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Abstract

Recent advances in generative adversarial networks

(GANs) have shown great potentials in realistic image syn-

thesis whereas most existing works address synthesis real-

ism in either appearance space or geometry space but few

in both. This paper presents an innovative Spatial Fusion

GAN (SF-GAN) that combines a geometry synthesizer and

an appearance synthesizer to achieve synthesis realism in

both geometry and appearance spaces. The geometry syn-

thesizer learns contextual geometries of background images

and transforms and places foreground objects into the back-

ground images unanimously. The appearance synthesizer

adjusts the color, brightness and styles of the foreground

objects and embeds them into background images harmo-

niously, where a guided filter is introduced for detail pre-

serving. The two synthesizers are inter-connected as mu-

tual references which can be trained end-to-end without su-

pervision. The SF-GAN has been evaluated in two tasks:

(1) realistic scene text image synthesis for training better

recognition models; (2) glass and hat wearing for realis-

tic matching glasses and hats with real portraits. Qualita-

tive and quantitative comparisons with the state-of-the-art

demonstrate the superiority of the proposed SF-GAN.

1. Introduction

With the advances of deep neural networks (DNNs), im-

age synthesis has been attracting increasing attention as

a means of generating novel images and creating anno-

tated images for training DNN models, where the latter has

great potentials to replace the traditional manual annota-

tion which is usually costly, time-consuming and unscal-

able. The fast development of generative adversarial net-

works (GANs) [9] in recent years opens a new door of au-

Figure 1. The proposed SF-GAN is capable of synthesizing realis-

tic images concurrently in geometric and appearance spaces. Rows

1 and 2 show a few synthesized scene text images and row 3 shows

a few hat-wearing and glass-wearing images where the foreground

texts, glasses and hats as highlighted by red-color boxes are com-

posed with the background scene and face images harmoniously.

tomated image synthesis as GANs are capable of generat-

ing realistic images by concurrently implementing a gener-

ator and discriminator. Three typical approaches have been

explored for GAN-based image synthesis, namely, direct

image generation [27, 33, 1], image-to-image translation

[55, 16, 22, 14] and image composition [21, 2].

On the other hand, most existing GANs were designed

to achieve synthesis realism either from geometry space or

appearance space but few in both. Consequentially, most

GAN-synthesized images have little contribution (many

even harmful) when they are used in training deep network

models. In particular, direct image generation still faces

difficulties in generating high-resolution images due to the

limited network capacity. GAN-based image composition

is capable of producing high-resolution images [21, 2] by

placing foreground objects into background images. But

most GAN-based image composition techniques focus on

geometric realism only (e.g. object alignment with con-
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textual background) which often produce various artifacts

due to appearance conflicts between the foreground objects

and the background images. As a comparison, GAN-based

image-to-image translation aims for appearance realism by

learning the style of images of the target domain whereas

the geometric realism is largely ignored.

We propose an innovative Spatial Fusion GAN (SF-

GAN) that achieves synthesis realism in both geometry and

appearance spaces concurrently, a very challenging task in

image synthesis due to a wide spectrum of conflicts be-

tween the foreground objects and background images with

respect to relative scaling, spatial alignment, appearance

style, etc. The SF-GAN address these challenges by de-

signing a geometry synthesizer and an appearance synthe-

sizer. The geometry synthesizer learns the local geome-

try of background images with which the foreground ob-

jects can be transformed and placed into the background

images unanimously. A discriminator is employed to train

a spatial transformation network, targeting to produce trans-

formed images that can mislead the discriminator. The ap-

pearance synthesizer learns to adjust the color, brightness

and styles of the foreground objects for proper matching

with the background images with minimum conflicts. A

guided filter is introduced to compensate the detail loss that

happens in most appearance-transfer GANs. The geometry

synthesizer and appearance synthesizer are inter-connected

as mutual references which can be trained end-to-end with

little supervision.

