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Abstract

Intelligent agent naturally learns from motion. Various

self-supervised algorithms have leveraged motion cues to

learn effective visual representations. The hurdle here is

that motion is both ambiguous and complex, rendering pre-

vious works either suffer from degraded learning efficacy,

or resort to strong assumptions on object motions. In this

work, we design a new learning-from-motion paradigm to

bridge these gaps. Instead of explicitly modeling the mo-

tion probabilities, we design the pretext task as a condi-

tional motion propagation problem. Given an input image

and several sparse flow guidance vectors on it, our frame-

work seeks to recover the full-image motion. Compared

to other alternatives, our framework has several appealing

properties: (1) Using sparse flow guidance during train-

ing resolves the inherent motion ambiguity, and thus eas-

ing feature learning. (2) Solving the pretext task of con-

ditional motion propagation encourages the emergence of

kinematically-sound representations that poss greater ex-

pressive power. Extensive experiments demonstrate that

our framework learns structural and coherent features;

and achieves state-of-the-art self-supervision performance

on several downstream tasks including semantic segmen-

tation, instance segmentation, and human parsing. Fur-

thermore, our framework is successfully extended to sev-

eral useful applications such as semi-automatic pixel-level

annotation. Project page: http://mmlab.ie.cuhk.

edu.hk/projects/CMP/.

1. Introduction

Humans have a remarkable ability of gaining useful

knowledge without direct supervision. The visual world

around us is highly structural, thus containing abundant nat-

ural supervisions to learn from. In daily navigation, we
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Figure 1. An illustration of our conditional motion propagation

task. In training, the goal is to predict optical flow from a static

image conditioned on sparse motion guidance. The guidance con-

sists of sparse velocities sampled from the target optical flow with

a “watershed” strategy (see Section 3.2). In testing, the guidance

can be arbitrary, and the model is able to predict kinematically-

sound results. For example, as shown in (b), given a guidance on

left foot, the model predicts that the shin is rotating. The optical

flows are visualized with Middlebury color wheel, and should be

viewed in color.

constantly perform the task of visual prediction by hallu-

cinating what’s behind the corner. The recently introduced

self-supervised learning aims to empower machines with a

similar capacity, learning without explicit annotations. By

carefully designing pretext tasks comprising natural super-

visions, self-supervised learning learns effective represen-

tations that can be used for several downstream scenarios.

In comparison to static pretext tasks such as coloriza-

tion [34, 15] and inpainting [29], motion provides richer

and more structural information for us to exploit. The mo-

tion of a moving object generally indicates its kinematic
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properties, which further reveals its inner structure. Pre-

vious works have leveraged the motion cues from two di-

rections: The first direction [31, 30] is to learn image rep-

resentations by predicting motion from static images. For

example, Walker et al. [31, 30] proposed to predict dense

optical flow from a static image and use the learned fea-

tures for action recognition. However, since motion is in-

herently ambiguous, direct modeling of future motion cre-

ates large learning burden and sometimes results in unstable

training. The second direction [28, 20] is to exploit the re-

lationships between motion and objects to derive a motion-

based constraining loss. For example, Mahendran et al. [20]

assumed that pixels with similar features should have simi-

lar motions, and designed a cross pixel flow similarity loss

to optimize the representations. Though these methods have

shown promising results, they made too strong assumptions

on objects, i.e., all pixels on the same object should have

similar motion. However, most of the objects are intrinsi-

cally with high degrees of freedom. For example, a person

is an articulated object and a curtain is deformable. We can-

not claim that they still follow such simple assumption.

The ambiguity and complexity of motion pose great

challenges on self-supervised algorithms. In this work, to

overcome these challenges and make better use of motion

cues, we propose a new paradigm to leverage motion for

representation learning. The key idea is to define the pretext

task as a Conditional Motion Propagation (CMP) problem.

The framework is composed of an image encoder, a sparse

motion encoder and a dense motion decoder. As shown in

Figure 1, our task is to predict optical flow from a single

image conditioned on sparse motion guidance.

