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Abstract

In this paper, we propose a neural motion planner for

learning to drive autonomously in complex urban scenar-

ios that include traffic-light handling, yielding, and interac-

tions with multiple road-users. Towards this goal, we design

a holistic model that takes as input raw LIDAR data and a

HD map and produces interpretable intermediate represen-

tations in the form of 3D detections and their future trajec-

tories, as well as a cost volume defining the goodness of

each position that the self-driving car can take within the

planning horizon. We then sample a set of diverse physi-

cally possible trajectories and choose the one with the min-

imum learned cost. Importantly, our cost volume is able to

naturally capture multi-modality. We demonstrate the ef-

fectiveness of our approach in real-world driving data cap-

tured in several cities in North America. Our experiments

show that the learned cost volume can generate safer plan-

ning than all the baselines.

1. Introduction

Self-driving vehicles (SDVs) are going to revolutionize

the way we live. Building reliable SDVs at scale is, how-

ever, not a solved problem. As is the case in many appli-

cation domains, the field of autonomous driving has been

transformed in the past few years by the success of deep

learning. Existing approaches that leverage this technology

can be characterized into two main frameworks: end-to-end

driving and traditional engineering stacks.

End-to-end driving approaches [3, 24] take the output of

the sensors (e.g., LiDAR, images) and use it as input to a

neural net that outputs control signals, e.g., steering com-

mand and acceleration. The main benefit of this framework

is its simplicity as only a few lines of code can build a model

and labeled training data can be easily obtained automati-

cally by recording human driving under a SDV platform. In

practice, this approach suffers from the compounding error

∗denotes equal contribution.

due to the nature of self-driving control being a sequential

decision problem, and requires massive amounts of data to

generalize. Furthermore, interpretability is difficult to ob-

tain for analyzing the mistakes of the network. It is also

hard to incorporate sophisticated prior knowledge about the

scene, e.g. that vehicles should not collide.

In contrast, most self-driving car companies, utilize a

traditional engineering stack, where the problem is divided

into subtasks: perception, prediction, motion planning and

control. Perception is in charge of estimating all actors’ po-

sitions and motions, given the current and past evidences.

This involves solving tasks such as 3D object detection and

tracking. Prediction1, on the other hand, tackles the prob-

lem of estimating the future positions of all actors as well

as their intentions (e.g., changing lanes, parking). Finally,

motion planning takes the output from previous stacks and

generates a safe trajectory for the SDV to execute via a con-

trol system. This framework has interpretable intermediate

representations by construction, and prior knowledge can be

easily exploited, for example in the form of high definition

maps (HD maps).

However, solving each of these sub-tasks is not only

hard, but also may lead to a sub-optimal overall system

performance. Most self-driving companies have large en-

gineering teams working on each sub-problem in isolation,

and they train each sub-system with a task specific objec-

tive. As a consequence, an advance in one sub-system does

not easily translate to an overall system performance im-

provement. For instance, 3D detection tries to maximize

AP, where each actor has the same weight. However, in

a driving scenario, high-precision detections of near-range

actors who may influence the SDV motion, e.g. through in-

teractions (cutting in, sudden stopping), is more critical. In

addition, uncertainty estimations are difficult to propagate

and computation is not shared among different sub-systems.

This leads to longer reaction times of the SDV and make the

overall system less reliable.

In this paper we bridge the gap between these two frame-

works. Towards this goal, we propose the first end-to-

1We’ll use prediction and motion forecasting interchangeably.
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Figure 1. Our end-to-end interpretable neural motion planner. Backbone network takes LiDAR data and maps as inputs, and outputs

bounding boxes of other actors for future timesteps (perception), as well as a cost volume for planning with T filters. Next, for each

trajectory proposal from the sampler, its cost is indexed from different filters of the cost volume and summed together. The trajectory with

the minimal cost will be our final planning.

end learnable and interpretable motion planner. Our model

takes as input LiDAR point clouds and a HD map, and pro-

duces interpretable intermediate representations in the form

of 3D detections and their future trajectories. Our final out-

put representation is a space-time cost volume that repre-

sents the “goodness” of each location that the SDV can take

within a planning horizon. Our planner then samples a set

of diverse and feasible trajectories, and selects the one with

the minimum learned cost for execution. Importantly, the

non-parametric cost volume is able to capture the uncer-

tainty and multi-modality in possible SDV trajectories, e.g

changing lane v.s keeping lane.