The contributions of this work are threefold. First, it de-

signs an innovative SF-GAN, an end-to-end trainable net-

work that concurrently achieves synthesis realism in both

geometry and appearance spaces. To the best of our knowl-

edge, this is the first GAN that can achieve synthesis realism

in geometry and appearance spaces concurrently. Second,

it designs a fusion network that introduces guided filters

for detail preserving for appearance realism, whereas most

image-to-image-translation GANs tend to lose details while

performing appearance transfer. Third, it investigates and

demonstrates the effectiveness of GAN-synthesized images

in training deep recognition models, a very important issue

that was largely neglected in most existing GANs (except a

few GANs for domain adaptation [14, 16, 22, 55]).

2. Related Work

2.1. Image Synthesis

Realistic image synthesis has been studied for years,

from synthesis of single objects [29, 30, 40] to generation of

full-scene images [8, 34]. Among different image synthesis

approaches, image composition has been explored exten-

sively which synthesizes new images by placing foreground

objects into some existing background image. The target

is to achieve composition realism by controlling the object

size, orientation, and blending between foreground objects

and background images. For example, [10, 17, 50, 51] in-

vestigate synthesis of scene text images for training bet-

ter scene text detection [47] and recognition models [49].

They achieve the synthesis realism by controlling a series

of parameters such as text locations within the background

image, geometric transformation of the foreground texts,

blending between the foreground text and background im-

age, etc. Other image composition systems have also been

reported for DNN training [7], composition harmonization

[26, 42], image inpainting [54], etc.

Optimal image blending is critical for good appearance

consistency between the foreground object and background

image as well as minimal visual artifacts within the synthe-

sized images. One straightforward way is to apply dense

image matching at pixel level so that only the correspond-

ing pixels are copied and pasted, but this approach does not

work well when the foreground object and background im-

age have very different appearance. An alternative way is

to make the transition as smooth as possible so that artifacts

can be hidden/removed within the composed images, e.g.

alpha blending [43], but this approach tends to blur fine de-

tails in the foreground object and background images. In ad-

dition, gradient-based techniques such as Poisson blending

[31] can edit the image gradient and adjust the inconsistency

in color and illumination to achieve seamlessly blending.

Most existing image synthesis techniques aim for geo-

metric realism by hand-crafted transformations that involve

complicated parameters and are prone to various unnatural

alignments. The appearance realism is handled by different

blending techniques where features are manually selected

and still susceptible to artifacts. Our proposed technique

instead adopts a GAN structure that learn geometry and ap-

pearance features from real images with little supervision,

minimizing various inconsistency and artifacts effectively.

2.2. GAN

GANs [9] have achieved great success in generating re-

alistic new images from either existing images or random

noises. The main idea is to have a continuing adversarial

learning between a generator and a discriminator, where the

generator tries to generate more realistic images while the

discriminator aims to distinguish the newly generated im-

ages from real images. Starting from generating MNIST

handwritten digits, the quality of GAN-synthesized images

has been improved greatly by the laplacian pyramid of ad-

versarial networks [6]. This is followed by various efforts

that employ a DNN architecture [33], stacking a pair of gen-

erators [52], learning more interpretable latent representa-

tions [4], adopting an alternative training method [1], etc.

Most existing GANs work towards synthesis realism in

the appearance space. For example, CycleGAN [55] uses

cycle-consistent adversarial networks for realistic image-
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to-image translation, and so other relevant GANs [16, 37].

LR-GAN [48] generates new images by applying additional

spatial transformation networks (STNs) to factorize shape

variations. GP-GAN [46] composes high-resolution images

by using Poisson blending [31]. A few GANs have been

reported in recent years for geometric realsim, e.g., [21]

presents a spatial transformer GAN (ST-GAN) by embed-

ding STNs in the generator for geometric realism, [2] de-

signs Compositional GAN that employs a self-consistent

composition-decomposition network.

Most existing GANs synthesize images in either geome-

try space (e.g. ST-GAN) or appearance space (e.g. Cycle-

GAN) but few in both spaces. In addition, the GAN-

synthesized images are usually not suitable for training deep

network models due to the lack of annotation or synthesis

realism. Our proposed SF-GAN can achieve both appear-

ance and geometry realism by synthesizing images in ap-

pearance and geometry spaces concurrently. Its synthesized

images can be directly used to train more powerful deep

network models due to their high realism.