Our approach has several merits. Firstly, using sparse

motion as guidance during training avoids the motion am-

biguity problem, thus easing the pressure in representation

learning. Secondly, in order to recover dense optical flow

from the given sparse motions, the image encoder must en-

code kinematically-sound properties so that the decoder is

able to propagate motions from the guidance according to

the properties. Hence, in this way, the image encoder can

automatically learn complex kinematic properties from mo-

tions, instead of predefining a specific relationship between

motion and objects. As shown in Figure 1 (b), in testing

time, given an arbitrary guidance arrow, the CMP model

produces kinematically reasonable results. Leveraging such

characteristics, CMP can also be applied to guided video

generation and semi-automatic pixel-level annotation 4.3.

Thanks to the kinematically-sound representations

learned by CMP, our method can benefit several down-

stream tasks, especially for segmentation tasks. Our pro-

posed CMP achieves state-of-the-art performance on sev-

eral benchmarks under the condition of unsupervised pre-

training, including PASCAL VOC 2012 semantic segmen-

tation, COCO instance segmentation, and LIP human pars-

ing. We summarize our contributions as follows: First, we

propose a new paradigm to better leverage motion in rep-

resentation learning and achieve promising performance on

various benchmarks. Second, our CMP model is capable

of capturing kinematic properties of various objects with-

out any manual annotations. Third, the CMP model can be

applied to guided video generation and semi-automatic an-

notation.

2. Related Work

Self-supervised learning can be divided into two cate-

gories, respectively exploiting context and videos.

Learning from Context. Context-based self-supervised

learning methods typically distort or decompose the images

and then learn to recover the missing information. For in-

stance, Doersch et al. [6] design a task to predict relative

locations of patch pairs. Pathak et al. [29] learn representa-

tions by image in-painting. Noroozi et al. [24] define jigsaw

puzzles of image patches and train a CNN to solve them.

Zhang et al. [34] and Larsson et al. [15] learn features via

colorizing gray images. Gidaris et al. [8] rotate images and

then use CNN to predict the rotations.

Learning from Temporal Consistency. For video-based

representation learning, supervisions come from tempo-

ral information and thus images are usually undistorted.

Some of them rely on temporal consistency of contexts.

Mobahi et al. [22] make a temporal coherence assump-

tion that successive frames tend to contain similar con-

tents. Jayaraman et al. [12] train a CNN with a regularizer

that feature changes over time should be smooth. Wang et

al. [32] find corresponding pairs by visual tracking. Other

works [18, 16, 21, 33] learn representations by synthesizing

frames or predicting correct temporal order.

Learning from Motion. Other video-based methods focus

on motions to discover object-level information. Pathak et

al. [28] use foreground segment masks extracted from

videos as supervision. Mahendran et al. [20] assume that

similar features should have similar motions, and design a

cross pixel flow similarity loss to optimize the represen-

tation. These works rely on a strong assumption, i.e., all

pixels on the same object should have similar motion. As

mentioned before, most objects are intrinsically with high

degrees of freedom. Even the same object may have diverse

motion patterns under different circumstances. For exam-

ple, pixels’ motions on a bar are similar if it is shifting, but

vary if it is rotating.

An alternative way to leverage motion for self-

supervised learning is through performing optical flow pre-

diction from static images. Walker et al. [31] propose to

predict dense optical flow from a static image. And the

follow-up work [30] uses a Variational Auto Encoder to

model the motion uncertainty. However, due to the am-

biguity of motion, it is a daunting task to predict motion
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Figure 2. Our conditional motion propagation framework mainly contains three modules: sparse motion encoder, image encoder and dense

motion decoder. Sparse motions are sampled from target optical flow with a “watershed” strategy illustrated in Section 3.2. The target

optical flow is extracted using off-the-shelf method.

without any hints, especially when coupled with camera

ego-motion. Recall that our target is to predict motion

from static images conditioned on sparse motion guidance.

