world assumption
for plane extraction and utilizes vanishing lines in the pair-
wise terms of MRF. For bottom-up methods, we use the
same network architecture as ours to predict pixel-level
depth map. Following [!8], we minimize the berHu loss
during training. Alternatively, we also use ground truth
depth map as input for these methods.

Evaluation metric. Following [23], we use plane and pixel
recalls as our evaluation metrics. The plane recall is the per-

3We obtain the implementation of these methods from PlaneNet [23] at
https://github.com/art-programmer/PlaneNet.

centage of correctly predicted ground truth planes, and the
pixel recall is the percentage of pixels within the correctly
predicted planes. A ground-truth plane is considered cor-
rectly predicted if i) one of the predicted planes has more
than 0.5 intersection-over-union (IOU) score, and ii) the
mean depth difference over the overlapping region is less
than a threshold, which varies from 0.05m to 0.6m with an
increment of 0.05m. In addition, we also use surface normal
difference as the threshold in our experiment.

Quantitative evaluation. Figure 4 shows the pixel and
plane recalls of all methods. As shown in the first two plots,
our method significantly outperforms all competing meth-
ods when inferred depth maps are used. Furthermore, we
achieve competitive or better results even when the bottom-
up methods are provided with the ground truth depth maps,
as shown in the last two plots. This clearly demonstrates the
effectiveness of our method. Furthermore, we obtain con-
sistent results when the surface normal difference is adopted
as the threshold (see supplementary materials).

1034