2.3. Guided Filter

Guided Filters [12, 13] use one image as guidance for

filtering another image which has shown superior perfor-

mance in detail-preserving filtering. The filtering output is

a linear transform of the guidance image by considering its

structures, where the guidance image can be the input image

itself or another different image. Guided filtering has been

used in various computer vision tasks, e.g., [20] uses it for

weighted averaging and image fusion, [53] uses a rolling

guidance for fully-controlled detail smoothing in an itera-

tive manner, [45] uses a fast guided filter for efficient im-

age super-solution, [24] uses guided filters for high-quality

depth map restoration, [23] uses guided filtering for toler-

ance to heavy noises and structure inconsistency, and [11]

puts Guided filtering as a nonconvex optimization problem

and proposes solutions via majorize-minimization [15].

Most GANs for image-to-image-translation can synthe-

size high-resolution images but the appearance transfer of-

ten suppresses image details such as edges and texture. How

to keep the details of the original image while learning the

appearance of the target remain an active research area. The

proposed SF-GANs introduces guided filters into a cycle

network which is capable of achieving appearance transfer

and detail preserving concurrently.

3. The Proposed Method

The proposed SF-GAN consists of a geometry synthe-

sizer and an appearance synthesizer, and the whole network

is end-to-end trainable as illustrated in Fig. 2. Detailed net-

work structure and training strategy will be introduced in

the following subsections.

Table 1. The structure of the geometry estimation network within

the STN in Fig. 2

Layers Out Size Configurations

Block1 16× 50 3× 3 conv, 32, 2× 2 pool

Block2 8× 25 3× 3 conv, 64, 2× 2 pool

Block3 4× 13 3× 3 conv, 128, 2× 2 pool

FC1 512 -

FC2 N -

3.1. Geometry Synthesizer

The geometry synthesizer has a local GAN structure as

highlighted by blue-color lines and boxes on the left of Fig.

2. It consists of a spatial transform network (STN), a com-

position module and a discriminator. The STN consists of

an estimation network as shown in Table 1 and a transfor-

mation matrix which has N parameters that control the ge-

ometric transformation of the foreground object.

The foreground object and background image are con-

catenated to act as the input of the STN, where the es-

timation network will predict a transformation matrix to

transform the foreground object. The transformation can

be affine, homography, or thin plate spline [3] (We use thin

plate spline for the scene text synthesis task and homogra-

phy for the portrait wearing task). Each pixel in the trans-

formed image is computed by applying a sampling kernel

centered at a particular location in the original image. With

pixels in the original and transformed images denoted by

P s = (ps1, p
s
2, . . . , p

s
N ) and P t = (pt1, p

t
2, . . . , p

t
N ), we use

a transformation matrix H to perform pixel-wise transfor-

mation as follows:





xt
i

yti
1



 = H





xs
i

ysi
1



 (1)

where psi = (xs
i , y

s
i ) and ptj = (xt

i, y
t
i) denote the coordi-

nates of the i-th pixel within the original and transformed

image, respectively.

The transformed foreground object can thus be placed

into the background image to form an initially composed

image (Composed Image in Fig. 2). The discriminator D2

in Fig. 2 learns to distinguish whether the composed image

is realistic with respect to a set of Real Images. On the other

hand, our study shows that real images are not good refer-

ences for training geometry synthesizer. The reason is real

images are realistic in both geometry and appearance spaces

while the geometry can only achieve realism in geometry

space. The difference in appearance space between the syn-

thesized images and real images will mislead the training

of geometry synthesizer. For optimal training of geometry

synthesizer, the reference images should be realistic in the

geometry space only and concurrently have similar appear-

ance (e.g. colors and styles) with the initially composed
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Figure 2. The structure of the proposed SF-GAN: The geometry synthesizer is highlighted by blue-color lines and boxes on the left and the

appearance synthesizer is highlighted by orange-color lines and boxes on the right. STN denotes spatial transformation network, F denotes

guided filters, G1, G2, D1 and D2 denote the generators and discriminators. For clarity, cycle loss and identity loss are not included.

images. Such reference images are difficult to create man-

ually. In the SF-GAN, we elegantly use images from the

appearance synthesizer (Adapted Real shown in Fig. 2) as

the reference to train the geometry synthesizer, more details

about the appearance synthesizer to be discussed in the fol-

lowing subsection.