Hence motion forecasting is a degenerate case of our work

when the amount of guidance points decreases to zero. Us-

ing sparse motion as guidance during training avoids motion

ambiguity problem, thus easing the difficulty in representa-

tion learning.

3. Conditional Motion Propagation

Our goal is to learn image representation by designing

the pretext task as a conditional motion propagation prob-

lem. Specifically, our training framework seeks to recover

the full-image motion from static images conditioned on

sparse motion guidance.

3.1. Framework

As shown in Figure 2, the framework contains three

modules: image encoder, sparse motion encoder, and dense

motion decoder.

Image Encoder. The image encoder is a standard back-

bone Convolutional Neural Network (CNN). After the CMP

training completed, it serves as a pre-train model for the

subsequent tasks. CMP does not restrict the backbone archi-

tecture, though in our experiments the backbone is AlexNet

or ResNet-50, depending on different target tasks. We add

an additional convolution layer at the top of the image en-

coder to encode the feature to 256 channels.

Sparse Motion Encoder. It is a shallow CNN aiming at en-

coding the sparse motion into compact features. It contains

two stacked Conv-BN-ReLU-Pooling blocks and encodes

sparse motion into 16 channels. The spatial stride depends

on the stride of the image encoder. The inputs to the sparse

motion encoder include: 1) The two-channels sparse optical

flow as guidance sampled from the target optical flow using

a “watershed” strategy discussed in Section 3.2. The flow

values of positions that are not sampled are set to zero. 2)

A binary mask indicating the positions of selected guidance

points. It serves to distinguish the sampled positions with

zero motion and those unsampled positions. We concate-

nate the sparse motion and the mask as a 3-channel input to

the sparse motion encoder. The motion and image features

are concatenated and fed into the dense motion decoder.

Dense Motion Decoder. The decoder is designed to prop-

agate motion to the full image according to the encoded

kinematic properties. The decoder contains several prop-

agation nets and a fusion net. The propagation nets are

CNNs with different spatial strides. Those with larger spa-

tial strides have larger receptive fields, hence they result in

longer distances of propagation. And those with smaller

spatial strides focus on shorter distance, thus producing

fine-grained results. Each propagation net is composed of

a max pooling layer with respective stride, and two stacked

Conv-BN-ReLU blocks. We design the propagation nets to

be rather shallow, so as to force the image encoder to learn

more meaningful information. Finally, the output of prop-

agation nets are up-sampled to the same spatial resolution

and concatenated into the fusion net, a single convolution

layer, to produce predictions.

Loss Function. Optical flow prediction is typically re-

garded as a regression problem, as in [7], since regres-

sion produces averagely accurate velocity values. However,

regression usually cannot produce discriminative gradients,

and the results tend to be smoothed. This issue could pre-

vent us from learning good representations from scratch.

Fortunately, CMP does not need the output flow to be abso-

lutely accurate. Hence, we quantize the target flow and for-

mulate it as a classification task. Different from Walker et

al. [31] who quantize optical flow by clustering, we adopt a

simple yet efficient method. We clip the target flow within

a loose boundary, and partition the flow into C bins linearly

in x and y coordinates respectively. They are then classi-

fied by two linear classifiers. We use a cross-entropy loss
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separately for x and y flows. It is formulated as:

Lx = −
1

N

N∑

i=1

C∑

c=1

(✶ (Qx
i = c) logPi

x
c ) ,

Ly = −
1

N

N∑

i=1

C∑

c=1

(✶ (Qy
i = c) logPi

y
c ) ,

(1)

where N is the total number of pixels, P is the probability

from SoftMax layer, Q is the quantized labels, and ✶ is an

indicator function. We apply the same weight to Lx and Ly .

3.2. Guidance Selection

Sampling from Watershed. Sparse motion guidance is

sampled from the target optical flow. For effective prop-

agation, those guidance vectors should be placed at some

key-points where the motions are representative. We adopt

a watershed-based [4] method to sample such key-points.

As shown in Figure 3, given the optical flow of an image,

we first extract motion edges using a Sobel filter. Then we

assign each pixel a value to be the distance to its nearest

edge, resulting in the topological-distance watershed map.

