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Abstract

Image cropping aims to improve the composition as well

as aesthetic quality of an image by removing extraneous

content from it. Existing image cropping databases pro-

vide only one or several human-annotated bounding boxes

as the groundtruth, which cannot reflect the non-uniqueness

and flexibility of image cropping in practice. The employed

evaluation metrics such as intersection-over-union cannot

reliably reflect the real performance of cropping models, ei-

ther. This work revisits the problem of image cropping, and

presents a grid anchor based formulation by considering

the special properties and requirements (e.g., local redun-

dancy, content preservation, aspect ratio) of image crop-

ping. Our formulation reduces the searching space of can-

didate crops from millions to less than one hundred. Con-

sequently, a grid anchor based cropping benchmark is con-

structed, where all crops of each image are annotated and

more reliable evaluation metrics are defined. We also de-

sign an effective and lightweight network module, which si-

multaneously considers the region of interest and region of

discard for more accurate image cropping. Our model can

stably output visually pleasing crops for images of different

scenes and run at a speed of 125 FPS.

1. Introduction

Cropping is an important and widely used operation to

improve the aesthetic quality of captured images. It aim-

s to remove the extraneous contents of an image, change

its aspect ratio and consequently improve its composition

[37]. Since cropping is a high-frequency need in photog-

raphy but a tedious job when a large number of images are

to be cropped, automatic image cropping has been attracting

much interest in both academia and industry in past decades

[4, 8, 20, 39, 13, 12, 1, 3, 5, 34, 2, 22].

Early researches on image cropping mostly focused on

cropping the major subject or important region of an im-

age for small displays [4, 9] or generating image thumbnails

∗Corresponding author. This work is supported by HK RGC General

Research Fund (PolyU 152135/16E).

Figure 1. The property of non-uniqueness of image cropping. Giv-

en a source image, many good crops (labeled with “
√

”) can be ob-

tained under different aspect ratios (e.g., 1:1, 4:3, 16:9). Even un-

der the same aspect ratio, there are still multiple acceptable crops.

Regarding the three crops with 16:9 aspect ratio, by taking the

middle one as the groundtruth, the bottom one (a bad crop, labeled

with “×”) will have obviously larger IoU (intersection-over-union)

than the top one but with worse aesthetic quality. This shows that

IoU is not a reliable metric to evaluate cropping quality.

[33, 27]. Attention scores or saliency values were the prin-

cipal concerns of these methods [30, 32]. With little con-

sideration of the overall image composition, the attention-

based methods may lead to visually unpleasing outputs [39].

Moreover, user study was employed as the major criteria to

subjectively evaluate cropping performance, making it very

difficult to objectively compare different methods.

Recently, several benchmark databases have been re-

leased for image cropping [39, 13, 5]. On these databas-

es, one or several bounding boxes were annotated by ex-

perienced human subjects as “groundtruth” crops for each

image. Two objective metrics, namely intersection-over-

union (IoU) and boundary displacement error (BDE) [14],

were defined to evaluate the performance of image crop-

ping models on these databases. These public benchmarks

enable many researchers to develop and test their cropping

models, significantly facilitating the research on automatic

image cropping [39, 11, 34, 5, 6, 10, 15, 22, 36].

Though many efforts have been made, there exists sever-

al intractable challenges caused by the special properties of

image cropping. As illustrated in Fig. 1, image cropping

is naturally a subjective and flexible task without unique
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Table 1. IoU scores of recent representative works on two bench-

marks in comparison with two simplest baselines. Baseline N sim-

ply calculates the IoU between the groundtruth and source image

without cropping. Baseline C crops the central part whose width

and height are 0.9 time of the source image.

Method
ICDB[39]

FCDB[5]
Set 1 Set 2 Set 3

Yan et al. [39] 0.7487 0.7288 0.7322 –

Chen et al. [5] 0.6683 0.6618 0.6483 0.6020

Chen et al. [6] 0.7640 0.7529 0.7333 0.6802

Wang et al. [34] 0.8130 0.8060 0.8160 –

Li et al. [22] 0.8019 0.7961 0.7902 0.6633

Baseline N 0.8237 0.8299 0.8079 0.6379

Baseline C 0.7843 0.7599 0.7636 0.6647

solution. Good crops can vary significantly under differ-

ent requirements of aspect ratio and/or resolution. Even

under certain aspect ratio or resolution constraint, accept-

able crops can also vary. Such a high degree of freedom

makes the existing cropping databases, which have only one

or several annotations, difficult to learn reliable and robust

cropping models.

