
Single-Image Piece-wise Planar 3D Reconstruction via Associative Embedding

Zehao Yu1∗ Jia Zheng1∗ Dongze Lian1 Zihan Zhou2 Shenghua Gao1†

1ShanghaiTech University

{yuzh,zhengjia,liandz,gaoshh}@shanghaitech.edu.cn

2The Pennsylvania State University

zzhou@ist.psu.edu

Abstract

Single-image piece-wise planar 3D reconstruction aims

to simultaneously segment plane instances and recover

3D plane parameters from an image. Most recent ap-

proaches leverage convolutional neural networks (CNNs)

and achieve promising results. However, these methods are

limited to detecting a fixed number of planes with certain

learned order. To tackle this problem, we propose a novel

two-stage method based on associative embedding, inspired

by its recent success in instance segmentation. In the first

stage, we train a CNN to map each pixel to an embedding

space where pixels from the same plane instance have sim-

ilar embeddings. Then, the plane instances are obtained

by grouping the embedding vectors in planar regions via

an efficient mean shift clustering algorithm. In the sec-

ond stage, we estimate the parameter for each plane in-

stance by considering both pixel-level and instance-level

consistencies. With the proposed method, we are able to

detect an arbitrary number of planes. Extensive experi-

ments on public datasets validate the effectiveness and effi-

ciency of our method. Furthermore, our method runs at 30

fps at the testing time, thus could facilitate many real-time

applications such as visual SLAM and human-robot inter-

action. Code is available at https://github.com/

svip-lab/PlanarReconstruction.

1. Introduction

Single-image 3D reconstruction is a fundamental prob-

lem in computer vision, with many applications in emerg-

ing domains such as virtual and augmented reality, robotics,

and social media. In this paper, we address this challeng-

ing problem by recovering a piece-wise planar 3D model of

a scene, that is, to find all the plane instances in a single

RGB image and estimate their 3D parameters, as shown in

Figure 1. The piece-wise planar model provides a compact

representation of the 3D scene, which could benefit many

applications such as SLAM and human-robot interaction.

∗Equal contribution
†Corresponding author

Input image Plane instance segmentation

Depth map Piece-wise planar 3D model

Figure 1: Piece-wise planar 3D reconstruction.

In the literature, most existing methods tackle this prob-

lem in a bottom-up manner [6, 2, 24, 31, 15, 10, 12].

They first extract geometric primitives such as straight line

segments, vanishing points, corners, junctions, and image

patches from the image. These primitives are then grouped

into planar regions based on their geometric relationships.

However, in practice, detecting the constituent geometric

primitives itself is highly challenging, often resulting in a

large number of missed detections (e.g., due to poorly tex-

tured surfaces, lighting conditions) and outliers (e.g., due

to the presence of non-planar objects). As a result, statisti-

cal techniques such as RANSAC or Markov Random Field

(MRF) are commonly employed to produce the final 3D

models. But such techniques often break down when the

percentage of missed and irrelevant detections is high, and

are only applicable to restrictive scenarios (e.g., Manhattan

world scenes). Further, the optimization of the statistical

model is time-consuming, which greatly limits their appli-

cation in real-time tasks.

Different from bottom-up methods, a top-down ap-

proach [13] overcomes the aforementioned difficulties by

analyzing the image in a holistic fashion, without resorting

1029



to local geometric primitives. Recently, [23, 30] train CNNs

to directly predict plane segmentation and plane parameters

from a single image. These methods are shown to achieve

the state-of-the-art performance on multiple indoor and out-

door datasets. Despite their advantages, current learning-

based methods come with their own limitations. In partic-

ular, due to the lack of prior knowledge about the number

and specific order of planes in an image, they are limited

to detecting a fixed number of planes with certain learned

order, thus may be not flexible enough to handle variations

in real-world scene structure.

In this paper, we propose a novel CNN-based, bottom-up

approach which takes the best of both worlds, while avoid-

ing the limitations of existing methods. To make this pos-

sible, our key insight is that we can detect plane instances

in an image by computing the likelihood that two pixels be-

long to the same plane instance and then use these likeli-

hoods to group similar pixels together. Unlike traditional

bottom-up methods which perform grouping on geometric

primitives, our similarity metric is based on a deep em-

bedding model, following its recent success in pose esti-

mation [25], object detection [19], and instance segmenta-

tion [9, 5, 17]. Next, we mask the non-planar pixels with a

planar/non-planar segmentation map generated by another

CNN branch. Finally, an efficient mean shift clustering al-

gorithm is employed to cluster the masked pixel embed-

dings into plane instances.