Finally, we apply Non-maximum Suppression (NMS) [5]

with kernel size K on the watershed map to obtain the key-

points. We can adjust K to control the average number

of sampled points. A larger K results in sparser samples.

Points on image borders are removed. With the watershed

sampling strategy, all the key-points are roughly distributed

on the moving objects. Since background motion actually

reflects camera ego-motion, to avoid ambiguity in learning,

we also add several grid points in each image. The grid

stride G is used to adjust the density of grids. For a good

practice in our experiments, there are on average 13.5 sam-

pled guidance points in a 384× 384 image.

Outlier Handling. In some cases, the optical flow may not

be ideal, as shown in the third row of Figure 3. The dis-

ordered flow edges create disconnected watersheds, which

result in a large number of key-points selected. However,

it does not affect learning. These image examples are actu-

ally easy cases, since the abundant guidance ease the pres-

sure in learning those meaningless motions. In other words,

these examples with collapsed flows are ignored to some

extent. Hence, our framework is robust to the quality of

optical flow.

4. Experiments

Training Sets. CMP does not rely on a specific optical

flow estimation method. Considering that our datasets are

million-level, we choose LiteFlowNet [11], an extremely

fast optical flow estimation tool to compute optical flows.

In this way, we prepare 4 training sets for CMP training.

(a) YFCC100m-Videos. YFCC100m contains about 700k

in-the-wild videos. We use the set of sampled frames pro-

image flow flow edge watershed

Figure 3. The figure shows how we sample guidance from optical

flow. We first extract motion edges and then create a watershed

map based on the edges. At last, we use NMS to obtain the key-

points. Low-quality flow as shown in the third row results in a

large number of key-points which instead eases the pressure to

learn from those meaningless motions.

vided by [28], which originally contains 1.6M images from

205k video clips. We use the image pairs with an interval of

fewer than 10 frames in sequence to compute optical flow.

For example, given a video clip containing 5 frames, and

the frame IDs are 1, 4, 10, 21, 28, we get 3 image pairs,

{1, 4}, {4, 10}, {21, 28}. We use the first image in a pair

and the computed flow to create an image-flow pair. From

those frames, we create about 1.26M image-flow pairs to

form the training set (hereinafter referred to as “YFCC”).

(b) YouTube9K. To show the benefits from more unlabeled

data, we sample about 9,000 videos containing common ob-

jects from YouTube-8M [1]. We sample the videos using

keywords including “bird”, “cat”, “dog”, etc., which com-

monly exist in the visual world. Since CMP is an unsuper-

vised method, we do not use the tags in training. In the same

way, we create 1.96M image-flow pairs from these videos.

(c) VIP and MPII. Apart from the above datasets with

general objects, we also use the videos in Video Instance-

level Parsing (VIP) dataset [9], and MPII Human Pose

Dataset [3]. They mainly contain multiple persons in vari-

ous events. The former results in 0.377M image-flow pairs

and the latter 0.976M image-flow pairs. We create the two

datasets aiming at training a human-centric CMP model, so

as to prove its effectiveness in understanding human kine-

matic properties. Of course, we do not use any annotations

from these two datasets.

Training Details. We implement our framework with Py-

Torch [27]. We resize the image and flow so that the shorter

side is 416 and random crop to 384 × 384. In guidance

sampling, for YFCC and YouTube9K, we set the NMS ker-

nel size K to be 81, and the grid stride G to be 200 pixels,

which results in averagely 9.5 watershed-based points and
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4 grid points per image. For VIP and MPII, K is 15 and

G is 80, when the images mainly contain multiple persons

whose degrees of freedom are high. We also analyze the

influence of the number of guidance points in Sec. 4.2.

