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Abstract

The sparse generalized eigenvalue problem arises in a
number of standard and modern statistical learning mod-
els, including sparse principal component analysis, sparse
Fisher discriminant analysis, and sparse canonical corre-
lation analysis. However, this problem is difficult to solve s-
ince it is NP-hard. In this paper, we consider a new effective
decomposition method to tackle this problem. Specifically,
we use random or/and swapping strategies to find a work-
ing set and perform global combinatorial search over the
small subset of variables. We consider a bisection search
method and a coordinate descent method for solving the
quadratic fractional programming subproblem. In addi-
tion, we provide some theoretical analysis for the proposed
method. Our experiments on synthetic data and real-world
data have shown that our method significantly and consis-
tently outperforms existing solutions in term of accuracy.

1. Introduction

In this paper, we mainly focus on the following sparse
generalized eigenvalue problem (‘2’ means define):

minysoxen £(x) £ 5, with @ £ {x | [x[|o < s}, 0
h(x) £ ixTAx, g(x) £ ix"Cx.

Here, x € R™, and || - ||o is a function that counts the number
of nonzero elements in a vector. A € R"*™ and C € R"*"
are some symmetry matrices. We assume that C is strictly
positive definite and s € [1, n] is a positive integer.

The sparse generalized eigenvalue problem in (1) de-
scribes many applications of interest in both computer vi-
sion and machine learning, including object recognition
[26], visual tracking [2 1], object detection [27, 28, 31], pix-
el/part selection [25], and text summarization [44]. We no-
tice that the objective function and sparsity constraint in
(1) is scale-invariant (multiplying x with a positive constant
does not change the value of the objective function and the

satisfiability of the sparsity constraint). Thus, it is equiva-
lent to the following problem: miny, x” Ax, s.t. x’ Cx =
1, ||x|][o < s. Moreover, without the sparsity constraint,
Problem (1) reduces to the minimum generalized eigenval-
ue problem and it has several equivalent formulations [4]:
mingzo (x7Ax)/(x7'Cx) = min{x"Ax : x'Cx =
1} = max{\ : A — AC = 0} = Amin(C™V2AC™Y/?),
where Apin (X) is the smallest eigenvalue of a given matrix
X, and X > 0 denotes X is positive semidefinite.

Problem (1) is closely related to the classical matrix
computation in the literature [13, 11, 1]. Imposing an addi-
tional sparsity constraint on the solution reduces over-fitting
and improves the interpretability of the model for high-
dimensional data analysis. The work of [18] successively
choose a sparse principle direction that maximizes the vari-
ance by enforcing a sparsity constraint using a bounded ¢,
norm. The work of [45] reformulates the principle com-
ponent analysis problem as a elastic-net regularized ridge
regression problem, which can be solved efficiently using
least angle regression. The work of [9] proposes a convex
relaxation for the sparse principle component analysis prob-
lem problem based on semidefinite programming.

One difficulty of solving Problem (1) comes from the
combinational nature of the cardinality constraint. A con-
ventional way to solve this problem is to simply replace
{y norm by its convex relaxation. Recently, non-convex
approximation methods such as Schatten ¢, norm, re-
weighted ¢; norm, Capped ¢; function have been proposed
for acquiring better accuracy [32]. However, all these ap-
proximation methods fails to directly control the sparsity of
the solution. In contrast, iterative hard thresholding main-
tain the sparsity of the solution by iteratively setting the s-
mall elements (in magnitude) to zero in a gradient descent
manner. Due to its simplicity, it has been widely used and
incorporated into the truncated power method [4 1] and trun-
cated Rayleigh flow method [35].

Another difficulty of solving Problem (1) is due to
the non-convexity of the objective function. One popular
method to overcome this difficulty is removing the quadrat-
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ic term using semidefinite programming lifting technique
and reformulating (1) into the following low-rank sparse op-
timization problem: minx o tr(AX)/tr(CX), s.t. X >
0, rank(X) = 1, | X|lo < s®. We remark that the ob-
jective function is quasilinear (hence both quasiconvex and
quasiconcave), and one can constrain the denominator to
be a positive constant using the scale-invariant property of
the problem. Recently, convex semidefinite programming
method drops the rank constraint and considers ¢; relax-
ation for the sparsity constraint [9, 8, 20, 43]. It has been
shown to achieve strong guarantee under suitable assump-
tions. However, such a matrix lifting technique will incur
expensive computation overhead.