Following the plane instance segmentation, we design a

plane parameter network by considering both pixel-level ac-

curacy and instance-level consistencies. We first predict the

plane parameter at each pixel, then combine those predic-

tions with the plane instances to generate the parameter of

each plane. Note that, unlike existing CNN methods, we

restrict our networks to make local predictions (i.e., pixel-

wise embedding vectors, and plane parameters) and group

these predictions in a bottom-up fashion. This enables our

method to generate an arbitrary number of planes and avoid

being restricted to any specific order or spatial layout.

In summary, our contributions are as follows: i) We

present a novel two-stage deep learning framework for

piece-wise planar 3D reconstruction. Based on the deep

associate embedding model, we design a multi-branch, end-

to-end trainable network which can detect an arbitrary num-

ber of planes and estimate their parameters simultaneously.

ii) We propose a fast variant of mean shift clustering algo-

rithm to group pixel embeddings into plane instances, which

achieves real-time performance at the testing time. iii)

Extensive experiments on two challenging datasets, Scan-

Net [4] and NYUv2 [27], validate the effectiveness and ef-

ficiency of our method.

2. Related Work

2.1. SingleView Planar Reconstruction

Geometry-based methods. Geometry-based methods [6,

2, 24, 20] recover 3D information based on geometric cues

in 2D image. For example, Delage et al. [6] first extract

line segments, vanishing points, and superpixels from the

image. Then an MRF model is used to label the superpixels

with a predefined set of plane classes (i.e., three dominant

plane orientations under the Manhattan world assumption).

Similarly, Barinova et al. [2] assume that the environment

is composed of a flat ground and vertical walls, and use a

Conditional Random Field (CRF) model to label the de-

tected primitives. Lee et al. [20] detect a collection of line

segments and vanishing points in an image, and search for

the building model in a hypothesis set that best matches the

collection of geometric primitives. However, all these ap-

proaches rely on strong assumptions about the scene, which

limit their applicability in practice.

Appearance-based methods. Appearance-based methods

infer geometric properties of an image based on its appear-

ance. Early works [15, 10, 12] take a bottom-up approach.

They first predict the orientations of local image patches,

and then group the patches with similar orientations to form

planar regions. Hoiem et al. [15] define a set of discrete

surface layout labels, such as “support”, “vertical”, and

“sky”, and use a number of hand-crafted local image fea-

tures (e.g., color, texture, location, and perspective) to train

a model to label each superpixel in an image. Haines and

Calway [12] learn to predict continuous 3D orientations for

pre-segmented regions and cast plane detection as an opti-

mization problem with an MRF model. Fouhey et al. [10]

first detect convex/concave edges, occlusion boundaries, su-

perpixels, and their orientations, then formulate the group-

ing problem as a binary quadratic program under the Man-

hattan world assumption. Our method also falls into this

category. Different from existing methods, we cast plane

detection as an instance segmentation problem, in which

we learn a similarity metric to directly segment plane in-

stances in an image, and then estimate plane parameter for

each plane instance.

Recently, several CNN-based methods have been pro-

posed to directly predict global 3D plane structures. Liu et

al. [23] propose a deep neural network that learns to in-

fer plane parameters and assign plane IDs (segmentation

masks) to each pixel in a single image. Yang and Zhou [30]

cast the problem as a depth prediction problem and pro-

pose a training scheme which does not require ground truth

3D planes. However, these approaches are limited to pre-

dicting a fixed number of planes, which could lead to a

degraded performance in complex scenes. Concurrently,

Liu et al. [22] address this problem using a proposal-based

instance segmentation framework, i.e., Mask R-CNN [14].

1030



Stage Ⅰ

Encoder

Input image

Plane

embed.

decoder

Plane

segm.

decoder

Plane

param.

decoder

Mean shift

Instance-

aware pooling

Planar/non-planar 

segmentation mask

Plane embeddings

Pixel-level

plane params.

Plane instance 

segmentation
Piece-wise planar 

3D model

Stage Ⅱ

Figure 2: Network architecture. In the first stage, the network takes a single RGB image as input, and predicts a planar/non-

planar segmentation mask and pixel-level embeddings. Then, an efficient mean shift clustering algorithm is applied to

generate plane instances. In the second stage, we estimate parameter of each plane by considering both pixel-level and

instance-level geometric consistencies.