Training a CMP model is efficient. For example,

the ResNet-50 CMP model except that for human pars-

ing is trained for 42K iterations, about 5.3 epochs using

YFCC. It costs 7.5 hours on 16 GTX-1080-Ti GPUs. The

AlexNet CMP model is trained for 140K iterations using

YFCC+YouTube9K. The CMP model for LIP human pars-

ing is trained on all the 4 datasets for 70K iterations, about

2.1 epochs. The convergence is fast, hence we do not have

to train CMP for an excessive number of epochs. For all the

cases, we use SGD with learning rate 0.1, momentum 0.9,

weight decay 1e−4. We drop the learning by 10 times at

iteration 2

3.5
I and 3

3.5
I , where I is the total iteration.

4.1. Evaluations for Representation Learning

Using a CMP model as a pre-trained model, we show

its effectiveness in feature learning by fine-tuning it on sev-

eral downstream tasks covering semantic segmentation, in-

stance segmentation, and human parsing. Most of the previ-

ous works report their transfer learning results on AlexNet.

However, AlexNet is regarded as obsolete. To build up-to-

date self-supervised learning baselines, we also perform ex-

periments with ResNet-50 in addition to AlexNet. Hence,

we adopt 4 benchmarks for evaluation, i.e., PASCAL VOC

2012 Semantic Segmentation (AlexNet), PASCAL VOC

2012 Semantic Segmentation (ResNet50), COCO 2017 In-

stance Segmentation (ResNet50), and LIP Human Parsing

(ResNet50). The fine-tuning details can be found in the sup-

plementary materials.

Baselines. For AlexNet, most previous works report their

results on PASCAL VOC 2012 semantic segmentation.

However, previous studies do not support ResNet-50, hence

we have to reimplement them. For comparisons, we reim-

plemented recent works that use motion as supervision and

have achieved impressive results. Those methods include

Pathak et al. [28] and Walker et al. [31]. Among them,

Walker et al. [31] is a special case of CMP when the guid-

ance points number is zero. We optimize their hyper-

parameters to achieve their best performances in these

benchmarks.

VOC2012 Semantic Segmentation (AlexNet). Following

previous works, we fine-tune the pre-trained weights on

AlexNet for PASCAL VOC 2012 semantic segmentation

task with FCN-32s [19] as the head. As shown in Table 1,

we achieve state-of-the-art performance with mIoU 44.5%
and surpass the baselines by a large margin.

VOC2012 Semantic Segmentation (ResNet-50). As

shown in Table 2, we achieve 59.0% mIoU, with an 16.6%
improvement from a randomly initialized model. The per-

formance is also much higher than the baseline models.

Table 1. PASCAL VOC 2012 benchmark for semantic segmenta-

tion, with AlexNet. Our method achieves state-of-the-art and sur-

passes the baselines by a large margin. Methods marked † have not

reported the results in their paper, hence we reimplemented them

to obtain the results.
Method

(AlexNet)
Supervision

VOC12 Seg.

% mIoU

Krizhevsky et al. [14] ImageNet labels 48.0

Random - 19.8

Pathak et al. [29] In-painting 29.7

Zhang et al. [34] Colorization 35.6

Zhang et al. [35] Split-Brain 36.0

Noroozi et al. [25] Counting 36.6

Noroozi et al. [24] Jigsaw 37.6

Noroozi et al. [26] Jigsaw++ 38.1

Jenni et al. [13] Spot-Artifacts 38.1

Larsson et al. [15] Colorization 38.4

Gidaris et al. [8] Rotation 39.1

Pathak et al. [28]† Video-Seg 39.7

Walker et al. [31]† Flow Prediction 40.4

Mundhenk et al. [23] Context 40.6

Mahendran et al. [20] Flow similarity 41.4

Ours CMP 44.5

Table 2. Results on PASCAL VOC 2012 Semantic Segmentaion

validation set and COCO 2017 Instance Segmentation validation

set, with ResNet-50.

Method

(ResNet-50)

VOC12 Seg.

% mIoU

COCO17 (% mAP)

Det. Seg.