3.2. Appearance Synthesizer

The appearance synthesizer is designed in a cycle struc-

ture as highlighted in orange-color lines and boxes on the

right of Fig. 2. It aims to fuse the foreground object

and background image to achieve synthesis realism in the

appearance space. Image-to-image translation GANs also

strive for realistic appearance but they usually lose visual

details while performing the appearance transfer. Within

the proposed SF-GAN, guided filters are introduced which

help to preserve visual details effectively while working to-

wards synthesis realism within the appearance space.

3.2.1 Cycle Structure

The proposed SF-GAN adopts a cycle structure for map-

ping between two domains, namely, the composed image

domain and the real image domain. Two generators G1 and

G2 are designed to achieve image-to-image translation in

two reverse directions, G1 from Composed Image to Final

Synthesis and G2 from Real Images to Adapted Real as il-

lustrated in Fig. 2. Two discriminator D1 and D2 are de-

signed to discriminate real images and translated images.

In particular, D1 will strive to distinguish the adapted

composed images (i.e. the Composed Image after domain

adaptation by G1) and Real Images, forcing G1 to learn to

map from the Composed Image to Final Synthesis images

that are realistic in the appearance space G2 will learn to

map from Real Images to Adapted Real images, the images

that ideally are realistic in the geometry space only but have

similar appearance as the Composed Image. As discussed

in the previous subsection, the Adapted Real from G2 will

be used as references for training the geometry synthesizer

as it will better focus on synthesizing images with realistic

geometry (as the interfering appearance difference has been

compressed in the Adapted Real).

Image appearance transfer usually comes with detail

loss. We address this issue from two perspectives. The fist

is by adaptive combination of cycle loss and identity loss.

Specifically, we adopt a weighted combination strategy that

assigns higher weight to the cycle-loss for interested im-

age regions while higher weight to the identify-loss for non-

interested regions. Take scene text image synthesis as an ex-

ample. By assigning a larger cycle-loss weight and smaller

identity-loss to text regions, it ensures a multi-mode map-

ping of the text style while keeping the background similar

to the original image. The second is by introducing guided

filters into the cycle structure for detail preserving, more

details to be described in the next subsection.

3.2.2 Guided Filter

Guided filter was designed to perform edge-preserving im-

age smoothing. It influences the filtering by using structures

in a guidance image As appearance transfer in most image-

to-image-translation GANs tends to lose image details, we

introduce guided filters (F as shown in Fig. 2) into the SF-

GAN for detail preserving within the translated images. The

target is to perform appearance transfer on the foreground

object (within the Composed Image) only while keeping the

background image with minimum changes.

We introduce guided filters into the proposed SF-GAN

and formulate the detail-preserving appearance transfer as a

joint up-sampling problem as illustrated in Fig. 3. In par-
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Figure 3. Detailed structure of the guided filter F: Given an image

to be filtered (Composed Image in Fig. 2), a translated image with

smoothed details (the output of G1 in Fig. 2 where details are lost

around background face and foreground hat areas) and the mask

of foreground object hat (provided), F produces a new image with

full details (Synthesized Image, the output of F at the bottom in

Fig. 2). It can be seen that the guided filter preserves details of

both background image (e.g. the face area) and foreground hat

(e.g. the image areas highlighted by the red-color box).

ticular, the translated images from the output of G1 (image

details lost) is the input image I to be filtered and the ini-

tially Composed Image (image details unchanged) shown in

Fig. 2 acts as the guidance image R to provide edge and

texture details. The detail-preserving image T (correspond-

ing to the Synthesized Image in Fig. 2) can thus be derived

by minimizing the reconstruction error between I and T ,

subjects to a linear model:

Ti = akIi + bk, ∀i ∈ ωk (2)

where i is the index of a pixel and ωk is a local square win-

dow centered at pixel k.