We demonstrate the effectiveness of our approach in

real world driving data captured in several cities in North

America. Our experiments show that our model provides

good interpretable representations, and shows better perfor-

mance. Specifically for detection and motion forecasting,

our model outperforms recent neural architectures specif-

ically designed on these tasks. For motion planning, our

model generates safer planning compared to the baselines.

2. Related Work

Imitation Learning: Imitation learning (IL) uses expert

demonstrations to directly learn a policy that maps states to

actions. IL for self-driving vehicles was introduced in the

pioneering work of [24] where a direct mapping from the

sensor data to steering angle and acceleration is learned. [3]

follows the similar philosophy. In contrast, with the help of

a high-end driving simulator [9], Codevilla et al. [8] exploit

conditional models with additional high-level commands

such as continue, turn-left, turn-right. Muller et al. [21]

incorporate road segmentation as intermediate representa-

tions, which are then converted into steering commands. In

practice, IL approaches suffer from the compounding error

due to the nature of self-driving control being a sequential

decision problem. Furthermore, these approaches require

massive amount of data, and generalize poorly, e.g., to situ-

ations drifting out of lane.

RL & IRL: Reinforcement learning (RL) is a natural

fit for sequential decision problems as it considers the in-

teractions between the environment and the agent (a self-

driving car in this case). Following the success of Alpha

GO [29], RL has been applied to self-driving in [15, 23].

On the other hand, the inverse reinforcement learning (IRL)

looks at learning the reward function for a given task.

[31, 35] develop IRL algorithms to learn drivable region

for self-driving cars. [25] further infers possible trajec-

tories with a symmetrical cross-entropy loss. However,

all these approaches have only been tested on simulated

datasets or small real-world datasets, and it is unclear if RL

and IRL can scale to more realistic settings. Furthermore,

these methods do not produce interpretable representations,

which are desirable in safety critical applications.

Optimization Based Planners: Motion planning has

long been treated as an independent task that uses the out-

puts of perception and prediction modules to formulate an

optimization problem, usually by manually engineering a

cost function [4, 10, 20, 36]. The preferred trajectory is then

generated by minimizing this cost function. In practice,

to simplify the optimization problem, many approaches as-
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Step1: Clothoid Step2: Velocity Profile
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Figure 2. Trajectory Representation. We first sample a set of pa-

rameters of a Clothoid to determine the shape of a trajectory. We

then sample a velocity profile to determine how fast the SDV go

along this trajectory. Combining these two, we can get a space-

time trajectory.

sume the objective to be quadratic [7], decompose lateral

and longitudinal planning as two tasks [1, 10] or represent

the search space into speed and path [11, 14]. In [1] A* is

used to search the space of possible motion. Similarly, the

Baidu motion planner [10] uses dynamic programming to

find an approximate path and speed profile. In [36], the tra-

jectory planning problem is formulated as continuous op-

timization and used in practice to demonstrate 100km of

autonomous driving. In sampling-based approaches, a set

of trajectories is generated and evaluated against a prede-

fined cost, among which, the one with minimum cost is

chosen [27, 30]. Such approaches are attractive since they

are highly parallelizable [19]. The drawback of all these

hand-engineered approaches is that they are not robust to

real-world driving scenarios, thus requires tremendous en-

gineering efforts to fine-tune it.

Planning under uncertainty: Planning methods for ro-

bust and safe driving in the presence of uncertainty have

also been explored [2, 12, 33]. Uncertainty in the intention

of other actors is the main focus of [2, 33]. In [12], possible

future actions of other vehicles and collision probability are

used to account for the uncertainty in obstacles positions.

Compared to these approaches, our planner naturally han-

dles uncertainty by learning a non-parametric cost function.

Holistic Models: These models provide interpretabil-

ity. Chen et al. [6] propose to learn a mapping from the

sensor data to affordances, such as distance to left bound-

ary/leading vehicle. This is then fed into a controller that

generates steering command and acceleration. Sauer et al.

[26] further propose a variant conditioned on direction com-

mand. On the other hand, Luo et al. [18] propose a joint

model for perception and prediction from raw LiDAR data

and [5] extends it to predict each vehicle’s intention. All

the methods above are trained for tasks that provide inter-

pretable perception/prediction outputs to be used in motion

planning. However, no feed-back is back-propagated from

the motion planning module.