ImageNet [14] 69.0 37.2 34.1

Random 42.4 19.7 18.8

Pathak [28] 54.6 27.7 25.8

Walker [31] 54.5 31.5 29.2

CMP (ours) 59.0 32.3 29.8

COCO Instance Segmentation (ResNet-50). We con-

struct new baselines and the upper bound for self-supervised

learning on COCO Instance Segmentation. We use ResNet-

50 as the backbone and Mask R-CNN [10] with FPN [17] as

the head. As shown in Table 2, we achieve 32.3% bounding

box mAP and 29.8% mask mAP. It indicates that CMP is an

effective pre-training method for instance segmentation.

LIP Human Parsing (ResNet-50). Human parsing aims

at partitioning a human image into pre-defined parts, e.g.,

head, arm, and leg. Look-Into-Person (LIP) [9] is a large-

scale benchmark for human parsing. We perform compar-

isons on the validation sets of two sub-tasks, including LIP

Single-Person Parsing and LIP Multi-Person Parsing. As

shown in Table 3, we surpass baseline methods on both sub-

tasks. We further assemble our model with the model pre-

trained on ImageNet, and observe higher performance than

either of them. It indicates that CMP pre-training is com-

plementary with ImageNet pre-training.
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Table 3. LIP Human Parsing results on the validation set, with

ResNet-50. The reported indicator is mIoU. The results marked

with ⋆ are obtained from the ensemble of our model and the model

pre-trained on ImageNet.

Method

(ResNet-50)
LIP-Single LIP-Multiple

ImageNet [14] 42.5 55.4

Random 32.5 35.0

Pathak [28] 36.6 50.9

Walker [31] 36.7 52.5

CMP (ours) 40.2 52.9

CMP⋆ (ours) 42.9 55.8

%
 m

Io
U

Average number of guidances per image

VOC12 Semantic Segmentation (AlexNet)

13.5
38

40

42

44

46

0 50 100 150 200

Figure 4. Influence of guidance number.

4.2. Further Analysis

Influence of Guidance Number. The number of guidance

points is used to adjust the difficulty of pre-text CMP task.

An appropriate number of guidance points would allow a

more effective CMP learning from images. In this experi-

ment, we adjust the NMS kernel size K and grid stride G
to control the number of guidance points and perform an

evaluation on the VOC 2012 semantic segmentation task

with AlexNet. As shown in Figure 4, the performance is

low when the number of guidance is zero, and it is exactly

the case in [31]. The peak occurs when the average num-

ber of guidance points is 13.5. As further guidance points

join, the CMP task becomes easier. Then the needed in-

formation to recover motions mostly comes from guidance

rather than images. Hence, the image encoder is weakened

to capture essential information from images, and the per-

formance drops. Note that this optimal number of guidance

points is related to the number of objects, and the degrees

of freedom of each object in an image. When the number

of objects increases or the degrees of freedom goes higher,

the number of guidance points should also increase accord-

ingly.

Influence of Propagation Nets. Recall that the propaga-

tion nets are the combination of several CNNs with different

spatial strides. We study the influence of different combi-

nations of the propagation nets. We implement 4 propaga-

%
 m

Io
U

43.25

44.50

44.25

44.00

43.75

43.50

{1}
{1,2}

{1,2,4}

{1,2,4,8}

Strides of propagation nets

%
 m

Io
U

VOC12 Semantic Segmentation (AlexNet)

0.5 1.0 1.5 2.0 2.5 3.0
36

40

42

44

48

Amount of Unlabeled Data

38

46

ImageNet

Gidaris

Zhang

Pathak

Mahendran

Walker

LarssonJenni,Noroozi

Mundhenk

Ours

Figure 5. Influence of the combination of propagation nets and the

amount of unlabeled data.

tion nets with spatial stride 1, 2, 4, 8, and construct 4 com-

binations, {1}, {1, 2}, {1, 2, 4}, and {1, 2, 4, 8}. We test

them on PASCAL VOC 2012 semantic segmentation with

AlexNet. As shown in Figure 5, an optimal combination

occurs at {1, 2, 4}. It indicates that the propagation nets

with different strides form a collaborative group to solve

the CMP problem effectively. However, additional propa-

gation net with overly large stride leads to the loss of spatial

information while increasing the parameter count in the de-

coder, hence a combination of {1, 2, 4, 8} strides is worse.