To determine the coefficients of the linear model ak and

bk, we seek a solution that minimizes the difference be-

tween T and the filter input R which can be derived by min-

imizing the following cost function in the local window:

E(ak, bk) =
∑

i∈ωk

((akIi + bk −Ri)
2 + ǫa2k) (3)

where ǫ is a regularization parameter that prevents ak from

being too large. It can be solved via linear regression:

ak =

1
|ω|

∑

i∈ωk
Ii − µkRk

σk + ǫ
(4)

bk = Rk − akµk (5)

where µk and σ2
k are the mean and variance of I in ωk, |ω|

is the number of pixels in ωk, and Rk = 1
|ω|

∑

i∈ωk
is the

mean of R in ωk.

By applying the linear model to all windows ωk in the

image and computing (ak, bk), the filter output can be de-

rived by averaging all possible values of Ti:

Ti =
1

|ω|

∑

k:i∈µk

(akIi + bk) = aiIi + bi (6)

where ai = 1
|ω|

∑

k∈ωk
ak and bi = 1

|ω|

∑

k∈ωi
bk. We

integrate the guide filter into the cycle structure network to

implement an end-to-end trainable system.

3.3. Adversarial Training

The proposed SF-GAN is designed to achieve synthe-

sis realism in both geometry and appearance spaces. The

SF-GAN training therefore has two adversarial objectives,

one is to learn the real geometry and the other is to learn

the real appearance The geometry synthesizer and appear-

ance synthesizer are actually two local GANs that are inter-

connected and need coordination during the training. For

presentation clarity, we denote the Foreground Object and

Background Image in Fig. 2 as the x, the Composed Image

as y and the Real Image as z which belongs to domains X ,

Y and Z, respectively.

For the geometry synthesizer, the STN can actually be

viewed as a generator G0 which predicts transportation pa-

rameters for x. After the transformation of the Foreground

Object and Composition, the Composed Image becomes the

input of the discriminator D2 and the training reference z
′

comes from G2(z) of the appearance synthesizer. For the

geometry synthesizer, we adopt the Wasserstein GAN [1]

objective for training which can be denoted by:

min
G0

max
D2

Ex∼X [D2(G0(x))]− Ez
′∼Z

′ [D2(z)] (7)

where Z
′

denotes the domains for z
′

. Since G0 aims to

minimize this objective against an adversary D2 that tries to

maximize it, the loss functions of D2 and G0 can be defined

by:

LD2 = Ex∼X [D2(G0(x)]− Ez
′∼Z

′ [D2(z
′

)] (8)

LG0 = −Ex∼X [D2(G0(x))] (9)

The appearance synthesizer adopts a cycle structure that

consists of two mappings G1 : Y → Z and G2 : Z → Y . It

has two adversarial discriminators D1 and D2. D2 is shared

between the geometry and appearance synthesizers, and it

aims to distinguish y from G2(z) within the appearance syn-

thesizer. The learning objectives thus consists of an adver-

sarial loss for the mapping between domains and a cycle

consistency loss for preventing the mode collapse. For the

adversarial loss, the objective of the mapping G1 : Y → Z

(and the same for the reverse mapping G2 : Z → Y ) can be

defined by:

LD1 = Ey∼Y [D1(G1(y)]− Ez∼Z [D2(z)] (10)
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LG1 = −Ey∼Y [D1(G1(y))] (11)

As the adversarial losses cannot guarantee that the

learned function maps an individual input y to a desired out-

put z, we introduce cycle-consistency, aiming to ensure that

the image translation cycle will bring x back to the original

image, i.e. y → G1(y) → G2(G1(y)) = y. The cycle-

consistency can be achieved by a cycle-consistency loss:

LG1cyc
= Ey∼p(y)[‖G2(G1(y))− y‖] (12)

LG2cyc
= Ez∼p(z)[‖G1(G2(z))− z‖] (13)

We also introduce the identity loss to ensure that the trans-

lated image preserves features of the original image:

LG1idt = Ey∼Y [‖G1(y)− y‖] (14)

LG2idt = Ez∼Z [‖G2(z)− z‖] (15)

For each training step, the model needs to update the ge-

ometry synthesizer and appearance synthesizer separately.

