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Abstract

This paper studies the structure of a deep convolutional

neural network to predict the foreground alpha matte by

taking a single RGB image as input. Our network is fully

convolutional with two decoder branches for the foreground

and background classification respectively. Then a fusion

branch is used to integrate the two classification results

which gives rise to alpha values as the soft segmentation

result. This design provides more degrees of freedom than

a single decoder branch for the network to obtain better

alpha values during training. The network can implicitly

produce trimaps without user interaction, which is easy to

use for novices without expertise in digital matting. Exper-

imental results demonstrate that our network can achieve

high-quality alpha mattes for various types of objects and

outperform the state-of-the-art CNN-based image matting

methods on the human image matting task.

1. Introduction

Digital matting is to accurately extract the foreground

object in an image for object-level image composition. It

has the advantage of estimating the alpha (opacity) values

of the pixels to create an alpha matte so that the foreground

object can be correctly abstracted and then composed with

a new background image to render a new scene. Formally

speaking, we assume that the observed image I is generated

from three underlying images: the foreground image F, the

background image B, and the alpha matte α, through the

following model:

Ip = αpFp + (1− αp)Bp (1)

where p represents a pixel across all images, and the value

of αp ∈ [0, 1].
A common approach to digital matting [10, 15, 36] pro-

ceeds in three steps, namely, (1) learn the foreground and
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Figure 1. Two example matting results of our late fusion CNN that

does not need trimaps as input. Left: two images collected from

internet outside of our training dataset. Middle: the alpha mattes

predicted by our network. Right: the composition results.

background color models, (2) compute the probabilities of

each pixel belonging to the learned models, and (3) obtain

the alpha values. To this end, a critical task in digital mat-

ting is to determine the pixel alpha values α, which rep-

resents a soft segmentation of the image. [20] leverages

the spectral clustering to compute α. However, such meth-

ods usually rely on user-inputs such as trimaps and scrib-

bles: The trimap separates an image into foreground region,

background region and a transition region to cover fuzzy

or transparent foreground object boundaries [10], while the

scribbles specify sparse pixels on the foreground and back-

ground [35]. Early works exploit the local color as the

main feature, which may lead to blurred or chunky arti-

facts as shown in [39]. Recent works (e.g., [9, 31, 38, 39])

leverage fully convolutional neural network (CNN) to learn

multi-scale features, which lead to high-quality semantic

image segmentation results. In addition, deep image mat-

ting (DIM) [39] has shown that high-quality alpha mattes

can be directly predicted through a deep CNN trained on

a large-scale image matting dataset. A recent contribution

combines the multi-scale features learned by deep CNN and
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the spectral matting method to obtain alpha matte [2]. It

is fully automatic but has the disadvantage of slow perfor-

mance due to solving the large-scale spectral problem.

While existing deep learning based digital matting ap-

proaches rely on a trimap as input, we propose a fully con-

volutional network (FCN) for automatic image matting by

taking a single RGB image as input. We achieve this goal

by designing two decoder branches in the network for the

foreground and background classification, and then use a fu-

sion branch to integrate the two classification results, which

gives rise to the soft segmentation result. This design pro-

vides more degrees of freedom than a single decoder branch

for the network to obtain better alpha values. It is based

on the observation that the classification branches can well

predict the hard segmentation result, but have difficulties in

predicting precise probabilities as the alpha values at the

pixel level. The two-decoder branch structure allows us to

design a fusion branch to correct the residuals left in the

classification branches. Moreover, our training loss encour-

ages the two decoder branches to agree with each other at

the hard segmentation part and leave the soft segmentation

part to be corrected by the fusion branch. Therefore, our

approach can implicitly produce trimap without any user

interaction, which is easy to use for novice users without

expertise in digital matting.

Our two-branch network structure at the decoder stage of

FCN follows the late fusion structure which is widely used

in deep learning [8, 26] and can be categorized as a type of

ensemble learning to improve the accuracy of the predicated

alpha values. However, instead of simply maximizing or

averaging the output of the two classification branches, we

learn the fusion weights. We thus denote our network by

late fusion CNN hereafter.

We have evaluated our network on the image matting

dataset in [39] to shown that it can produce high-quality

matting results for different types of objects. In addition,

we also construct a human image matting dataset to test the

network on this specific type of images. Fig. 1 illustrates the

matting results of our network on two internet images, and

the experimental results show that our network that does not

need trimaps as input can still achieve comparable results to

the state-of-the-art CNN-based methods and outperform on

the human image matting task.

2. Related Work

In this section, we briefly review three main approaches,

such as sampling-based, affinity-based, and deep learning

based approaches, to digital image matting.

Sampling-based approaches [10, 13, 14, 16, 29] use the

color of sampled pixels to infer the alpha values of the pix-

els in the transition region in an image. The key tasks of

these approaches are (1) to collect the sampled pixels [13,

16, 29, 30], and (2) to build a foreground and background

color model from the sampled pixels [10, 16, 34, 35]. These

approaches take the advantage of natural image statistics for

solving the ill-posed matting problem and work well when

the trimap is carefully defined so that there are strong cor-

relations between the pixel color distribution of the transi-

tion region and that of the foreground/background regions.

Affinity-based approaches [1, 2, 3, 7, 15, 19, 20, 33] prop-

agate the alpha values of the known foreground and back-

ground pixels to the unknown regions and have proven to be

more robust than sampling-based approaches when dealing

with complex images [10, 14, 29]. The quality of gener-

ated alpha mattes using these approaches is highly related to

the defined affinity score [15, 19, 33]. Global optimization

strategies, such as spectral techniques [20], are continuous

relaxations of binary optimization techniques, which is not

guaranteed to obtain optimal solutions. For a comprehen-

sive survey of traditional approaches, we refer the readers

to [37] for more details.