In this work, we take a holistic model approach and take

it one step further by designing a single neural network

that takes raw sensors and dynamic map data as input and

predicts the cost map for planning. Compared with imita-

tion learning approaches [3, 8, 24] that directly regress a

steer angle (from the raw data), our approach provides in-

terpretability and handles multimodality naturally. When

compared with traditional planners which use manually de-

signed cost functions built on top of perception and predic-

tion systems, our model has the advantage of being jointly

trained and thus learns representations that are optimal for

the end-task. Furthermore, our model can handle uncer-

tainty naturally (as this is represented in the cost) and does

not require costly parameter tuning.

3. Deep Structured Interpretable Planner

We propose an end-to-end learnable motion planner that

generates accurate space-time trajectories over a planning

horizon of a few seconds. Importantly, our model takes as

input LiDAR point clouds and a high definition map and

produces interpretable intermediate representations in the

form of 3D detections and their future motion forecasted

over the planning horizon. Our final output representation

is a space-time cost volume that represents the “goodness”

of each possible location that the SDV can take within the

planning horizon. Our planner then scores a series of trajec-

tory proposals using the learned cost volume and chooses

the one with the minimum cost.

We train our model end-to-end with a multi-task objec-

tive. Our planning loss encourages the minimum cost plan

to be similar to the trajectory performed by human demon-

strators. Note that this loss is sparse as a ground-truth tra-

jectory only occupies small portion of the space. As a con-

sequence, learning with this loss alone is slow and difficult.

To mitigate this problem, we introduce an another percep-

tion loss that encourages the intermediate representations

to produce accurate 3D detections and motion forecasting.

This ensures the interpretability of the intermediate repre-

sentations and enables much faster learning.

3.1. Deep Structured Planning

More formally, let s = {s0, s1, · · · , sT−1} be a trajec-

tory spanning over T timesteps into the future, with s
t the

location in bird’s eye view (BEV) at the timestep t. We

formulate the planning problem as a deep structured mini-

mization problem as follows

s
∗ = argmin

s

∑

t

ct(st) (1)

where ct is our learned cost volume indexed at the timestep

t, which is a 2D tensor with the same size as our region of

interest. This minimization is approximated by sampling
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a set of physically valid trajectories s, and picking the one

with minimum cost. Our model employs a convolutional

network backbone to compute this cost volume. It first ex-

tracts features from both LiDAR and maps, and then feeds

this feature map into two branches of convolution layers that

output 3D detection and motion forecasting as well as the

planning cost volume respectively. In this section we de-

scribe our input representation and network in details.

Input representation: Our approach takes raw point

clouds as inputs, captured by a LiDAR mounted on top of

the SDV. We employ T ′ = 10 consecutive sweeps as ob-

servations, in order to infer the motion of all actors. For

those sweeps, we correct for ego-motion and bring the point

clouds from the past 10 frames to the same coordinate sys-

tem centered at SDV’s current location. To make the in-

put data amenable to standard convolutions, we follow [5]

and rasterize the space into a 3D occupancy grid, where

each voxel has a binary value indicating whether it con-

tains a LiDAR point. This results in a 3D tensor of size

HxWx(ZT ′), where Z,H,W represents the height and x-y

spatial dimensions respectively. Note that we have concate-

nated timesteps along the Z dimension, thus avoiding 3D

convolutions which are memory and computation intensive.

Access to a map is also a key for accurate motion plan-

ning, as we need to drive according to traffic rules (e.g., stop

at a red light, follow the lane, change lanes only when al-

lowed). Towards this goal, we exploit HD maps that contain

information about the semantics of the scene such as the

location of lanes, their boundary type (e.g., solid, dashed)

and the location of stop signs. Similar to [5], we rasterize

the map to form an M channels tensor, where each channel

represents a different map element, including road, inter-

sections, lanes, lane boundaries, traffic lights, etc. Our final

input tensor is thus of size HxWx(ZT ′ +M).

Backbone: Our backbone is adapted from the detection

network of [32] and consists of five blocks. Each block has

{2, 2, 3, 6, 5} Conv2D layers with filter number {32, 64,

128. 256, 256}, filter size 3x3 and stride 1. There are Max-

Pool layers after each of the first 3 blocks. A multi-scale

feature map is generated after the first 4 blocks as follows.