In particular, LD2 and LG0 are optimized alternately while

updating the geometry synthesizer. While updating the ap-

pearance synthesizer, all weights of the geometry synthe-

sizer are freezed. In the mapping G1 : Y → Z, LD1

and LG1 + λ1LG1cyc
+ λ2LG1idt are optimized alternately

where λ1 and λ2 controls the relative importance of the

cycle-consistency loss and the identity loss, respectively. In

the mapping G2 : Z → Y , LD2 and LG2 + λ1LG2cyc
+

λ2LG2idt are optimized alternately.

It should be noted that the sequential updating is nec-

essary for end-to-end training of the proposed SF-GAN. If

discarding the geometry loss, we need update the geometry

synthesizer according to the loss function of the appearance

synthesizer. On the other hand, the appearance synthesizer

will generate blurry foreground objects regardless of the ge-

ometry synthesizer and this is similar to GANs for direct

image generation. As discussed before, the direct image

generation cannot provide accurate annotation information

and the directly generated images also have low quality and

are not suitable for training deep network models.

4. Experiments

4.1. Datasets

ICDAR2013 [19] is used in the Robust Reading Compe-

tition in the International Conference on Document Analy-

sis and Recognition (ICDAR) 2013. It contains 848 word

images for network training and 1095 for testing.

ICDAR2015 [18] is used in the Robust Reading Compe-

tition under ICDAR 2015. It contains incidental scene text

images that are captured without preparation before captur-

ing. 2077 text image patches are cropped from this dataset,

where a large amount of cropped scene texts suffer from

perspective and curvature distortions.

IIIT5K [28] has 2000 training images and 3000 test

images that are cropped from scene texts and born-digital

images. Each word in this dataset has a 50-word lexicon

and a 1000-word lexicon, where each lexicon consists of a

ground-truth word and a set of randomly picked words.

SVT [44] is collected from the Google Street View im-

ages that were used for scene text detection research. 647

words images are cropped from 249 street view images and

most cropped texts are almost horizontal.

SVTP [32] has 639 word images that are cropped from

the SVT images. Most images in this dataset suffer from

perspective distortion which are purposely selected for eval-

uation of scene text recognition under perspective views.

CUTE [35] has 288 word images mose of which are

curved. All words are cropped from the CUTE dataset

which contains 80 scene text images that are originally col-

lected for scene text detection research.

CelebA [25] is a face image dataset that consists of more

than 200k celebrity images with 40 attribute annotations.

This dataset is characterized by large quantities, large face

pose variations, complicated background clutters, rich an-

notations, and it is widely used for face attribute prediction.

4.2. Scene Text Synthesis

Data Preparation: The SF-GAN needs a set of Real Im-

ages to act at references as illustrated in Fig. 2. We create

the Real Images by cropping the text image patches from the

training images of ICDAR2013 [19], ICDAR2015 [18] and

SVT [44] by using the provided annotation boxes. While

cropping the text image patches, we extend the annotation

box (by an extra 1/4 of the width and height of the annota-

tion boxes) to include certain local geometric structures

Besides the Real Images, SF-GAN also needs a set

of Background Images as shown in Fig. 2. For scene

text image synthesis, we collect the background images by

smoothing out the text pixels of the cropped Real Images.

Further, the Foreground Object (text for scene text synthe-

sis) is computer-generated by using a 90k-lexicon. The cre-

ated Background Images, Foreground Texts and Real Images

are fed to the network to train the SF-GAN.