The commonly employed IoU or BDE metric is unreli-

able to evaluate the performance of image cropping models

either. Referring to the three crops with 16:9 aspect ratio

in Fig. 1, by taking the middle one as the groundtruth, the

bottom one, which is a bad crop, will have obviously larger

IoU than the top one, which is a good crop. Such a problem

can be more clearly observed from Table 1. By using IoU to

evaluate the performance of recent works [39, 34, 5, 6, 22]

on the benchmarks ICDB [39] and FCDB [5], most of them

have even worse performance than the two simplest base-

lines: no cropping (i.e., take the source image as cropping

output, denoted by Baseline N) or central crop (i.e., crop

the central part whose width and height are 0.9 time of the

source image, denoted by Baseline C).

The special properties of image cropping make it a chal-

lenging task to train an effective and efficient cropping mod-

el. On one hand, since the annotation of image cropping

(which requires good knowledge and experience in photog-

raphy) is very expensive [5], existing cropping databases

[39, 13, 5] provide only one or several annotated crops for

about 1,000 source images. On the other hand, the search-

ing space of image cropping is very huge, with millions of

candidate crops for each image. Clearly, the amount of an-

notated data in current databases is insufficient to train a

robust cropping model.

In this work, we reconsider the problem of image crop-

ping and propose a new approach, namely grid anchor based

image cropping, to address this challenging task in a reliable

and efficient manner. Our contributions are threefold.

1). We propose a grid anchor based formulation for image

cropping by considering the special properties and re-

quirements of this problem. Our formulation reduces

the number of candidate crops from millions to less

than one hundred, providing a very efficient solution

for image cropping.

2). Based on our formulation, we construct a new im-

age cropping database with exhaustive annotations for

each source image. With 106,860 annotated candidate

crops, our database provides a good platform to learn

robust image cropping models. More reliable metrics

are also defined to evaluate the performance of learned

cropping models.

3). We design an efficient and effective module for image

cropping under the convolutional neural network (CN-

N) architecture. The learned cropping model runs at a

speed of 125 FPS and obtains promising performance

under various requirements.

2. Related work

The existing image cropping methods can be divided into

three categories according to their major drives.

Attention-driven methods. Earlier methods are mostly

attention-driven, aiming to identify the major subject or the

most informative region of an image. Most of them [4, 33,

32, 27] resort to a saliency detection algorithm (e.g. [19])

to get an attention map of an image, and search a cropping

window with the highest attention value. Some methods

also employ face detection [42] or gaze interaction [30] to

find the important region of an image.

Aesthetic-driven methods. The aesthetic-driven meth-

ods improve the attention-based methods by emphasizing

the overall aesthetic quality of images. These methods

[42, 29, 7, 23, 39, 41, 13, 40] usually design a set of hand-

crafted features to characterize the image aesthetic proper-

ties or composition rules. Some methods further deign qual-

ity measures [42, 23] to evaluate the quality of candidate

crops, while some resort to training an aesthetic discrimi-

nator such as SVM [29, 7]. The release of two cropping

databases [39, 13] facilitates the training of discriminative

cropping models. However, the handcrafted features are not

strong enough to accurately predict image aesthetics [11].

Data-driven methods. Most recent methods are data-

driven, which train an end-to-end CNN model for image

cropping. However, limited by the insufficient number of

annotated training samples, many methods in this category

[5, 34, 35, 11, 10, 15, 22] adopt a general aesthetic clas-

sifier trained from image aesthetic databases such as AVA

[28] and CUHKPQ [25] to help cropping. However, a gen-

eral aesthetic classifier trained on full images may not be

able to reliably evaluate the crops within one image [6, 36].