Instead, we leverage a proposal-free instance segmentation

approach [5] to solve this problem.

2.2. Instance Segmentation

Popular approaches to instance segmentation first gener-

ate region proposals, then classify the objects in the bound-

ing box and segment the foreground objects within each

proposal [14]. Recent work on associative embedding [25]

and their extensions in object detection [19] and instance

segmentation [9, 5, 17] provide a different solution. These

methods learn an embedding function that maps pixels into

an embedding space where pixels belonging to the same

instance have similar embeddings. Then, they use a sim-

ple cluster technique to generate instance segmentation re-

sults. Newell et al. [25] introduce associative embedding

in the context of multi-person pose estimation and extend it

to proposal-free instance segmentation. De Brabandere et

al. [5] propose a discriminative loss to learn the instance

embedding, then group embeddings to form instances using

a mean shift clustering algorithm. Kong and Fowlkes [17]

introduce a recurrent model to solve the pixel-level cluster-

ing problem. Our method is particularly inspired by these

work where we treat each plane in an image as an instance,

and utilize the idea of associative embedding to detect plane

instances. But we further propose i) an efficient mean shift

algorithm to cluster plane instances, and ii) an end-to-end

trainable network to jointly predict plane instance segmen-

tation and plane parameters, which is not obvious in the

context of original instance segmentation problem.

3. Method

Our goal is to infer plane instances and plane parameters

from a single RGB image. We propose a novel two-stage

method with a multi-branch network to tackle this prob-

lem. In the first stage, we train a CNN to obtain planar/non-

planar segmentation map and pixel embeddings. We then

mask the pixel embeddings with the segmentation map and

group the masked pixel embeddings by an efficient mean

shift clustering algorithm to form plane instances. In the

second stage, we train a network branch to predict pixel-

level plane parameters. We then use an instance-aware

pooling layer with the instance segmentation map from the

first stage to produce the final plane parameters. Figure 2

shows the overall pipeline of our method.

3.1. Planar/NonPlanar Segmentation

We first design an encoder-decoder architecture to dis-

tinguish the planar and non-planar regions. We use an ex-

tended version of ResNet-101-FPN [21] as an encoder.1

The ResNet-101 implemented by [32, 33] is pretrained on

ImageNet [7] for image classification. The decoder predicts

planar/non-planar segmentation map for each pixel. Since

the two classes are imbalanced in man-made environments,

we use the balanced cross entropy loss as adopted in [29, 3]:

LS = −(1− w)
∑

i∈F

log pi − w
∑

i∈B

log(1− pi), (1)

1See supplementary materials for more details of network architecture.

1031



Figure 3: The distribution of plane embeddings. The points

with different colors denote learnt embeddings from differ-

ent plane instances.

where F and B are the set of foreground and background

pixels, respectively. pi is the probability that i-th pixel be-

longs to foreground (i.e., planar regions), and w is the fore-

ground/background pixel-number ratio.

3.2. Embedding Model

Our plane instance segmentation is inspired by recent

work on associative embedding [25, 9, 5, 17]. The main

idea of associative embedding is to predict an embedding

vector for each visual unit such that if some visual units be-

long to the same instance label, the distance between their

embedding vectors should be small so that they can be eas-

ily grouped together.

For our task, we use a plane embedding branch to map

pixels to some embedding space, as shown in Figure 3. This

branch shares the same high-level feature maps with the

plane segmentation branch. To enforce pixels in the same

plane instance are closer than those in different planes, we

use the discriminative loss in [5]. The loss consists of two

terms, namely a “pull” loss and a “push” loss. The “pull”

loss pulls each embedding to the mean embedding of the

corresponding instance (i.e. the instance center), whereas

the “push” loss pushes the instance centers away from each

other.

LE = Lpull + Lpush, (2)

where

Lpull =
1

C

C
∑

c=1

1

Nc

Nc
∑

i=1

max (‖µc − xi‖ − δv, 0) , (3)

Lpush =
1

C(C − 1)

C
∑

cA=1

C
∑

cB=1

cA 6=cB

max (δd − ‖µcA − µcB‖, 0) .

(4)

Here, C is the number of clusters C (planes) in the ground

truth, Nc is the number of elements in cluster c, xi is the

pixel embedding, µc is the mean embedding of the cluster

c, and δv and δd are the margin for “pull” and “push” losses,

respectively.