In summary, existing methods for solving Problem (1)
suffer from the following limitations. (i) Semidefinite pro-
gramming methods [9, 8, 20] are not scalable due to its
high computational complexity for the eigenvalue decom-
position. (ii) Convex/Non-convex approximation methods
[34, 36, 33] fail to directly control the low-rank and sparse
property of the solution. (iii) Hard thresholding methods
[41, 19] only obtain weak optimality guarantee and result
in poor accuracy in practice [3, 40].

Recently, the work of [5] considers a new optimality cri-
terion which is based on Coordinate-Wise Optimality (C-
WO) condition for sparse optimization. It is proven that C-
WO condition is stronger than the optimality criterion based
on hard thresholding. The work of [40] presents a new
block-k optimal condition for general discrete optimization.
It is shown to be stronger than CWO condition since it in-
cludes CWO condition as a special case with £ = 1. In-
spired by these works, we propose a new decomposition
method for the sparse generalized eigenvalue problem, a-
long with using a greedy method based on CWO [5] for
finding the working set.

Contributions: This paper makes the following contri-
butions. (i) We propose a new decomposition algorithm for
solving the sparse generalized eigenvalue problem (see Sec-
tion 3). (ii) We discuss two strategies to find the working set
for our decomposition algorithm (see Section 4). (iii) We
propose two methods to solve the sparse quadratic fraction-
al programming subproblem (see Section 5). (iv) A conver-
gence analysis for the decomposition method is provided
(see Section 6). (v) Our experiments have shown that our
method outperforms existing solutions in term of accuracy.
(see Section 7).

Notation: All vectors are column vectors and super-
script 7' denotes transpose. X; ; denotes the (i, j) ele-
ment of matrix X and x; denotes the i-th element of vector
X. e; is a unit vector with a 1 in the i*" entry and 0 in al-
1 other entries. diag(x) is a diagonal matrix formed with
x as its principal diagonal. For any partition of the index
vector [1,2,...,n] into [B, N] with B € N¥, N € Nn—F,
we define Up € R™F Uy € R0 as5: wy,),, =

1, B@i) =3 1, N =3
{0, e]si.) WU = { o, else(.) 7 . Therefore, we

have xp = Ugx and x = Ix = (UgUp + UyUR)x =
Upxp + Unxy. Finally, C’fj denotes the number of pos-
sible combinations choosing & items from n.

2. Generalized Eigenvalue Problems

A number of standard and modern statistical learning
models can be formulated as the sparse generalized eigen-
value problem, which we present some instances below.

e Principle Component Analysis (PCA). Consider a
data matrix Z € R™*9  where each row represents an in-
dependent sample. The covariance matrix 3 is computed
by & = L3 (z; — p)(zi — p)T € R, where
z; denotes i column of Z and p = Y" z; € R¢. P-
CA can be cast into the following optimization problem:
minyo (—x? Ex)/(x"x).

e Fisher Discriminant Analysis (FDA). Given obser-
vations with two distinct classes with p(;) and X;) be-
ing the mean vector and covariance matrix of class ¢
(¢ = 1 or 2), respectively. FDA seeks a projection vec-
tor such that the between-class variance is large relative to
the within-class variance, leading to the following problem:
_XT((F”(I)_”‘(2))(H(1)_H(2))T)x

xT (B +3(g))x ’

e Canonical Correlation Analysis (CCA). Given two
classes of data X € R™*4 and Y € R™2%¢_ the covari-
ance matrix between samples from X and Y can be con-
structed as ¥ £ (¥ Fov) € ROmitma)x(mitme) .
CA exploits the relation of the samples by solving the fol-
lowing problem: maxyuo, v£o uTEmyv, st.ul'Y, u=
vIs,, v =1 where A £ (°, %v),C= (%= %) €
ROmitmz)x(mitms) and x £ [u”v?]T. One can rewrite
CCA as the following equivalent problem: miny ;"TTC";".

Incorporated with the sparsity constraint, the applica-
tions listed above become special cases of the general opti-

mization models in (1).

MiNy£g

3. The Proposed Decomposition Algorithm

This section presents our decomposition algorithm for
solving (1), which is based on the following notation of
block-k optimality [40] for general non-convex constrained
optimization.

Definition 1. (Block-k Optimal Solution and Block-k Opti-
mality Measure ) (i) We denote B € N k as a vector contain-
ing k unique integers selected from {1,2,...,n}. We define
N £ 1{1,2,..n}\ B, x = Ugxp + Unxy and let

P(B,x) éargmian f(Upxpg + Unxn),

2)
s.t. (UBXB —|—UNXN) € Q.