An alternative strategy is to use pairwise learning to con-

struct more training data [6, 36] . But annotation of ranking

pairs is also very expensive because of the subjective nature

of image cropping. Recently, Wei et al. [36] constructed a

large scale comparative photo composition (CPC) database
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Figure 2. The local redundancy of image cropping. Small local

changes (e.g., shifting and/or scaling) on the cropping window of

an acceptable crop (the bottom-right one) are very likely to output

acceptable crops too.

using an efficient two-stage annotation protocol, which pro-

vides a good training set for pairwise learning. Unfortu-

nately, pairwise learning cannot provide adequate evalua-

tion metrics for image cropping.

3. Grid anchor based image cropping

As illustrated in Fig. 1, image cropping has a high de-

gree of freedom. There is not a unique optimal crop for a

given image. We consider two practical requirements of a

good image cropping system. Firstly, a reliable cropping

system should be able to return acceptable results for dif-

ferent settings (e.g., aspect ratio and resolution) rather than

one single output. Secondly, the cropping system should be

lightweight and efficient to run on resource limited devices.

With these considerations, we propose a grid anchor based

formulation for practical image cropping, and construct a

new benchmark under this formulation.

3.1. Grid anchor based formulation

Given an image with resolution H × W , a candidate

crop can be defined using its top-left corner (x1, y1) and

bottom-right corner (x2, y2), where 1 ≤ x1 < x2 ≤ H and

1 ≤ y1 < y2 ≤ W . It is easy to calculate that the num-

ber of candidate crops is
H(H−1)W (W−1)

4 , which is a huge

number even for an image of size 100 × 100. Fortunate-

ly, by exploiting the following properties and requirements

of image cropping, the searching space can be significant-

ly reduced, making automatic image cropping a tractable

problem.

Local redundancy: Image cropping is naturally a prob-

lem with local redundancy. As illustrated in Fig. 2, a set of

similar and acceptable crops can be obtained in the neigh-

borhood of a good crop by shifting and/or scaling the crop-

Figure 3. Illustration of the grid anchor based formulation of image

cropping. M and N are the numbers of bins for grid partition,

while m and n define the adopted range of anchors for content

preservation.

ping widow. Intuitively, we can remove the redundant can-

didate crops by defining crops on image grid anchors rather

than dense pixels. The proposed grid anchor based formu-

lation is illustrated in Fig. 3. We construct an image grid

with M × N bins on the original image, and define the

corners (x1, y1) and (x2, y2) of one crop on the grid cen-

ters, which serve as the anchors to generate a representative

crop in the neighborhood. Such a formulation largely re-

duces the number of candidate crops from
H(H−1)W (W−1)

4

to
M(M−1)N(N−1)

4 , which can be several orders smaller.

Content preservation: Generally, a good crop should p-

reserve the major content of the source image [13]. There-

fore, the cropping window should not be too small in order

to avoid discarding too much the image content. To this

end, we constrain the anchor points (x1, y1) and (x2, y2)
of a crop into two regions with m × n bins on the top-left

and bottom-right corners of the source image, respectively,

as illustrated in Fig. 3. This further reduces the number of

crops from
M(M−1)N(N−1)

4 to m2n2.

The smallest possible crop (highlighted in red solid lines

in Fig. 3) generated by the proposed scheme covers about
(M−2m+1)(N−2n+1)

MN grids of the source image, which may

still be too small to preserve enough image content. We thus

further constrain the area of potential crops to be no smaller

than a certain proportion of the whole area of source image:

Scrop ≥ λSImage, (1)

where Scrop and SImage represent the areas of crop and

original image, and λ ∈ [ (M−2m+1)(N−2n+1)
MN , 1).

Aspect ratio: Because of the standard resolution of imag-

ing sensors and displays, most people have been accus-

tomed to the popular aspect ratios such as 16:9, 4:3 and

1:1. Candidate crops which have very different aspect ra-

tios may be inconvenient to display and can make people
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feel uncomfortable. We thus require the aspect ratio of ac-

ceptable candidate crops satisfy the following condition:

α1 ≤
Wcrop

Hcrop
≤ α2, (2)

where Wcrop and Hcrop are the width and height of a crop.

α1 and α2 define the range of aspect ratio and we set them

to 0.5 and 2 to cover most common aspect ratios.

With Eq. 1 and Eq. 2, the final number of candidate

crops in each image is less than m2n2.