For the training of scene text recognition model, texts

need to be cropped out with tighter boxes (to exclude ex-

tra background). With the text maps as denoted by Trans-

formed Object in Fig. 2, scene text patches can be cropped

out accurately by detecting a minimal external rectangle.

Results Analysis: We use 1 million SF-GAN synthesized

scene text images to train scene text recognition models and

use the model recognition performance to evaluate the use-

fulness of the synthesized images. In addition, the SF-GAN

is benchmarked with a number of state-of-the-art synthe-
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Table 2. Scene text recognition accuracy over the datasets ICDAR2013, ICDAR2015, SVT, IIIT5K, SVTP and CUTE, where 1 million

synthesized text images are used for all comparison methods as as listed.

Methods ICDAR2013 ICDAR2015 SVT IIIT5K SVTP CUTE AVERAGE

Jaderberg [17] 58.1 35.5 67.0 57.2 48.9 35.3 50.3

Gupta [10] 62.2 38.2 48.8 59.1 38.9 36.3 47.3

Zhan [50] 62.5 37.7 63.5 59.5 46.7 36.9 51.1

ST-GAN [21] 57.2 35.3 63.8 57.3 43.2 34.1 48.5

SF-GAN(BS) 55.9 34.9 64.0 55.4 42.8 33.7 47.8

SF-GAN(GS) 57.3 35.6 66.5 57.7 43.9 36.1 49.5

SF-GAN(AS) 58.1 36.4 66.7 58.5 45.3 35.7 50.1

SF-GAN 61.8 39.0 69.3 63.0 48.6 40.6 53.7

Foreground

Background

ST-GAN

CycleGAN

SF-GAN(GS)

SF-GAN

Figure 4. Illustration of scene text image synthesis by different

GANs: Rows 1-2 are foreground texts and background images

as labelled. Rows 3-4 show the images synthesized by ST-GAN

and CycleGAN, respectively. Row 5 shows images synthesized

by SF-GAN(GS), the output of the geometry synthesizer in SF-

GAN (Composed Image in Fig. 2). The last row shows images

synthesized by the proposed SF-GAN.

sis techniques by randomly selecting 1 million synthesized

scene text images from [17] and randomly cropping 1 mil-

lion scene text images from [10] and [50]. Beyond that,

we also synthesize 1 million scene text images with random

text appearance by using ST-GAN [21]. There are many

scene text recognition models [38, 39, 41, 36, 5], we design

an attentional scene text recognizer with a 50-layer ResNet

as the backbone network.

For ablation analysis, we evaluate SF-GAN(GS) which

denotes the output of the geometry synthesizer (Composed

Image as shown in Fig. 2) and SF-GAN(AS) which denotes

the output of the appearance synthesizer with random geo-

metric alignments. A baseline SF-GAN (BS) is also trained

where texts are placed with random alignment and appear-

ance. The three SF-GANs also synthesize 1 million im-

ages each for scene text recognition tests. The recognition

tests are performed over four regular scene text datasets IC-

DAR2013 [19], ICDAR2015 [18], SVT [44], IIIT5K [28]

and two irregular datasets SVTP [32] and CUTE [35] as de-

scribed in Datasets. Besides the scene text recognition, we

also perform user studies with Amazon Mechanical Turk

(AMT) where users are recruited to tell whether SF-GAN

synthesized images are real or synthesized.

Tables 2 and 3 show scene text recognition and AMT

user study results. As Table 2 shows, SF-GAN achieves the

highest recognition accuracy for most of the 6 datasets and

an up to 3% improvement in average recognition accuracy

(across the 6 datasets), demonstrating the superior useful-

ness of its synthesized images while used for training scene

text recognition models. The ablation study shows that the

proposed geometry synthesizer and appearance synthesizer

both help to synthesize more realistic and useful image in

recognition model training. In addition, they are comple-

mentary and their combination achieves a 6% improvement

in average recognition accuracy beyond the baseline SF-

GAN(BS). The AMT results in the second column of Table

3 also show that the SF-GAN synthesized scene text images

are much more realistic than state-of-the-art synthesis tech-

niques. Note the synthesized images by [17] are gray-scale

and not included in the AMT user study.