We resize the feature maps from each of the first 4 blocks to

1/4 of the input size and concatenate them together similar

to [34], in order to increase the effective receptive field [17].

These multi-scale features are then fed into the 5-th block.

The whole backbone has a downsampling rate of 4.

Perception Header: The perception header has two com-

ponents formed of convolution layers, one for classification

and one for regression. To reduce the variance of regression

targets, we follow SSD [16] and employ multiple prede-

fined anchor boxes aki,j at each feature map location, where

subscript i, j denotes the location on the feature map and k
indexes over the anchors. In total, there are 12 anchors at

each location, with different sizes, aspect ratios and orienta-

tions. The classification branch outputs a score pki,j for each

anchor indicating the probability of a vehicle at each an-

chor’s location. The regression branch also outputs regres-

sion targets for each anchor aki,j at different time-steps. This

includes localization offset ltx, l
t
y , size stw, s

t
h and heading

angle atsin, a
t
cos. The superscript t stands for time frame,

ranging from 0 (present) to T − 1 into the future. Regres-

sion is performed at every timesteps, thus producing motion

forecasting for each vehicle.

Cost Volume Head: The cost volume head consists of

several convolution and deconvolution layers. To produce a

cost volume c at the same resolution as our bird-eye-view

(BEV) input, we apply two deconvolution layers on the

backbone’s output with filter number {128, 64}, filter size

3x3 and stride 2. Each deconvolution layer is also followed

by a convolution layer with filter number {128, 64}, filter

size 3x3 and stride 1. We then apply a final convolution

layer with filter number T , which is our planning horizon.

Each filter generates a cost volume ct for a future timestep

t. This allows us to evaluate the cost of any trajectory s

by simply indexing in the cost volume c. In our experi-

ments, we also clip the cost volume value between -1000

to +1000 after the network. Applying such bounds prevents

the cost value shifting arbitrarily, and makes tuning hyper-

parameters easier. We next describe our output trajectory

parameterization.

3.2. Efficient Inference

Given the input LiDAR sweeps and the HD map, we can

compute the corresponding cost volume c by feedforward

convolutional operations as describe above. The final tra-

jectory can then be computed by minimizing Eq. (1). Note,

however, that this optimization is NP hard2. We thus rely on

sampling to obtain a low cost trajectory. Towards this goal,

we sample a wide variety of trajectories that can be exe-

cuted by the SDV and produce as final output the one with

minimal cost according to our learned cost volume. In this

section we describe how we efficiently sample physically

possible trajectories during inference. Since the cost of a

trajectory is computed by indexing from the cost volume,

our planner is fast enough for real-time inference.

Output Parameterization: A trajectory can be defined

by the combination of the spatial path (a curve in the 2D

plane) and the velocity profile (how fast we go along this

path). Sampling a trajectory as a set of points in (x, y) ∈ ℜ2

space is not a good idea, as a vehicle cannot execute all pos-

sible set of points in the cartesian space. This is due for

example to the physical limits in speed, acceleration and

2We expect the output trajectory of our planner is physically feasible.

This introduces constraints on the solution set. Under these physical con-

straints, the optimization is NP hard.
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turning angle. To consider these real-world constraints, we

impose that the vehicle should follow a dynamical model.

In this paper, we employ the bicycle model [22], which is

widely used for planning in self-driving cars. This model

implies that the curvature κ of the vehicle’s path is approx-

imately proportional to the steering angle φ (angle between

the front wheel and the vehicle): κ = 2tan(φ)/L ≈ 2φ/L,
where L is the distance between the front and rear axles of

the SDV. This is a good approximation as φ is usually small.

We then utilize a Clothoid curve, also known as Euler

spiral or Cornu spiral, to represent the 2D path of the SDV

[28]. We refer the reader to Fig. 2 for an illustration. The

curvature κ of a point on this curve is proportional to its

distance ξ alone the curve from the reference point, i.e.,

κ(ξ) = πξ. Considering the bicycle model, this linear cur-

vature characteristic corresponds to steering the front wheel

angle with constant angular velocity. The canonical form of

a Clothoid can be defined as

s(ξ) = s0 + a

[

C

(

ξ

a

)

T0 + S

(

ξ

a

)

N0

]

(2)

S(ξ) =

∫ ξ

0

sin

(

πu2

2

)

du (3)