3.2. Grid anchor based cropping database

Our proposed grid anchor based formulation reduces the

number of candidate crops from
H(H−1)W (W−1)

4 to less

than m2n2. This enables us to annotate all the candidate

crops for each image. To make the annotation cost as low

as possible, we first made a small scale subjective study to

find the smallest {M,N,m, n} that ensure at least 3 accept-

able crops for each image. We collected 100 natural images

and invited five volunteers to participate in this study. We

set M = N ∈ {16, 14, 12, 10} and m = n ∈ {5, 4, 3} to

reduce possible combinations. λ in Eq.1 was set to 0.5. Af-

ter the tests, we found that M = N = 12 and m = n = 4
can lead to a good balance between cropping quality and

annotation cost. Finally, the number of candidate crops is

successfully reduced to no more than 90 for each image.

Note that the setting of these parameters mainly aims to re-

duce annotation cost for training. In the testing stage, it

is straightforward to use finer image grid to generate more

candidate crops.

With the above settings, we constructed a Grid Anchor

based Image Cropping Database (GAICD). We first crawled

∼50,000 images from the Flickr website. Considering that

many images uploaded to Flickr already have good com-

position, we manually selected 1,000 images whose com-

position can be obviously improved, as well as 236 im-

ages with proper composition to ensure the generality of the

GAICD. The selected images cover a variety of scenes and

lighting conditions. For each image, our annotation toolbox

(please refer to the supplementary file for details) automati-

cally generates all the candidate crops in ordered aspect ra-

tio. There are 106,860 candidate crops of the 1,236 images

in total. The annotators were required to rate the candidates

at five scores (from 1 to 5) which represent “bad,” “poor,”

“fair,” “good,” and “excellent”.

A total of 19 annotators passed our test on photography

composition and participated into the annotation. They are

either experienced photographers from photography com-

munities or students from the art department of two uni-

versities. Each crop was annotated by seven different sub-

jects. The mean opinion score (MOS) was calculated for

each candidate crop as its groundtruth quality score. We

found that for 94.25% candidate crops in our database, the

Figure 4. One example source image and several of its annotated

crops in our GAICD. The MOS is marked under each crop.

standard deviations of their rating scores are smaller than 1,

which confirms the annotation consistency under our grid

anchor based formulation. More statistical analyses of our

GAICD are presented in the supplementary file. Fig. 4

shows one source image and several of its annotated crops

(with MOS scores) in the GAICD.

3.3. Evaluation metrics

The dense annotations of our GAICD enable us to de-

fine more reliable metrics to evaluate cropping performance

than IoU or BDE used in previous databases [39, 13, 5]. We

define two metrics on GAICD. The first one is average S-

pearman’s rank-order correlation coefficient (SRCC). The

SRCC has been widely used to evaluate the rank correlation

between the MOS and model’s predictions in image quality

and aesthetic assessment [21, 26]. Denote by gi the vector

of MOS of all crops for image i, and by pi the predicted

scores of these crops by a model. The SRCC is defined as:

SRCC(gi,pi) = cov(rgi
, rpi

)/(std(rgi
)std(rpi

)), (3)

where rgi
and rpi

record the ranking order of scores in gi

and pi, and cov(·) and std(·) are the operators of covariance

and standard deviation. The average SRCC is defined as:

SRCC =
1

T

∑T

i=1
SRCC(gi,pi), (4)

where T is the number of testing images.

Considering the fact that users may care more about

whether the returned crops are acceptable or not than the

accurate ranking order of all crops, we define a new metric,

which we call “return K of top-N accuracy” (AccK/N ), for

practical cropping applications. Denote by Si(N) the set of

crops whose MOS rank the top-N for image i, and denote

by {ci1, ci2, ..., ciK} the set of K best crops returned by a

cropping model. The AccK/N aims to check how many of

the K returned crops fall into set Si(N):

AccK/N =
1

TK

∑T

i=1

∑K

j=1
True(cij ∈ Si(N)), (5)

where True(∗) = 1 if * is true, otherwise True(∗) = 0.

In our experiments, we set N to either 5 or 10, and evaluate

K = 1, 2, 3, 4 for both N = 5 and N = 10. We further

average AccK/N over K for each N , leading to two average

accuracy metrics:

AccN =
1

4

∑4

K=1
AccK/N . (6)
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Figure 5. The proposed CNN architecture for image cropping model learning.