Intuitively, if the pixel embeddings are easily separable

(i.e., the inter-instance distance is larger then δd, or the dis-

tance between an embedding vector and its center is smaller

than δv), the penalty is zero. Otherwise, the penalty will in-

crease sharply. Thus, the loss acts like hard example mining

since it only penalizes difficult cases in the embedding.

3.3. Efficient Mean Shift Clustering

Once we have the embedding vector for each pixel, we

group them to form plane instances. Mean shift cluster-

ing is suitable for this task since the number of plane in-

stances is not known a priori. However, the standard mean

shift clustering algorithm computes pairwise distance on all

pairs of pixel embedding vectors at each iteration. The com-

plexity of each iteration is O(N2) where N is the number

of pixels in the image. In practice, N is very large even

for a small size image. For example, in our experiments,

N = 192 × 256, making the standard algorithm inapplica-

ble.

To tackle this problem, we propose a fast variant of the

mean shift clustering algorithm. Instead of shifting all pix-

els in embedding space, we only shift a small number of

anchors in embedding space and assign each pixel to the

nearest anchor. Specifically, let k, d denote the number of

anchors per dimension and the embedding dimension, re-

spectively, we generate kd anchors uniformly in the embed-

ding space. We then compute pairwise potential between

anchor aj and embedding vector xi as follows:

pij =
1√
2πb

exp

(

−
m2

ij

2b2

)

, (5)

where b is the bandwidth in mean shift clustering algorithm

and mij = ‖aj − xi‖2 is the distance between aj and xi.

The shift step of each anchor in each iteration t can be ex-

pressed as:

atj =
1

Zt
j

N
∑

i=1

ptij · xi, (6)

where Zt
j =

∑N

i=1
ptij is a normalization constant. To fur-

ther speed up the process, we filter out those anchors with

low local density at the beginning of clustering.

After the algorithm converges, we merge nearby anchors

to form clusters C̃, where each cluster c̃ corresponds to a

plane instance. Specifically, we consider two anchors be-

longs to the same cluster if their distance less than band-

width b. The center of this cluster is the mean of anchors

belonging to this cluster.

Finally, we associate pixel embeddings to clusters using

soft assignment:

Sij =
exp (−mij)

∑C̃

j=1
exp (−mij)

. (7)

1032



Algorithm 1 Efficient Mean Shift Clustering.

1: Input: pixel embeddings {xi}
N
i=1, hyper-parameters k, d, b,

and T

2: initialize kd anchors uniformly in the embedding space

3: for t = 1 to T do

4: compute pairwise potential term ptij with Eq. (5)

5: conduct mean shift for each anchor with Eq. (6)

6: end for

7: merge nearby anchors to form clusters C̃

8: Output: instance segmentation map S with Eq. (7)

The details of the proposed algorithm are shown in Al-

gorithm 1. Note that the bandwidth b can be determined by

the desired margin in the training stage of vector embed-

ding. The complexity of each iteration of our algorithm is

O(kdN). As long as kd ≪ N , our algorithm can be per-

formed much more efficiently.

3.4. Plane Parameter Estimation

Given an image, the previous stage provides us a plane

instance segmentation map. Then we need to infer the 3D

parameter for each plane instance. To this end, we further

design a plane parameter branch to predict the plane pa-

rameter for each pixel. Then, using the instance segmenta-

tion map, we aggregate the output of this branch to form an

instance-level parameter for each plane instance.

Specifically, the branch output a H × W × 3 plane pa-

rameter map. Following [30], we define the plane parame-

ter as n ∈ R
3. For 3D points Q lies on this plane, we have

nTQ = 1.2 We use L1 loss to supervise the learning of

per-pixel plane parameters:

LPP =
1

N

N
∑

i=1

‖ni − n∗
i ‖, (8)

where ni is the predicted plane parameter and n∗
i is the

ground truth plane parameter for i-th pixel.

Instance-aware pooling. In practice, we find that pixel-

level parameter supervision is not sufficient, as it may not

produce consistent outputs across the entire plane instance.

Therefore we propose to further aggregate the pixel-level

parameters into an instance-level parameter:

nj =
1

Zj

N
∑

i=1

Sij · ni, (9)

where Zj =
∑N

i=1
Sij is a normalization constant. It acts

like a global average pooling but with different attention for

different plane instances.

2We represent a 3D plane by n
.
= ñ/d, where ñ ∈ S2 and d denote

the surface normal and plane distance to the origin.