A solution X is the block-k optimal solution if and only if
xp = P(B,X) forall |B| = k. In other words, a solution
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is the block-k optimal solution if and only if every block co-
ordinate of size k achieves the global optimal solution. (ii)

k
We define M(x) = % S IP(By, x) — x5, 15 with

{B(i)}fjl being all the possible combinations of the index
vectors choosing k items from n with B € N* for all i.
M(x) is an optimality measure for Problem 1 in the sense
that M(X) = 0 if and only if X is the block-k optimal solu-
tion.

We describe the basic idea of the decomposition method.
In each iteration ¢, the indices {1, 2, ...,n} of decision vari-
able are separated to two sets B! and N, where B! is the
working set and N* = {1,2,...,n} \ B?. To simplify the
notation, we use B instead of Bt. Therefore, we can rewrite
h(-) and ¢(-) in Problem (1) as:

1,7 1. T
h(xp,xn) = 5xpABBXB + 3XNANNXN + (XB, ABNXN),

1., T 1T
9(xB,xn) = 5xpCppXxp + 3XxNCNNXN + (xB, CBNXN).

The vector x is fixed so the objective value becomes a
subproblem with the variable xg. Our proposed algorithm
iteratively solves the small-sized optimization problem with
respect to the variable xp as in (3) until convergence. We
summarize our method in Algorithm 1.

Algorithm 1 A Decomposition Algorithm for Sparse
Generalized Eigenvalue Problem as in (1).

1: Specify the working set parameter k£ and the proximal
term parameter f. Find an initial feasible solution x°
and set ¢t = 0.

2: while not converge do

3:  (S1) Use some strategy to find a working set B

whose size is k. Define N 2 {1,2,...,n} \ B.

4:  (S2) Solve the following subproblem with the vari-

able xp using combinatorial search:

h(xp,xy)+5Ixs—x5 13

9(xp.xY) (3)
st xgllo + Ixllo < s

t+1 :
Xp & < argmingg

50 (S3) Increment ¢ by 1.
6: end while

Remarks. (i) The concept of block-k optimality has been
introduced in [40]. This paper extends their method for min-
imizing convex functions to handle general non-convex ob-
jective functions. (ii) Algorithm 1 relies on solving a small-
sized quadratic fractional problem as in (3). However, us-
ing the specific structure of the objective function and the
sparsity constraint, we can develop an efficient and practi-
cal algorithm to solve it globally. (iii) We propose a new
proximal strategy when solving the subproblem as in (3).
Note that the proximal strategy is only applied to the nu-
merator instead of to the whole objective function. This is

to guarantee sufficient descent condition and global conver-
gence of Algorithm 1 (see Lemma 2 and Theorem 2). (iv)
When the dimension 7 is small ! and the parameter setting
6 = 0, k = n is used, the subproblem in (3) is equivalent
to Problem (1).

4. Finding the Working Set

This section shows how to find the working set (refer
to Step S1 in Algorithm 1). This problem is challenging for
two aspects. (i) Unlike convex methods that one can find the
working set using the first-order optimal condition or KKT
primal-dual residual [17, 7], there is no general criteria to
find the working set for non-convex problems. (ii) There
are C* possible combinations of choice for the working set
of size k. One cannot expect to use the cyclic strategy and
alternatingly minimize over all the possible combinations
(i.e., {B(i)}fjl ) due to its high computational complexity
when £k is large. We propose the following two strategies to
find the working set:

e Random Strategy. We uniformly select one combina-
tion (which contains k£ coordinates) from {B(i)}?jl . In ex-
pectation, our algorithm is still guaranteed to find the block-
k stationary point.

e Swapping Strategy. We denote S(x) and Z(x) as the
index of non-zero elements and zero elements of x, respec-
tively. Based on the current solution x?, our method enu-
merates all the possible pairs (i, ) with i € S(x?), j €
Z(x") that lead to the greatest descent D; ; by changing
the two coordinates from zero/non-zero to non-zero/zero,
as follows:

D;; = ming f(x'+ fe; — x}ej) — f(x"). “4)

We then pick the top pairs of coordinates that lead to the
greatest descent by measuring D € RIS®)IXIZ()1 gpecif-
ically, we sort the elements in D with Dp, g, < Dp, g, <
Dp, s, <,...Dp, s,, where P € N*" and S € N" are
the index vectors. Assuming that k£ is an even number, we
simply pick the top-(k/2) nonoverlapping elements of the
sequence P and S respectively as the working set.