4. Cropping model learning

Limited by insufficient training data, most previous crop-

ping methods focused on how to leverage additional aes-

thetic databases [34, 6, 10] or how to construct more train-

ing pairs [5, 36], paying limited attention to how to design

a suitable network for image cropping itself. They usually

adopt the standard CNN architecture widely used in objec-

t detection. Our GAICD provides a better platform with

much more annotated samples for model training. By con-

sidering the special properties of image cropping, we de-

sign an effective and lightweight module for cropping mod-

el learning. The overall architecture is shown in Fig. 5,

which consists of one general feature extraction module and

one image cropping module.

Feature extraction: As in many previous works [34, 11,

5, 6, 10, 15, 22, 36], we truncate one pre-trained CNN mod-

el (e.g., VGG16 [31] or ResNet50 [17]) as the feature ex-

traction module. The spatial arrangement of context and

objects in an image plays a key role in image composition.

For example, the “rule of thirds”, which is the most com-

monly used composition rule, suggests to place importan-

t compositional elements at certain locations of an image

[38]. Therefore, the feature extraction module needs to pre-

serve sufficient spatial resolution for evaluating image com-

position in the following cropping module. Truncating at

shallower layers can preserve higher spatial resolution but

the output feature map may not have enough receptive field

to describe large objects in images. We conducted extensive

experiments to decide the most cost-effective layer to trun-

cate two standard CNN models for image cropping. More

details can be found in Sec. 5.2.1.

Modeling both the RoI and RoD: One significant dif-

ference between image cropping and object detection is that

object detection only focuses on the region of interest (RoI),

while cropping also needs to consider the discarded infor-

mation (hereafter we call it region of discard (RoD)). On

one hand, removing distracting information can significant-

ly improve the composition. On the other hand, cropping

out important region can dramatically change or even de-

stroy an image. Taking the second last crop in Fig. 4 as

an example, although it may have acceptable composition

but its visual quality is much lower than the source image

because the beautiful sunset glow is cropped out. The dis-

carded information is unavailable to the cropping model if

only the RoI is considered, while modeling the RoD can

effectively solve this problem.

Referring to Fig. 5, let F denote the whole feature map

output by the feature extraction module, and the feature

maps in RoI and RoD are denoted by FRoI and FRoD, re-

spectively. We first employ the RoIAlign [16] to transform

FRoI into FA
RoI which has fixed spatial resolution s × s.

The FRoD is constructed by removing FRoI from F , name-

ly, setting the values of FRoI to zeros in F . Then the Ro-

DAlign (using the same bilinear interpolation as RoIAlign)

is performed on FRoD, leading to FA
RoD which has the same

spatial resolution as FA
RoI . FA

RoI and FA
RoD are concatenat-

ed along the channel dimension as one aligned feature map

which contains the information in both RoI and RoD. The

combined feature map is fed into two fully connected layers

for final MOS prediction.

Reducing the channel dimension: Another difference

between image cropping and object detection is that the for-

mer does not need to accurately recognize the category of

different objects, which allows us to significantly reduce the

channel dimension of the feature map. In practice, we find

that the channel dimension of the feature map (output by the

VGG16 model) can be reduced from 512 to 8 using 1 × 1
convolution without sacrificing much the performance. The

low channel dimension makes our image cropping module

very efficient and lightweight. More details can be found in

Sec. 5.2.1.

Loss function: Denote by eij = gij − pij , where gij
and pij are the groundtruth MOS and predicted score of the

j-th crop for image i. The Huber loss [18] is employed as

the loss function to learn our cropping model because of its

robustness to outliers:

Lij =











1

2
e
2

ij ,when |eij | ≤ δ,

δ|eij | −
1

2
δ
2
, otherwise,

(7)

where δ is fixed at 1 throughout our experiments.
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Table 2. Image cropping performance by using different feature

extraction modules. The truncating layer (tlayer), stride (str), re-

ceptive field (rf) and parameter size (par (Mbit)) of the feature ex-

traction module are shown for each case.