Following [30], we enforce the instance-level parameter

to be consistent with the scene geometry. To be specific, we

compare the depth map inferred from the plane parameter

with the ground truth depth map using the following loss:

LIP =
1

NC̃

C̃
∑

j=1

N
∑

i=1

Sij · ‖nT
j Qi − 1‖, (10)

where Qi is the 3D point at pixel i inferred from ground

truth depth map.

Note that our approach to plane parameter estimation is

different from previous methods [23, 30]. Those methods

first predict plane parameter and then associate each pixel

with a particular plane parameter. In contrast, we first group

pixels into plane instances and then estimate the parameter

for each plane instance. We argue that our approach is more

adequate because segmentation can uniquely determine an

instance.

Finally, to simultaneously infer plane instance segmen-

tation and plane parameters, the overall training loss of our

method is:

L = LS + LE + LPP + LIP . (11)

4. Experiments

In this section, we conduct experiments to evaluate

the performance of the proposed method on two public

datasets: ScanNet [4] and NYUv2 [27]. Due to space limi-

tations, we refer readers to supplementary materials for ad-

ditional experiment results, including ablation studies about

the mean shift clustering algorithm and plane parameter es-

timation.

4.1. Implementation Details

We implement our model with PyTorch [26]. We use

Adam optimizer [16] with a learning rate of 10−4 and a

weight decay of 10−5. The batch size is set to 16. The net-

work is trained for 50 epochs on one NVIDIA TITAN XP

GPU device. We train the network with margins δv = 0.5,

δd = 1.5. We set the embedding dimension d = 2, num-

ber of anchors per dimension k = 10, and the bandwidth

b = δv in the mean shift clustering algorithm. The number

of iterations T is set to 5 in training and set to 10 in testing.

Our model is trained in an end-to-end manner.

4.2. Results on ScanNet Dataset

We first evaluate our method on ScanNet dataset [4] gen-

erated by [23]. The ground truth is obtained by fitting planes

to a consolidated mesh of ScanNet and project them back to

individual frames. The generating process also incorporates

semantic annotations from ScanNet. The resulting dataset

contains 50,000 training and 760 testing images with reso-

lution 256× 192.

1033



Figure 4: Plane and pixel recalls on the ScanNet dataset. Please see the supplementary materials for exact numbers.

In
p

u
t

im
ag

e
S

eg
m

en
ta

ti
o

n
D

ep
th

m
ap

P
la

n
ar

3
D

m
o

d
el

Figure 5: Piece-wise planar 3D reconstruction results on the ScanNet dataset. In the plane instance segmentation results,

black color indicates non-planar regions.

Methods for comparison. We compare our method

with the recent CNN-based method PlaneNet [23], and

two bottom-up methods NYU-Toolbox [27] and Manhat-

tan World Stereo (MWS) [11].3 NYU-Toolbox [27] is

a popular plane detection algorithm that uses RANSAC

to extracts plane hypotheses and Markov Random Field

(MRF) to optimize plane segmentation. Manhattan World

Stereo (MWS) [11] employs Manhattan world assumption

for plane extraction and utilizes vanishing lines in the pair-

wise terms of MRF. For bottom-up methods, we use the

same network architecture as ours to predict pixel-level

depth map. Following [18], we minimize the berHu loss

during training. Alternatively, we also use ground truth

depth map as input for these methods.

Evaluation metric. Following [23], we use plane and pixel

recalls as our evaluation metrics. The plane recall is the per-

3We obtain the implementation of these methods from PlaneNet [23] at

https://github.com/art-programmer/PlaneNet.

centage of correctly predicted ground truth planes, and the

pixel recall is the percentage of pixels within the correctly

predicted planes. A ground-truth plane is considered cor-

rectly predicted if i) one of the predicted planes has more

than 0.5 intersection-over-union (IOU) score, and ii) the

mean depth difference over the overlapping region is less

than a threshold, which varies from 0.05m to 0.6m with an

increment of 0.05m. In addition, we also use surface normal

difference as the threshold in our experiment.

Quantitative evaluation. Figure 4 shows the pixel and

plane recalls of all methods. As shown in the first two plots,

our method significantly outperforms all competing meth-

ods when inferred depth maps are used. Furthermore, we

achieve competitive or better results even when the bottom-

up methods are provided with the ground truth depth maps,

as shown in the last two plots. This clearly demonstrates the

effectiveness of our method. Furthermore, we obtain con-

sistent results when the surface normal difference is adopted

as the threshold (see supplementary materials).

1034