We now discuss how to solve (4) to obtain D; ;. We start

from the following lemma.

Lemma 1. We consider the following one-dimensional op-
timization problem:

ap+bB+c

2 st.f>L 5
Tp2+358+1 st fz ©)

B* = argming 1(8) =

DO N[

Assume that V3 > L, T £ 1rp% + 58 +1 > 0 and the

optimal solution is bounded. We have: (i) Problem (5) ad-
mits a closed-form solution as: B* = argming f(5), 5 €

IFor example, the popular pit props data set [
dimensions.

] only contains 13
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{I1(B1), IL(B2) }, where By = (=0 — V? — 2m) /m, B2 =
(=9 + V92 —2m) /7, m & a5 — br, ¥ = at —éer, 1+ =
th + ¢35, and T1(3) = max(L, ). (ii) Problem (5) contains
one unique optimal solution.

Proof. (1) Dropping the bound constraint and setting the
gradient of )(3) to zero, we have 0 = ¢/(8) = ((aB +
b)(A7B%+358+1) — (3aB% +bB+¢) (7B +5))/72. Notic-
ing 7 > 0, we obtain the following first-order optimal con-
dition for ¢: 0 = (aB+b)(378* +58+1) — (3aB% + b8+
¢)(7B + 5). It can be simplified as: 0 = 1827 + BV + ¢.
Solving this equation, we have two solutions 31 and 5.
We select the one between I1(3;) and II(3s) that leads to
a lower objective value as the optimal solution. (ii) It can
be proven by contradiction. We omit the one-sided bound
constraint since it does not effect the uniqueness of the opti-
mal solution. Assume that there exist two optimal solutions
x and y to (1) that lead to the same objective value J. Ac-
cording to the first-order and second-order optimal condi-
tion [10, 42], we have: (a —97)x = —b+ 95, (a—07)y =
—b+93, (@—97) > 0, which leads to the following contra-
diction: 2520 = g # y = 250 Therefore, (11) contains
one unique optimal solution. Please refer to Figure 1. [

-

Figure 1: Geometric interpretation for the one-dimensional
quadratic fractional problem. Using the 1’Hopital’s Rule,
we have limg_, ;o ¥(8) = limg_,_ 1(B) = 2. Since
the optimal solution is bounded and the problem at most
contains two critical points, we only have the three cases

above. Clearly, there exists one unique optimal solution.

—case 1 —case 2 —case 3

Letting v 2 x' — x%e;, we obtain: ming f(v + fe;) =

3 (vipen)TA(v+Be;)
%(v«#ae,i)TCiv«i»Bei) '

—00, a4 = Az’,i7 b= (Av)i, c= %VTAV, r= Ci,iy S =
(Cv);, t = 3vTCv, we obtain the global optimal solution
for (4).

ming By applying Lemma | with L =

5. Solving the Subproblem

The subproblem (3) in Algorithm 1 (refer to Step S2 in
Algorithm 1) reduces to the following quadratic fractional
programming problem:

%ZT QZJrf)TZJrQI/'
%ZTRZ—‘rETZ—‘r'E ’

2" = argminy,,<q p(z) = (©6)
wherez € RF, Q = Agp +0L,p = Apnxn —0xty, w =
sXNANNXN + §[x5]3. R = Cpp. € = Cpnxy, . U=
sxNCaNxN, ¢ =5 — [|xn]fo-

Problem (6) is equally NP-hard due to the combinatori-
al constraint ||z]|p < ¢. Inspired by the work of [40], we
develop an exhaustive tree/combinatorial search algorithm
to solve it. Specifically, we consider to solve the follow-
ing optimization problem: min,cpr p(z), s.t. zxg = 0,
where K has .7 C} possible choices for the coordinates.
We systematically enumerate the full binary tree for K to
obtain all possible candidate solutions for z and then pick
the best one that leads to the lowest objective value as the
optimal solution. In other words, we need to solve the
following quadratic fractional programming problem with
m £ k — | K| variables:

ol

. T + T +
y* = argminy L(y) 2 % L %, )

[N

where y € R™. The optimal solution of (6) can be com-
puted as z} = 0, zj = y* with K = {1,2,.. k} \ K.
Therefore, if we find the global optimal solution of (7), we
find the global optimal solution of (6) as well.

The non-convex problem in (7) is still challenging. For
solving it, we present two methods, namely a bisection
search method and a coordinate descent method, which are
of independent research interest.