model tlayer str rf par SRCC Acc5 Acc10

vgg16

c4 1 8 60 11.1 0.695 40.1 58.3

c4 3 8 92 29.1 0.715 42.5 61.8

c5 1 16 132 38.1 0.735 46.6 65.5

c5 3 16 192 56.1 0.737 47.0 65.6

pool5 32 212 56.1 0.702 43.6 61.9

resnet50

c3 2 8 67 3.4 0.620 33.1 50.8

c3 4 8 99 5.6 0.647 35.1 52.9

c4 3 16 195 19.9 0.709 41.8 60.8

c4 6 16 291 32.7 0.712 42.1 61.2

c5 1 32 355 55.8 0.692 40.6 58.3

Table 3. Ablation experiments on the RoI and RoD.

module SRCC Acc5 Acc10
RoD 0.597 29.8 43.4

RoI 0.706 44.8 62.9

RoI+RoD 0.735 46.6 65.5

5. Experiments

5.1. Implementation details

We randomly selected 200 images from our GAICD as

the testing set and used the remaining 1,036 images (con-

taining 89,519 annotated crops in total) for training and val-

idation. In the training stage, our model takes one image

and 64 randomly selected crops of it as a batch to input. In

the testing stage, the trained model evaluates all the gener-

ated crops of one image and outputs a predicted MOS for

each crop. To improve the training and testing efficiency,

the short side of input images is resized to 256. The stan-

dard ADAM optimizer with the default parameters was em-

ployed to train our model for 40 epoches. Learning rate was

fixed at 1e−4 throughout our experiments. We randomly ad-

justed the contrast and saturation of the source images for

data augmentation in the training stage. The MOS were nor-

malized by removing the mean and dividing by the standard

deviation across the training set.

5.2. Ablation study of our cropping model

5.2.1 Feature extraction module

We first conduct a set of experiments to determine the ap-

propriate feature extraction module on two pre-trained mod-

els (VGG16 [31] and ResNet50 [17]). For each model, we

truncated at five different layers, which cover various strides

and receptive fields, and evaluated their effects on cropping

performance. The image cropping module (including both

the RoI and RoD) was fixed for all cases. The truncating

layer, stride, receptive field, parameter size and cropping

performance for each module are reported in Table 2. To

save space, we do not report each single accuracy index in

the ablation study.

Table 4. Image cropping performance by using different spatial

resolution (s × s) and channel dimension (cdim). The number

of filters (nfilter) is fixed as 512 in the FC layers. The VGG16

model (truncated at conv5 1) is employed as the feature extraction

module for all cases. The parameter size (par (Mbit)) of the image

cropping module (including two FC layers with s×s×(2∗cdim)×
512 and 1× 1× 512× 512 kernels) is reported for each case.

s× s cdim nfilter par SRCC Acc5 Acc10
3×3 8 512 1.28 0.689 42.4 58.9

5×5 8 512 1.78 0.711 44.6 61.5

7×7 8 512 2.53 0.725 45.4 63.1

9×9 8 512 3.53 0.735 46.6 65.5

11×11 8 512 4.78 0.736 46.8 65.6

9×9 32 512 11.13 0.733 46.4 65.3

9×9 16 512 6.06 0.736 46.8 65.8

9×9 8 512 3.53 0.735 46.6 65.5

9×9 4 512 2.27 0.731 45.9 65.1

9×9 2 512 1.63 0.719 45.1 64.1

9×9 1 512 1.32 0.706 43.8 62.6

We can make three observations from Table 2. First,

for both the VGG16 and ResNet50 models, a too small re-

ceptive field in the feature extraction module will lead to

unsatisfied performance. Increasing the receptive field can

significantly improve the cropping accuracy at the cost of

deeper architecture and more parameters. The performance

plateaus when the receptive field is increased to more than

half of the image size. It is worth noting that the above

observations on stride and receptive field are based on cer-

tain input image size (short side equals to 256 in our ex-

periments), which may provide good reference for other in-

put size. Second, a too large stride (e.g., 32) deteriorates

the performance, either. This is because downsampling too

much the feature map will lose important spatial informa-

tion for image cropping. Specifically, for the input image

of resolution 256 × 256, downsampling with stride 32 will

result in feature maps of size 8 × 8, and consequently the

feature map of a candidate crop may only have a spatial res-

olution of 4 × 4, which is insufficient to generate accurate

crops. Finally, the VGG16 models generally outperforms

the ResNet50 models. This may be because the ResNet50

models can be overfitted on our database. We thus choose

the VGG16 model (truncated at conv5 1 layer) as the fea-

ture extraction module in the following experiments.