Nevertheless, the performance is still much better than the

baseline methods.

Influence of the Amount of Unlabeled Data. We cre-

ate 5 training sets using 1/4, 1/2 YFCC, full YFCC,

and YFCC+YouTube9K. The amount of data ranges from

0.32M to 3.22M . We test the AlexNet models trained re-

spectively on these training sets on PASCAL VOC 2012 se-

mantic segmentation task. As shown in Figure 5, as the

amount of unlabeled data increases, CMP achieves steady

improvements. The performance is much better than the

baselines in a comparable amount of unlabeled data.

CMP’s Characteristics. Given a test image exclusive to

the training set, we test a trained CMP model by giving ar-

bitrary guidance vectors. As shown in Figure 6, given an

increasing number of guidance vectors, CMP infers more

complete motions accordingly. The results clearly reflect

the structures of objects even with high degrees of freedom.

From the results, we observe three interesting characteris-

tics of CMP:

1) Rigidity-aware. Given a single guidance vector on a rigid

part, e.g., head, forearm, or thigh, CMP propagates motion

on the whole part.

2) Kinematically-coherent. Given a guidance vector on a

part, CMP is capable of inferring whether the part should be

shifting or rotating. As shown in the first group in Figure 6,

the body should be shifting, then it predicts uniform motion

on the body, and the left leg should be rotating, hence the

motion is fading.

3) Physically-feasible. For example, in the first column of
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the second group in Figure 6, given a single guidance vector

on the left thigh, there are responses on left thigh, shank,

and foot. It is due to the observation that the left leg is

hovering. However, in the last column, given a guidance

vector on the right leg, the right foot keeps still, because it

is on the ground.

Motion, though coarse and noisy, is the manifestation of

kinematics and physics. To achieve sensible motion propa-

gation in complicated environments, our model must learn

to imagine the intrinsic kinematic properties and physically-

sound laws from static images. It accounts for these three

characteristics.

4.3. Applications

CMP shows its effectiveness in capturing structural kine-

matic properties of objects. With such characteristics, sev-

eral applications can be extended from a trained CMP

model. The image encoders for these applications are im-

plemented with ResNet-50.

CMP for Guided Video Generation. An interesting appli-

cation of CMP is guided video generation. With CMP, this

application is reminiscent of marionette control. Given an

image and the guidance arrows from a user, we first use a

CMP model to predict the optical flow and then warp the

original image to produce the future frame. In this way,

we can create a sequence of frames by giving continuous

guidance. Since CMP is strong in perceiving rigid parts

of an object from a single image, we can perform sophisti-

cated marionette control on the image. A demo video can

be found in the project page 1.

CMP for Semi-automatic Pixel-level Annotation. We

show that CMP can also assist pixel-level annotation. Fig-

ure 7 (a) shows its workflow. A user only needs to click sev-

eral positive points on the object. We make dummy guid-

ance vectors on these points in different directions, then a

CMP model predicts the optical flow in each direction. Fi-

nally, we fuse the results to obtain the mask. If the mask

covers some wrong areas, then the user clicks negative

points on the wrong areas. For CMP, the negative points

serve as the static guidance points with zero motion. Hence,

there will be no response around those negative points. In

this way, the mask gets refined. Such interactive annotating

mode allows the user to freely refine the mask via adding or

deleting the two types of points.

Since CMP is an unsupervised method, it does not pre-

define a specific category set like other semi-automatic an-

notation tools. Instead, it captures the spatial structures of

objects. Hence, we can use it to annotate any unseen or un-

common objects, e.g., carton, rearview mirror, and robot, as

shown in the second row of Figure 7 (b).