5.1. A Bisection Search Method

This subsection presents a bisection search method for
finding the global optimal solution of Problem (7).

We now discuss the relationship between this fraction-
al programming problem and the following parametric pro-
gramming problem [10]:

J(a) =0, with J(a) & miny u(y) — aq(y)

This is a feasibility problem with respect to a: J(a) =
u(y*(a)) — ag(y*(a)) = 0, where y* (o) € R™ is defined
as y* (o) £ argminy u(y) — aq(y).

The following theorem sheds some theoretic lights for
the original non-convex problem in (7).

Theorem 1. We have the following results. (i) It hold-
s that: Amin (Z) < ming L£(y) < Amin (0), with O £
R_1/2QR_1/2, o 2U—||R_1/2c||§ >0 g2 R_1/2p—
R2QR !¢, 2 c"R'QR 'c—2c"R ™ p+2w, and
Z2 (195 507 () Let O = Udiag(d)U be the
eigenvalue decomposition of O. The function J(«) can be
rewritten as

2

—say — 32 oy, witha = UTg (8

J(a) =36

and it is monotonically decreasing on the range Apmin(Z) <
a < Amin(O). The optimal solution can be computed as
y* = RY2(u* — R™Y2¢), withu* = —(0 — o*I) g
and o* being the unique root of the equation J () = 0 on
the range Amin(Z) < & < Apin(O).
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Proof. (i) Firstly, it is not hard to notice that Program (7) is
equivalent to the following problem:

%(R—1/2d>TQ(R—1/2d)+pT(R—1/2d)+w

miny L(y) = mina ¥ m=7mgTRR=1724)1oT (R=172a) 10

LtaTod+d”(R™/?p)+w
2d)3+dT (R™1/2c)+v

= ming

1dT0d+dT (R~ 2p)+w
LIld+R=1/2¢c|Z+v— L |R~1/2c]]3

; ©)

= ming

luTOquuTng%(S

— ] 2
= miny
llull3+35~

where the first step uses the variable substitution that y =
R 2d; the third step uses the transformation that u = d+
R~!/2c. We notice that the denominator is always strictly
positive for all decision variables. Letting u = 0 in (9), we
obtain %7 > (0. We naturally obtain the upper bound for
miny L(y):

sulOut ulgn+Ln?
Llull3+5n2

%uT0u+%uTgn+%n2
Zlhul3+4n?

l[uT ‘ nT}TZ [uT | nT] _

2
T 1
3 llull3+3n?

miny L(y) = ming -~

> ming,y,

= ming,, min(Z),
where the first inequality uses the fact that miny f(x) <
mingey f(x) forall f(-) and .

We now derive the upper bound of miny, £(y). Since the
objective function 7 () is always bounded, there must exist
a with Q—aR > 0, such that the value of y minimizing the
function (u(y) — aq(y)). Therefore, we have Q — aR >
0= Q-—aRY2IRY? - 0 = R™'2QR V%2 — al »
0= a < Anin(0).

(ii) Using the result of (9), we can rewrite J («) as:

J(a) = min, 2u”Ou+ulg+ 16— a (iuf + 1v)
=min, 3u”(0 —al)u+uTg+ 16— 2.
Solving the quadratic optimization with respect to u we
have u* = —(O — al)g. Thus, we can repress J («) as:
J(a) = —3g7(0 — al)~'g + £6 — %L. Since it hold-
s that g7 (0 — al)'g = g"UTdiag(1 + (d — a))Ug
with < denoting the element-wise division between two
vectors, we obtain (8). Noticing that the first-order and
second-order gradient of J(«) with respect to « can be
computed as: J'(a) = —3 () =3, ") =
—>"(@?/(d; — @)®) and ¥ > 0, we obtain J'(a) < 0
and J" () < 0. Thus, the function J(«) is concave and
monotonically decreasing on the range Apin(Z) < a <
Amin(O), and there exists a unique root of the equation

J(a) = 0 on the range Apin(Z) < @ < Apin(O).
O

Based on Theorem 1, we now present a bisection method
for solving Problem (7). For notation convenience, we de-
fine @ £ Apnin(Z) and @ £ A\ax(O) — €, where ¢ de-

notes the machine precision parameter which is sufficient-
ly small. Due to the monotonically decreasing property of
J («), we can solve (8) by checking where the sign of the
left-hand side changes. Specifically, we consider the fol-
lowing three cases for J(«) on the range a < a < a:
@ J() > J@) >0, 0 > J(a) > J(@), and (c)
J(a) > 0> J(a). For case (a) and (b), we can directly
return & and « as the optimal solution, respectively. We now
consider case (c). By the Rolle mean value theorem, there
always exists an o* € [, @] such that J(a*) = 0. Thus,
we can define and initialize the lower bound (b = « and the
upper bound ub = @. We then perform the following loop
until the optimal solution a* = mid with J(mid) = 0
is found: {mid = (Ib + wdb)/2, if(J(mid) > 0) Ib =
mid; else ub = mid; }. Such a bisection scheme is guaran-
teed to find the optimal solution within O(log,((@—a)/¢))
iterations that ub < Ib + ¢ [0].