5.2.2 Image cropping module

We then evaluate the proposed image cropping module, in-

cluding the effects of parameter size, RoI and RoD.

Parameter size: There are two key parameters in the

image cropping module: spatial resolution (s × s) of the

aligned feature map and channel dimension (cdim) after

dimension reduction. Table 4 reports the cropping perfor-

mance of using different s × s and cdim. The number of

filters was fixed at 512 for the FC layers. We first found

that a smaller s (e.g. 3 or 5) would result in obviously
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Figure 6. Qualitative comparison of returned top-1 crop by differ-

ent methods.

worse performance. This again proves the importance of

sufficient spatial information for image cropping. s = 9
seems to be an appropriate choice since further increasing

the value does not bring obvious improvements. The chan-

nel dimension of feature maps can be significantly reduced

for the problem of image cropping. As can be seen from

Table 4, the performance is still reasonable even if we re-

duce the channel dimension to 1 (note that VGG16 output

512 channels of feature maps). The low channel dimension

makes the proposed image cropping module efficient and

lightweight. In the following experiments, we chose 8 as

the reduced channel dimension which has a good trade-off

between cost and efficacy. Under this setting, the whole im-

age cropping module has only 3.53 Mbits parameters.

RoI and RoD: We make an ablation study on the role

of RoI and RoD. The results of using only RoI, only RoD

and both of them are reported in Table 3. As can be seen,

modeling only the RoD results in very poor accuracy, mod-

eling only the RoI performs much better, while modeling

simultaneously the RoI and RoD achieves the best cropping

accuracy in all cases. This corroborates our analysis that

image cropping needs to consider both the RoI and RoD.

5.3. Comparison to other methods

As discussed in the introduction section, the limitations

of existing image cropping databases and evaluation metrics

make the learning and evaluation of reliable cropping mod-

els difficult. Nonetheless, we still evaluated our model on

the previous databases [39, 5], and the results can be found

in the supplementary file. Here we report the experimental

results on the proposed GAICD.

5.3.1 Comparison methods

Though a number of image cropping methods have been de-

veloped [34, 11, 5, 6, 10, 15, 22, 36], many of them do not

release the source code or executable program. We thus

compare our method, namely Grid Anchor based Image

Cropping (GAIC), with the following baseline and recently

developed state-of-the-art methods whose source codes are

available.

Baseline L: The baseline L does not need any training.

It simply outputs the largest crop among all eligible candi-

dates. The result is similar to the “baseline N” mentioned

in Table 1, i.e., the source image without cropping.

VFN [6]: The View Finding Network (VFN) is trained in

a pair-wise ranking manner using professional photograph-

s crawled from the Flickr. High-quality photos were first

manually selected, and a set of crops were then generated

from each image. The ranking pairs were constructed by al-

ways assuming that the source image has better quality than

the generated crops.

VEN and VPN [36]: Compared with VFN, the View

Evaluation Network (VEN) employs more reliable ranking

pairs to train the model. Specifically, the authors annotated

more than 1 million ranking pairs using a two-stage anno-

tation strategy. A more efficient View Proposal Network

(VPN) was proposed in the same work, and it was trained

using the predictions of VEN. The VPN is based on the de-

tection model SSD [24], and it outputs a prediction vector

for 895 predefined boxes.

A2-RL [22]: The A2RL is trained in an iterative opti-

mization manner. The model adjusts the cropping window

and calculates a reward (based on predicted aesthetic score)

for each step. The iteration stops when the accumulated re-

ward satisfies some termination criteria.

5.3.2 Qualitative comparison

To demonstrate the advantages of our cropping method over

previous ones, we first conduct qualitative comparison of

different methods on four typical scenes: single object,

multi-objects, building and landscape. Note that these im-

ages are out of any existing cropping databases. In the first

set of comparison, we compare all methods under the set-

ting of returning only one best crop. Each model uses its de-

fault candidate crops generated by its source code except for

VFN, which does not provide such code and uses the same

candidates as our method. The results are shown in Fig. 6.