C(ξ) =

∫ ξ

0

cos

(

πu2

2

)

du (4)

Here, s(ξ) defines a Clothoid curve on a 2D plane, indexed

by the distance ξ to reference point s0, a is a scaling factor,

T0 and N0 are the tangent and normal vector of this curve

at point s0. S(ξ) and C(ξ) are called the Fresnel integral,

and can be efficiently computed. In order to fully define a

trajectory, we also need a longitudinal velocity ξ̇ (velocity

profile) that specifies the SDV motion along the path s(ξ):
ξ̇(t) = ξ̈t + ξ̇0, where ξ̇0 is the initial velocity of the SDV

and ξ̈ is a constant forward acceleration. Combining this

and (2), we can obtain the trajectory points s in Eq. (1).

Sampling: Since we utilize Clothoid curves, sampling a

path corresponds to sampling the scaling factor a in Eq. (2).

Considering the city driving speed limit of 15m/s, we sam-

ple a uniformly from the range of 6 to 80m. Once a is sam-

pled, the shape of the curve is fixed.3 We then use the ini-

tial SDV’s steering angle (curvature) to find the correspond-

ing position on the curve. Note that Clothoid curves can-

not handle circle and straight line trajectories well, thus we

sample them separately. The probability of using straight-

line, circle and Clothoid curves are 0.5, 0.25, 0.25 respec-

tively. Also, we only use a single Clothoid segment to

specify the path of SDV which we think is enough for

3We also sample a binary random variable indicating it’s a canonical

Clothoid or a vertically flipped mirror. They correspond with turning left

or right respectively.

the short planning horizon. In addition, we sample con-

stant accelerations ξ̈ ranging from −5m/s2 to 5m/s2 which

specifies the SDV’s velocity profile. Combining sampled

curves and velocity profiles, we can project the trajecto-

ries to discrete timesteps and obtain the corresponding way-

points (See Fig 2) for which to evaluate the learned cost.

3.3. End­to­End Learning

Our ultimate goal is to plan a safe trajectory while fol-

lowing the rules of traffic. We want the model to understand

where obstacles are and where they will be in the future in

order to avoid collisions. Therefore, we use a multi-task

training with supervision from detection, motion forecast-

ing as well as human driven trajectories for the ego-car.

Note that we do not have supervision for cost volume. We

thus adopt max-margin loss to push the network to learn to

discriminate between good and bad trajectories. The overall

loss function is then:

L = Lperception + βLplanning. (5)

This multi-task loss not only directs the network to extract

useful features, but also make the network output inter-

pretable results. This is crucial for self-driving as it helps

understand failure cases and improves the system. In the

following, we describe each loss in more details.

Perception Loss: Our perception loss includes classifica-

tion loss, for distinguishing a vehicle from the background,

and regression loss, for generating precise object bounding

boxes. For each predefined anchor box, the network out-

puts a classification score as well as several regression tar-

gets. This classification score pki,j indicates the probability

of existence of a vehicle at this anchor. We employ a cross-

entropy loss for the classification defined as

Lcla =
∑

i,j,k

(

qki,j log p
k
i,j + (1− qki,j) log(1− pki,j)

)

, (6)

where qki,j is the class label for this anchor (i.e., qki,j = 1
for vehicle and 0 for background). The regression outputs

include information of position, shape and heading angle at

each time frame t, namely

lx =
xa − xl

wl
ly =

ya − yl

hl
,

sw = log
wa

wl
sh = log

ha

hl
,

asin = sin(θa − θl) acos = cos(θa − θl),

where superscript a means anchor and l means label. We

use a weighted smooth L1 loss over all these outputs. The

overall perception loss is

Lperception =
∑

(

Lcla + α

T
∑

t=0

Lt
reg

)

. (7)
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Method L2 (m) Collision Rate (%) Lane Violation (%)

1.0s 2.0s 3.0s 0.5s 1.0s 1.5s 2.0s 2.5s 3.0s 1.0s 2.0s 3.0s

Ego-motin 0.281 0.900 2.025 0.00 0.01 0.20 0.54 1.04 1.81 0.51 2.72 6.73

IL 0.231 0.839 1.923 0.00 0.01 0.19 0.55 1.04 1.72 0.44 2.63 5.38

Acc 0.403 1.335 2.797 0.05 0.12 0.27 0.53 1.18 2.39 0.24 0.46 0.64

Manual Cost 0.402 1.432 2.990 0.00 0.02 0.09 0.22 0.79 2.21 0.39 2.73 5.02

Ours(3s) 0.314 1.087 2.353 0.00 0.01 0.04 0.09 0.33 0.78 0.35 0.77 2.99

Table 1. Planning Metrics

Note that the regression loss is summed over all vehicle cor-

related anchors, from the current time frame to our predic-

tion horizon T . Thus it teaches the model to predict the

position of vehicles at every time frame.