Remarks. (i) To our knowledge, this is the first algorith-
m for unconstrained quadratic fractional programming with
global optimal guarantee. The work of [12] also discusses a
bisection search method for the ratio of trace problem, but it
can not solve our general quadratic fractional programming
problem. The classical Dinkelbach’s method [10, 39] can
solve our problem, but it only finds a stationary solution
for the non-convex problem. Our results are based on the
monotone property of the associated parametric program-
ming problem in a restricted domain. (ii) The unconstrained
fractional quadratic program can be solved to optimality by
linear semidefinite programming and it is related to the S-
lemma for the quadratically constrained quadratic program
[29]. In this paper, we show that it can be solved using a
bisection search method. This method has the merit that it
is simple and easy to implement. In addition, it is efficient
and it does not require iterative eigenvalue decomposition
as in the semidefinite programming lifting techniques. (iii)
The matrix O is a n x n principal sub-matrix of Z. Us-
ing Theorem 4.3.17 in [13], it always holds that A;(Z) <
A1(0) < XA2(Z) < ... < X1(Z) < X-1(0) < Au(2),
where A(X) denotes the eigenvalues of X in increasing or-
der. Thus, the bound for the o* is tight.

5.2. A Coordinate Descent Method

This subsection presents a simple coordinate descen-
t method [37, 14, 15, 38, 22] for solving Problem (7). Al-
though it can not guarantee to find the global optimal solu-
tion, it has many merits. (i) It is able to incorporate addition-
al bound constraints. (ii) It is numerically robust and does
not require additional eigenvalue solvers. (iii) It is guaran-
teed to converge to a coordinate-wise minimum point for
our specific problem (see Proposition 1 below).

To illustrate the merits of the coordinate descent method,
we consider incorporating the bound constraint x > L on
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the solution for Problem (1) 2. Our decomposition algorith-
m for finding the working set and strategies for handling the
NP-hard ¢y norm directly follow and what one needs is to
replace (7) and solve the following problem:

1.,T T ~

mingerm L(y) £ m%, st.y>L (10
for some constant L.

The coordinate descent method iteratively picks a coor-
dinate ¢ € {1,2,...,m} and solves the following one di-
mensional subproblem based on its current solution y? with
7=0,1,...00:

B* = argming L(y’ + Be;), s.t. yf +B8>L (1)

where j is the iteration counter for the coordinate descen-
t algorithm. Problem (11) reduces to the one-dimensional
subproblem as in Lemma | with suitable parameters. In
every iteration j, once the optimal solution 8* in (11) is
found, the intermediate solution for (10) is updated via
y) ™'« yJ + B*. There are several ways and orders to
decide which coordinates to update in the literature. (i)
Cyclic order strategy runs all coordinates in cyclic order,
ie,1 - 2 — ... - m — 1. (ii) Random sampling s-
trategy randomly selects one coordinate to update (sample
with replacement). (iii) Gauss-Southwell strategy picks co-
ordinate i such that i = argmaxj<;<,, |VL(x7)|;, with
VL(x) € R™ being the projected gradient of £ at x [23]:
TL(x); = { “V]iﬁgz)‘?gﬁ(x)i)y iz f and V £(x) being the gra-
dient of V£ at x. Note that VL(X) = 0 implies X is a
first-order stationary point.

We now present our convergence result of the coordinate
descent method for solving (10), which is an extension of
Theorem 4.1 in [37]. Some proofs can be found in the Ap-
pendix.

Proposition 1. When the cyclic order strategy is used, co-
ordinate descent method is guaranteed to converge to a
coordinate-wise minimum of Problem (10) that Vi, y; =
argmin_.; L(y; + ae;).