We can make several interesting observations. Both VFN

and A2-RL fail to robustly remove distracting elements in

images. VFN cuts some important content, while A2-RL

simply returns the source image in many cases. VEN and

our GAIC model can stably output visually pleasing crops.

The major differences lie in that VEN prefers more close-

up crops while our GAIC tends to preserve as much useful

information as possible.

A flexible cropping system should be able to output ac-

ceptable results under different requirements in practice,

e.g., different aspect ratios. In Fig. 7, we show the cropping
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Figure 7. Qualitative comparison of returning crops with different aspect ratios by different methods.

Table 5. Quantitative comparison between different methods on the GAICD. “–” means that result is not available.

Method SRCC Acc1/5 Acc2/5 Acc3/5 Acc4/5 Acc5 Acc1/10 Acc2/10 Acc3/10 Acc4/10 Acc10 FPS

Baseline L – 24.5 – – – – 41.0 – – – – –

A2-RL [22] – 23.0 – – – – 38.5 – – – – 4

VPN[36] – 40.0 – – – – 49.5 – – – – 75

VFN[6] 0.450 27.0 30.0 26.0 17.5 25.1 39.0 40.5 39.0 31.5 37.5 0.5

VEN[36] 0.621 40.5 37.5 38.5 36.5 38.1 54.0 51.5 50.5 47.0 50.8 0.2

GAIC (ours) 0.735 53.5 47.0 44.5 41.5 46.6 71.5 66.0 66.5 58.0 65.5 125

results by the competing methods under three most com-

monly used aspect ratios: 16:9, 4:3 and 1:1. The A2-RL is

not included because it does not support this test. Again,

our model outputs the most visually pleasing crop in most

cases. More results can be found in supplementary file.

5.3.3 Quantitative comparison

We then perform quantitative comparisons by using the

metrics defined in Section 3.3. Among the competitors,

VFN, VEN and our GAIC support predicting scores for al-

l the candidate crops provided by our database, thus they

can be quantitatively evaluated by all the defined evalua-

tion metrics. VPN uses its own pre-defined cropping boxes

which are different from our database, and Baseline L and

A2-RL output only one single crop. Therefore, we can only

calculate Acc1/5 and Acc1/10 for them. We approximate the

output boxes by VPN and A2-RL to the nearest anchor box

in our database when calculating the quantitative indexes.

The results of all competing methods are shown in Ta-

ble 5. We can see that both A2-RL and VFN only obtain

comparable performance to Baseline L. This is mainly be-

cause A2-RL is supervised by a general aesthetic classifier

in training, and the ranking pairs used in VFN are not very

reliable. By using more reliable ranking pairs, VEN obtains

much better performance than VFN. VPN performs slight-

ly worse than VEN as expected because it is supervised by

the predictions of VEN. Our method outperforms VEN by

a large margin, which owes to the richer cropping informa-

tion leveraged by our annotation approach compared to the

pair-wise ranking annotations used by VEN, as well as the

more effective cropping module training of our model.

5.3.4 Running speed

A practical image cropping model should also have fast

speed for real-time implementation. In the last column of

Table 5, we compare the running speed in terms of frame-

per-second (FPS) for all competing methods. All models

are run on the same PC with i7-6800K CPU, 64G RAM and

one GTX 1080Ti GPU. As can be seen, our GAIC model

runs at 125 FPS, which is much faster than all the competi-

tors. It is worth mentioning that both GAIC and VPN are

based on VGG16 architecture, but GAIC has much less pa-

rameters than VPN (40 Mbits vs. 290 Mbits). The other

methods are much slower because A2-RL needs to iterate

the cropping window while VFN and VEN need to individ-

ually process each crop.

6. Conclusion

We analyzed the limitations of existing formulation and

databases on image cropping. Consequently, we proposed

a more reliable and efficient formulation for practical im-

age cropping, namely grid anchor based image cropping

(GAIC). A new benchmark was constructed, which contain-

s 1,236 source images and 106,860 annotated crops, as well

as two types of reliable evaluation metrics. We further pro-

posed a lightweight and effective cropping module under

the CNN architecture. Our GAIC can robustly output visu-

ally pleasing crops under different aspect ratios and it runs

at a speed of 125FPS, much faster than other methods.
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