To find the training label for each anchor, we associate

it to its neighboring ground-truth bounding box, similar

to [16, 18]. In particular, for each anchor, we find all

the ground-truth boxes with intersection over union (IoU)

higher than 0.4. We associate the highest one among them

to this anchor, and compute the class label and regression

targets accordingly. We also associate any non-assigned

ground-truth boxes with their nearest neighbor. The remain-

ing anchors are treated as background, and are not consid-

ered in the regression loss. Note that one ground-truth box

may associate to multiple anchors, but one anchor can at

most be associated with one ground-truth box. During train-

ing, we also apply hard negative mining to overcome imbal-

ance between positive and negative samples.

Planning Loss: Learning a reasonable cost volume is

challenging as we do not have ground-truth. To overcome

this difficulty, we minimize the max-margin loss where we

use the ground-truth trajectory as a positive example, and

randomly sampled trajectories as negative examples. The

intuition behind is to encourage the ground-truth trajectory

to have the minimal cost, and others to have higher costs.

More specifically, assume we have a ground-truth trajec-

tory {(xt, yt)} for the next T time steps, where (xt, yt) is

the position of our vehicle at the t time step. Define the cost

volume value at this point (xt, yt) as ĉt. Then, we sample

N negative trajectories, the ith among which is {(xt
i, y

t
i)}

and the cost volume value at these points are cti. The sam-

pling procedure for negative trajectories is similar as we de-

scribed in Section. 3.2, except there is 0.8 probability that

the negative sample doesn’t obey SDV’s initial states, e.g.

we randomly sample a velocity to replace SDV’s initial ve-

locity. This will provide easier negative examples for the

model to start with. The overall max-margin loss is defined

as

Lplanning =
∑

{(xt,yt)}

(

max
1≤i≤N

(

T
∑

t=1

[

ĉt − cti + dti + γt
i

]

+

))

(8)

The inner-most summation denotes the discrepancy be-

tween the ground-truth trajectory and one negative trajec-

tory sample, which is a sum of per-timestep loss. []+ rep-

resents a ReLU function. This is designed to be inside the

summation rather than outside, as it can prevent the cost

volume at one time-step from dominating the whole loss. dti
is the distance between negative trajectory and ground-truth

trajectory ||(xt, yt)−(xt
i, y

t
i)||2, which is used to encourage

negative trajectories far from the ground-truth trajectory to

have much higher cost. γt
i is the traffic rule violation cost,

which is a constant if and only if the negative trajectory t vi-

olates traffic rules at time t, e.g. moving before red-lights,

colliding with other vehicles etc. This is used to determined

how ‘bad’ the negative samples are, as a result, it will penal-

ize those rule violated trajectories more severely and thus

avoid dangerous behaviors. After computing the discrep-

ancy between the ground-truth trajectory and each negative

sample, we only optimize the worst case by the max opera-

tion. This encourages the model to learn a cost volume that

discriminates good trajectories from bad ones.

4. Experiments

In this section, we evaluate our approach on a large scale

real-world driving dataset. The dataset was collected over

multiple cities across North America. It consists of 6,500

scenarios with about 1.4 million frames, the training set

consists of 5,000 scenarios, while validation and test have

500 and 1,000 scenarios respectively. Our dataset has anno-

tated 3D bounding boxes of vehicles for every 100ms. For

all experiments, we utilize the same spatial region, which

is centered at the SDV, with 70.4 meters both in front and

back, 40 meters to the left and right, and height from -2 me-

ters to 3.4 meters. This corresponds to a 704x400x27 tensor.

Our input sequence is 10 frames at 10Hz, while the output

is 7 frames at 2Hz, thus resulting in a planning horizon of 3

seconds.

In the following, we first show quantitative analysis on

planning on a wide variety of metrics measuring collision,

similarity to human trajectory and traffic rule violation.