Remarks. (i) Convergence of the coordinate descen-
t method requires a unique solution in each minimization
step; otherwise, it may cycle indefinitely. A simple but
intriguing example is given in [30]. One good feature of
the non-convex problem in (10) is that its associated one-
dimensional subproblem in (11) only contains one unique
optimal solution (see part (ii) in Lemma 1). This is dif-
ferent from the work of [38] where their one-dimensional
subproblem may have multiple optimal solutions and cause
divergence. (ii) Coordinate descent method is guaran-
teed to produce a coordinate-wise stationary point which
is stronger than the full gradient projection method. Note

2This is useful in sparse non-negative PCA [2].

that any coordinate-wise stationary point x* that Vi, x; =
argmin - ; L£(x} 4 oe;) also satisfies the first-order opti-
mal condition with V£(x*) = 0. However, the reverse is
not true. This implies that the coordinate descent method
can exploit possible higher order derivatives to escape sad-
dle points for the non-convex problem.

6. Convergence Analysis of Algorithm 1

This section presents the convergence analysis of Algo-
rithm 1. We assume that { f(x")}$2, is generated by Algo-
rithm 1 and the solution is bounded with 0 < ||x*|| < oo for
all ¢ throughout this section. We first present the following
lemma.

Lemma 2. (Sufficient Decrease Condition) It holds that:
_ gt —xt |2
P = f(xt) < Gt

Remarks. The proximal term in the numerator in (3) is
necessary for our non-convex problem since it guarantees
sufficient decrease condition which is important for conver-
gence.

Now we present our main convergence result.

Theorem 2. Convergence Properties of Algorithm 1. As-
sume that the subproblem in (3) is solved globally, and there
exists a constant o such that xX'Cx' > o > 0 for all t. We
have the following results.

(i) When the random strategy is used to find the working
set, we have lim,_, . E[||x!™1 — x||] = 0 and Algorithm 1
converges to the block-k stationary point in expectation.

(i) When the swapping strategy is used to find the work-
ing set with k > 2, we have lim;_, [|[x'™! — x| = 0
and Algorithm 1 converges to the block-2 stationary point
deterministically.

Remarks. (i) Thanks to the fact that the denominator is pos-
itive and the objective function is quadratic fractional, our
algorithm is still guaranteed to convergence even in the p-
resence of non-convexity. (ii) We propose using a swapping
strategy to find the working set which enumerates all pos-
sible swaps for all pairs of coordinates to find the greatest
descent. One good feature of this strategy is that it achieves
optimality guarantee which is no worse than Beck and Vais-
bourd’s coordinate-wise optimality condition [5].

7. Experiments

This section demonstrates the efficacy of the proposed
decomposition algorithm by considering three importan-
t applications (i.e., sparse PCA, sparse FDA, and sparse C-
CA) on synthetic and real-world data sets.

o Data Sets. (i) We consider four real-world data sets:

LI

ala’, ‘wla’, ‘w2a’, and ‘madelon’. We randomly select a

3
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Figure 1 Convergence behavior of different methods for sparse PCA (left column), sparse FDA (middle column), and sparse CCA (right column).

subset of examples from the original data sets *. The size
of the data sets used in our experiments are 2000 x 119,
2000 x 300, 2000 x 300, 2000 x 112, respectively. (ii)
We also use a similar method as in [5] to generate synthet-
ic Gaussian random data sets. Specifically, we produce the
feature matrix X € R™*? and the label vector y € R™ as
follows: X = randn(m, d), y = sign(randn(m, 1)), where
randn(m, d) is a function that returns a standard Gaussian
random matrix of size m X d and sign is a signum func-
tion. We fix m = 300 and consider different values for
d = {100, 500,1500,2000}. We denote the data sets as
‘randn-d’ and place the results in the Appendix.

Based on X and y, we generate the matrices A and C in
Problem (1) for different applications (see Section 2). Note
that the resulting size of the sparse generalized eigenvalue
problem for sparse PCA, sparse FDA, and sparse CCA are
d, d, and m, respectively. We vary the sparsity parame-
ter s € {4,8,12,...,40} and report the objective values for
Problem (1).

o Compared Methods. We compare the following
methods. (i) Truncated Power Method (TPM) [41] * it-
eratively and greedily decreases the objective while main-
taining the desired sparsity for the solutions by hard thresh-
olding truncation. (ii) Coordinate-Wise Algorithm (CWA)
[3, 5] 7 iteratively performs an optimization step with re-
spect to two coordinates, where the coordinates that need to
be altered are chosen to be the ones that produce the max-
imal decrease among all possible alternatives. (iii) Trun-
cated Rayleigh Flow (TRF) [35] iteratively updates the so-
lution using the gradient of the generalized Rayleigh quo-
tient and performs a truncation operation to achieve spar-
sity. (iv) Quadratic Majorization Method (QMM) [32] ©
approximates the {y-norm by a continuous surrogate func-
tion and iteratively majorizes the surrogate function by a