We compare our method with a state-of-the-art su-

pervised semi-automatic annotating method, Polygon

1Project page: http://mmlab.ie.cuhk.edu.hk/projects/CMP/

hovering
fixed

rotating
shifting

Figure 6. CMP testing results. In each group, the first row includes

the original image and the guidance arrows given by users, the

second row shows the predicted motion. The results demonstrate

three characteristics of CMP: 1. CMP propagates motion on the

whole rigid part. 2. CMP can infer whether a part is shifting or

rotating (motion uniform if shifting, fading if rotating) as shown in

the first group. 3. The results are physically feasible. For example,

in the second group, given a single guidance vector on the left

thigh, there are also responses on left shank and foot. It is due

to the observation that the left leg is hovering. However, in the

last column, although given a guidance vector on the right leg, the

right foot keeps still because it is on the ground.

RNN++ [2]. For a fair comparison, we test on the images

from the web demo of Polygon RNN++. As shown in Fig-

ure 7 (c), Polygon RNN++ requires a user to draw a bound-

ing box at first, and then generates vertexes to form an ini-

tial mask. However, the initial mask is usually imperfect.

The user needs to drag the vertexes to refine the mask. In

comparison, our method generates robust masks with only

a few clicks. The refinement is also simple and intuitive,

conducted via interactive point-and-click to add or delete

points.
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click points (by user) guidances sets flow prediction fusion results

(a) workflow

(c) comparison(b) more results (first row: common, second row: uncommon)

positive

points

negative

points

resultresult

Polygon RNN++

draw 1 box drag 15 times

Ours

7 clicks

5 clicks resultdraw 1 box drag 10 times result

5 clicks resultdraw 1 box drag 10 times result

Figure 7. CMP for semi-automatic pixel-level annotation. (a) shows its workflow, where a user only needs to click several positive points

(green) on the object, then the mask is automatically generated. If the mask covers some wrong areas, then the user clicks negative points

(red) on the wrong areas, and the mask gets refined. (b) shows a single CMP model is able to assist users to annotate objects in any category,

even the categories that the model has never seen. We compare our method with Polygon RNN++ in (c). For a fair comparison, we use the

images from the web demo of Polygon RNN++. It requires a user to draw a bounding box at first and then drag the generated vertexes to

refine. In some cases, it fails to capture the target object (second row). While our method does not require tedious dragging. It generates

robust masks with only a few clicks.

7 clicks result

8 clicks result

5 clicks result

disconnected

multiply-

connected

Polygon RNN++ Ours

normal

Figure 8. This figure illustrates the limitations of Polygon RNN++,

and how CMP solves those cases.

In addition, Polygon RNN++ has some limitations as

shown in Figure 8: 1) In some cases, it fails to capture the

target object. 2) It cannot correctly segment objects with

disconnected regions (e.g., a car behind a tree.) 3) It can-

not handle multiply-connected objects (e.g., a doughnut).

While our method can handle all of those cases by clicking

positive and negative points. The comparisons are summa-

rized in Table 4. Note that Polygon RNN++ relies on su-

pervised models, while our method is unsupervised without

any manual annotations.

Table 4. Comparisons with Polygon RNN++. “sup” and “un-

sup” stand for “supervised” and “unsupervised”. “MC” and “DC”

stand for whether they support “multiply-connected” and “discon-

nected” objects. Time per instance is tested on a randomly chosen

subset from COCO dataset.
Method model speed fail MC DC

Polygon [2] sup 17.6s 25/170 ✘ ✘

Ours unsup 10.2s 0/170 ✔ ✔

5. Conclusion

To summarize, we propose a new self-supervised learn-

ing paradigm, Conditional Motion Propagation (CMP). It

learns effective visual representations for structural predic-

tion. We achieve state-of-the-art performance in standard

self-supervised representation learning benchmarks. We

also establish new benchmarks with ResNet-50 beyond just

AlexNet. CMP shows appealing characteristics in captur-

ing kinematic properties of various objects with unlabeled

data. We observe kinematically sound results when testing a

CMP model. Furthermore, CMP can be extended to several

useful applications. For semi-automatic pixel-level annota-

tion, we achieve encouraging usability when compared with

a state-of-the-art supervised method.
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