Next we demonstrate the interpretability of our approach,

through quantitative analysis of detection and motion fore-

casting, as well as visualization of the learned cost volume.

Last, we provide an ablation study to show the effects of dif-

ferent loss functions and different temporal history lengths.
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Method L2 along trajectory (m) L2 across trajectory (m) L1 (m) L2 (m)

0s 1s 2s 3s 0s 1s 2s 3s 0s 1s 2s 3s 0s 1s 2s 3s

FaF[18] 0.29 0.49 0.87 1.52 0.16 0.23 0.39 0.58 0.45 0.72 1.31 2.14 0.37 0.60 1.11 1.82

IntentNet[5] 0.23 0.42 0.79 1.27 0.16 0.21 0.32 0.48 0.39 0.61 1.09 1.79 0.32 0.51 0.93 1.52

Ours 0.21 0.37 0.69 1.15 0.12 0.16 0.25 0.37 0.34 0.54 0.94 1.52 0.28 0.45 0.80 1.31

Table 2. Motion Forecasting Metric

ID Loss Input Penalty mAP@IoU Prediction L2 (m) Collision Rate (%) Traffic Violation (%)

Det Plan 5 10 0.5 0.7 1s 2s 3s 1s 2s 3s 1s 2s 3s

1 X X 94.1 81.3 0.48 0.84 1.34 - - - - - -

2 X X - - - - - 0.01 0.23 1.42 0.37 1.06 3.85

3 X X X X 93.6 80.1 0.46 0.83 1.35 0.01 0.15 0.93 0.36 0.86 3.09

4 X X X 94.2 81.1 0.45 0.80 1.30 0.01 0.29 1.40 0.36 1.02 3.26

5 X X X X 94.2 81.1 0.45 0.80 1.31 0.01 0.09 0.78 0.35 0.77 2.99

Table 3. Ablation Study. We compare effects of different supervisions, different input horizons and different training losses. ID denotes

model id which we use for clarity and brevity.

4.1. Planning Results

We evaluate a wide variety of planning metrics. L2 Dis-

tance to Real Trajectory: This evaluates how far away the

planned trajectory is from the real executed trajectory. Note

that the real trajectory is just one of the many possible tra-

jectories that a human could do, and thus this metric is not

perfect. Future Potential Collision Rate: This is used to

see if the planned trajectory will overlap with other vehicles

in the future. For a given timestep t, we compute the per-

centage of occurrence of collisions up to time t, thus lower

number is preferred. Lane Violation: this metric counts the

percentage of planned trajectories crossing a solid yellow

line. Note that lower is better, and here crossing is defined

if the SDV touches the line.

We implement many baselines for comparison includ-

ing: Ego-motion forecasting (Ego-motion): Ego-motion

provides a strong cue of how the SDV would move in the

future. This baselines takes only SDV’s past position as

input and uses a 4-layer MLP to predict the future loca-

tions. Imitation Learning (IL): We follow the imitation

learning framework [3, 8, 24], and utilize a deep network to

extract features from raw LiDAR data and rasterized map.

For fair comparison, we use the same backbone described

(Sec. 3.1) and same input parameterization (Sec. 3.1) than

our approach. In addition, the same MLP from Ego-motion

forecasting baseline is used to extract features from ego-

motion. These two features are then concatenated and fed

into a 3 layer MLP to compute the final prediction. Adap-

tive Cruise Control (ACC): This baseline implements the

simple behavior of following the leading vehicle. The vehi-

cle follows the lane center-line, while adaptively adjusting

its speed to maintain a safe distance from the vehicle ahead.

When there is no lead vehicle, a safe speed limit is followed.

Traffic controls (traffic lights, stop signs) are observed as a

stationary obstacle, similar to a stopped lead vehicle. Plan

w/ Manual Cost (Manual): This baselines uses the same

trajectory parameterization and sampling procedure as our

approach. However it utilizes a manually designed cost us-

ing perception and motion forecasting outputs. In detail, we

rasterize all possible roads the SDV can take going forward

and set it to a low cost of 0; all detected objects’s bound-

ing box defines area of a high cost set to 255; cost of any

other area is set to a default value 100. This baseline is de-

signed to show the effectiveness of our learned cost volume

as it utilize the same sampling procedure as our approach

but just a different cost volume.