Fig. 4 shows a few synthesis images by using the pro-

posed SF-GAN and a few state-of-the-art GANs. As Fig.

4 shows, ST-GAN can achieve geometric alignment but the

appearance is clearly unrealistic within the synthesized im-
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Table 3. AMT user study to evaluate the realism of synthesized

images. Percentages represent the how often the images in each

category were classified as real by Turkers.

Methods Text Glass Hat

Gupta [10] 38.0 - -

Zhan [50] 41.5 - -

ST-GAN [21] 31.6 41.7 42.6

Real 74.1 78.6 78.2

SF-GAN 57.7 62.0 67.3

ages. The CycleGAN can adapt the appearance of the fore-

ground texts to certain degrees but it ignores real geome-

try. This leads to not only unrealistic geometry but also

degraded appearance as the discriminator can easily distin-

guish generated images and real images according to the

geometry difference. The SF-GAN (GS) gives the output

of the geometry synthesizer, i.e. the Composed Image as

shown in Fig. 2, which produces better alignment due to

good references from the appearance synthesizer. In addi-

tion, it can synthesize curve texts due to the use of a thin

plate spline transformation [3]. The fully implemented SF-

GAN can further learn text appearance from real images and

synthesize highly realistic scene text images. Besides, we

can see that the proposed SF-GAN can learn from neigh-

boring texts within the background images and adapt the

appearance of the foreground texts accordingly.

4.3. Portrait Wearing

Data preparation: We use the dataset CelebA [25] and fol-

low the provided training/test split for portrait wearing ex-

periment. The training set is divided into two groups by

using the annotation ‘glass’ and ‘hat’, respectively. For the

glass case, one group of people with glasses serve as the real

data for matching against in our adversarial settings and the

other group without glasses serves as the background. For

the foreground glasses, we crop 15 pairs of front-parallel

glasses and reuse them to randomly compose with the back-

ground images. According to our experiment, 15 pairs of

glasses as the foreground objects are sufficient to train a ro-

bust model. The hat case has the similar setting, except that

we use 30 cropped hats as the foreground objects.

Results Analysis: Fig 5. shows a few SF-GAN synthe-

sized images and comparisons with ST-GAN synthesized

images. As Fig. 5 shows, ST-GAN achieves realism in the

geometry space by aligning the glasses and hats with the

background face images. On the other hand, the synthe-

sized images are unrealistic in the appearance space with

clear artifacts in color, contrast and brightness. As a com-

parison, the SF-GAN synthesized images are much more

realistic in both geometry and appearance spaces. In par-

ticular, the foreground glasses and hats within the SF-GAN

Objects Faces ST-GAN SF-GAN

Figure 5. Illustration of portrait-wearing by different GANs:

Columns 1-2 show foreground hats and glasses and background

face images, respectively. Columns 3-4 show images synthesized

by by ST-GAN [21] and our proposed SF-GAN, respectively.

synthesized images have harmonious brightness, contrast,

and blending with the background face images. Addition-

ally, the proposed SF-GAN also achieve better geometric

alignment as compared with ST-GAN which focuses on ge-

ometric alignment only. We conjecture that the better ge-

ometric alignment is largely due to the reference from the

appearance synthesizer. The AMT results as shown in the

last two columns of Table 3 also show the superior synthesis

performance of our proposed SF-GAN.

5. Conclusions

This paper presents a SF-GAN, an end-to-end trainable

network that synthesize realistic images given foreground

objects and background images. The SF-GAN is capable of

achieving synthesis realism in both geometry and appear-

ance spaces concurrently. The first scene text image syn-

thesis study shows that the proposed SF-GAN is capable of

synthesizing useful images to train better recognition mod-

els. The second portrait-wearing study shows the SF-GAN

is widely applicable and can be easily extend to other tasks.

We will continue to study SF-GAN for full-image synthesis

for training better detection models.
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