3hitps 2/
4code: <
Scode: si

quadratic separable function, which at each iteration re-
duces to a regular generalized eigenvalue problem. Using
different smooth non-convex approximation functions, they
develop different versions of QMM (QMM-exp, QMM-log,
QMM-¢,,, QMM-/y). Since their methods only solve a reg-
ularized problem and fail to control the sparsity of the so-
lution, we use a simple bisection search to find the best
regulation parameter and report the lowest objective val-
ue after hard thresholding. (v) The proposed decompo-
sition method (denoted as DEC) is included for compar-
isons. We use DEC-B(Ri-Sj) and DEC-C(Ri-Sj) to de-
note our method based on a Bisection search method and
a Coordinate descent method, respectively, along with se-
lecting 4 coordinate using the Random strategy and j coor-
dinates using the Swapping strategy. In each iteration, we
compute 7, = (f(x!) — f(x'1))/f(x'). We let Algorith-
m 1 run up to 7 iterations and stop it at iteration ¢ < T if
mean( (7 _min(¢,M)+15 Tt—min(t,M)+2, - Tt]) < €. The de-
fault parameter (6, €, M, T) = (1072, 10~®, 50, 1000)
is used. All codes are implemented in MATLAB on an Intel
3.20GHz CPU with 8 GB RAM 7. Only DEC-C is develope-
din C and wrapped into our MATLAB code, since it uses an
elementwise loop which is inefficient in native MATLAB.

We remark that both (a) and (b) are only designed for
sparse PCA with C = I. We do not compare against the DC
programming algorithms [34, 36] since they fail to control
the sparsity of the solution and result in worse accuracy than
QMM (see [32]).

e Convergence Behavior. We show the convergence
behavior for different methods in Figure 1. We do not in-
clude the results of QMM since it fails to control the spar-
sity of the solution. Due to space limitation, we only report
the results of DEC-B in this set of experiments. We have
the following observations. (i) The methods {TPM, CWA,
TRF} converge within one second and they are faster than

7For the purpose of reproducibility, we provide our code in the authors’
research webpage.
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Figure 2: Accuracy of different methods on different data sets for sparse PCA problem with varying the cardinalities.
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Figure 3: Accuracy of different methods on different data sets for sparse FDA problem with varying cardinalities.
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Figure 4: Accuracy of different methods on different data sets for sparse CCA problem with varying cardinalities.
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Figure 5 Comparison of the computing time for different methods on ‘wla’ data set with varying cardinalities.

DEC. However, they get stuck into poor local minima and
result in much worse accuracy than DEC. (ii) The objective
values of DEC stabilize after less than 5 seconds, which
means it has converged, and the decrease of the objective
value is negligible afterwards. This implies that one may
use a looser stopping criterion without sacrificing accura-
cy. (iii) DEC-B(R6S0) and DEC-B(R8S8) converge slow-
ly, and it seems that DEC-B(R6S6) finds a good trade-off
between efficiency and effectiveness. (iv) DEC-B(R10S0)
achieves a lower objective value than DEC-B(R6S0). This
is reasonable since a larger k in the block-k optimality
condition implies a stronger stationary point. (v) {DEC-
B(R6S0), DEC-B(R10S0)} achieve larger objective values
than {DEC-B(R0S6), DEC-B(R0S10)}, which implies that
the swapping strategy plays an indispensable role in DEC.
e Experimental Results. We show the experimental re-
sults for sparse PCA, sparse FDA, and sparse CCA in Figure
2, 3 and 4, respectively. Several conclusions can be drawn.
(i) CWA generally outperforms {TPM, TRF, QMM}. (i-

i) CWA is not stable and generates much worse results on
‘wla’ and ‘w2a’. (iii) The proposed method DEC still out-
performs CWA and achieves the lowest objective values.
(iv) Both DEC-B and DEC-C perform similarly. This is be-
cause coordinate descent methods find a desirable solution
for the quadratic fractional programming problem.

o Computational Efficiency. We demonstrate a com-
parison of the actual computing time for different method-
s on ‘wla’ data set in Figure 5. Two conclusions can be
drawn. (i) DEC takes less than 15 seconds to converge in
all our instances. (ii) DEC is practical and it is much more
efficient than QMM.
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