As shown in Tab. 1, our approach has lower future colli-

sion rate at all timesteps by a large margin. Note that Ego-

motion and IL baselines give lower L2 numbers as they op-

timize directly for this metric, however they are not good

from planning perspective as they have difficulty reasoning

about other actors and collide frequently with them. Com-

paring to the manual cost baseline and ACC, we achieve

both better regression numbers and better collision rates,

showing the advantage of our learned cost volume over

manual a designed cost. For lane violation, ACC is de-

signed to follow the lane, thus it has about 0 violation by

definition. Comparing to other baselines, we achieve much

smaller violation number, showing our model is able to rea-

son and learn from the map.

4.2. Interpretability

Interpretability is crucial for self-driving as it can help

understand failure cases. We showcase the interpretability

of our approach by showing quantitative results on 3D de-

tection and motion forecasting and visualization our learned

cost-map for all timesteps into the future.

Detection: We compare against several state-of-the-art

real-time detectors, validating that our holistic model under-

stand the environment. Our baselines include a MobileNet

adapted from [13], FaF[18], IntentNet[5] and Pixor[32],

which are specifically designed for LiDAR-based 3D ob-

ject detection. The metric is mAP with different IoU thresh-

olds, and vehicles without LiDAR points are not considered.
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Figure 3. Cost Volume across Time We shown planned trajectory in red and ground-truth in blue. We overlay lower cost region for

different timesteps in the same figure, using different colors (indicated by legend). Detection and corresponding prediction results are in

cyan. (best view in color)

Method Detection mAP @ IoU (pts ≥ 1)

0.5 0.6 0.7 0.8 0.9

MobileNet[13] 86.1 78.3 60.4 27.5 1.1

FaF[18] 89.8 82.5 68.1 35.8 2.5

IntentNet[5] 94.4 89.4 75.4 43.5 3.9

Pixor[32] 93.4 89.4 78.8 52.2 7.6

Ours 94.2 90.8 81.1 53.7 7.1

Table 4. Detection mAP Result

As shown in Tab. 4, our model archives best results on 0.7

IoU threshold, which is the metric of choice for self-driving.

Qualitative results can also be found in Fig. 3.

Motion Forecasting: Tab. 2 shows quantitative motion

forecasting results, including L1 and L2 distance to ground-

truth locations. We also provides the L2 distance from our

predictions to the ground-truth position along and perpen-

dicular to the ground-truth trajectory. These help explain

if the error is due to wrong velocity or direction estima-

tion. We use baselines from [5, 18], which are designed for

motion forecasting with raw LiDAR data. Our model per-

forms better in all metric and all time steps. Note that In-

tentNet uses high-level intentions as additional information

for training. Qualitative results are shown in Fig.3.

Cost Map Visualization: In Fig. 3, we visualize a few

different driving scenarios. Each figure gives a top-down

view of the scene, showing the map, LiDAR point clouds,

detection, motion forecasting and planning results includ-

ing learned cost map. Each figure represents one example,

where we overlay the cost map from different timesteps. We

use different color to represent the lower cost region for dif-

ferent timesteps (indicated by color legend). As we can see,

our model learns to produce a time-dependent cost map.

In particular, the first column demonstrates multi-modality,

second column shows lane-following in heavy traffic and

the last column shows collision avoidance.

4.3. Ablation Study

We conduct ablation studies and report the results in Ta-

ble 3. Our best model is Model 5, comparing to Model 1

which is optimized only for detection and motion forecast-

ing, it achieves similar performance in terms of detection

and motion forecasting. Model 2 trains directly with plan-

ning loss only, without the supervision of object bounding

boxes and performs worse. Model 3 exploits different in-

put length, where longer input sequence gives better results.

Model 4 is trained without the traffic rule penalty γ in Eq. 8.

It performs worse on planning, as it has no prior knowledge

to avoid collision.

5. Conclusion

We have proposed a neural motion planner that learns to

drive safely while following traffic rules. We have designed

a holistic model that takes LiDAR data and an HD map and

produces interpretable intermediate representations in the

form of 3D detections and their future trajectories, as well

as a cost map defining the goodness of each position that

the self-driving car can take within the planning horizon.

Our planer then sample a set of physically possible trajec-

tories and chooses the one with the minimum learned cost.

We have demonstrated the effectiveness of our approach in

very complex real-world scenarios in several cities of North

America and show how we can learn to drive accurately.
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