Deep learning based matting approaches directly learn a

mapping from an input image to its alpha matte from large-

scale labeled results. Cho et al. [9] proposed an end-to-end

CNN by combing the closed-form matting formulation de-

scribed in [19] and the methodology of KNN mating [7]. Xu

et al. [39] integrated an encoder-decoder network and a sub-

sequent detail refinement network for digital matting, which

takes an image and the corresponding trimap as inputs. Lutz

et al. [25] presented a generative adversarial network for im-

age matting. They improved the decoder structure of [39]

by adding the atrous spatial pyramid pooling module [5] to

resample the features at several scales. Wang et al. [38] pro-

posed a deep propagation based image matting framework

by learning an alpha matte propagation principle using a

deep neural network. However, these techniques require a

trimap as input to initialize the propagation process. Several

recent techniques study image matting for a specific type of

objects. Chen et al. [6] proposed an automatic approach for

human matting. It takes an RGB image as input and first

predicts the foreground and background regions as well as

the transition region using the three-class segmentation net-

work. The segmentation result is then used as a trimap for

the alpha matte generation. In contrast, our approach gen-

erates the final alpha matte by blending the foreground and

background probability maps using a fusion network, which

avoids the difficult trimap generation problem. The CNN-

based portrait matting in [31] uses an average mask as a

trimap by assuming the upper body appears at similar po-

sitions in portrait images. However, this assumption does

not apply in our setting. Zhu et al. [41] followed the similar

pipeline while designing a smaller network and a fast filter

similar to the guided filter for matting to deploy the model

on mobile phones. Chen et al. [4] formulates transparent

object matting as reflective flow estimation and leverages a

multi-scale encoder-decoder network for prediction.
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Figure 2. A high-level visualization of our network architecture. The segmentation network consists of one encoder and two decoders. The

fusion network is a fully convolutional network without downsampling. The final alpha matte is a linear blending using the outputs of two

networks. The number below the block in the fusion network denotes the number of output channels of different convolution layers.

3. Approach

In this section, we introduce the technical details of our

approach. We begin with the approach overview in Sec. 3.1.

We then elaborate the structure and training loss of segmen-

tation and fusion networks in Sec. 3.2 and 3.3. Finally, we

give the training details of our network in Sec. 3.4.

3.1. Approach Overview

We introduce a novel end-to-end neural network that

takes an image containing a foreground object as input and

outputs an alpha matte of the foreground object.1 As illus-

trated in Fig. 2, the key idea of our approach is to use neural

network modules to predict three maps, namely, the fore-

ground probability map, the background probability map,

and the blending weight map. The output alpha matte is

given by using the blending weight map to interpolate the

foreground/background probability maps. The network is

trained over three consecutive steps: segmentation network

pre-training step, fusion network pre-training step and fi-

nally end-to-end joint training step whose training loss is

imposed on the output alpha matte.

Formally speaking, we try to predict the alpha values

with the following fusion formula:

αp = βpF̄p + (1− βp)(1− B̄p), (2)

where F̄p and B̄p represent the predicted foreground and

background probability at pixel p. βp is the blending weight

predicted by the fusion network. In our implementation,

the fusion network takes the input image and the features

before the logistic regression of foreground and background

classification branches as input (see Fig. 2).

1Please see the supplementary material for the network details at

https://github.com/yunkezhang/FusionMatting.

From the optimization perspective, the derivative of αp

with respect to βp vanishes when

B̄p + F̄p = 1. (3)

The advantages of Eq. 2 are two-fold. First, the fusion net-

work will focus on learning the transition region from the

foreground to the background if the predictions of the fore-

ground/background probability maps are accurate (meaning

Eq. 3 is satisfied), which is the bottleneck for solving the

matting problem. Second, we can carefully design the loss

function to encourage that the F̄p + B̄p 6= 1 within the

transition region (see Sec. 3.2), which can provide useful

gradients to train the fusion network.

3.2. Segmentation Network

We proceed to describe the architecture of the segmenta-

tion network and its training loss. In particular, the training

loss favors 0 or 1 probability of solid foreground and back-

ground regions. It also tries to predict the upper bound and

lower bound of the true alpha values in the transition region.

Network structure. The segmentation network consists of

one encoder and two decoders. The encoder extracts seman-

tic features from the input image. The two decoders share

the same encoded bottleneck and predict the foreground and

background probability maps, respectively. Specifically, we

use DenseNet-201 [18] without the fully-connected layer

head as our encoder. Each branch consists of five decoder

blocks which correspond to the five encoder blocks, and the

decoder block follows the design of feature pyramid net-

work structure in [22]. To enhance the pixel-level segmen-

tation result, we employ the skip connections in [28] to

concatenate the multi-scale features from the encoder block

(right before the average down-sampling) with the features

upsampled through deconvolution layer.
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Training loss. The training loss combines the L1 loss, the

L2 loss, and the cross-entropy loss. In particular, we control

the behavior of the training process of our network by set-

ting different weights for different pixels according to the

alpha matte.

We first measure the difference between the predicted

probability values and the ground truth alpha values:

Ld(F̄p) =

{

|F̄p − αp|, 0 < αp < 1.
(F̄p − αp)

2, αp = 0, 1.
(4)

The difference is chosen to be L1 inside transition regions

so as to recover the details of the alpha matte there, while

the L2 loss is used in the rest of the regions to penalize

the possible segmentation error. We find this setting can

well balance between the soft segmentation and the hard

segmentation.

We also introduce the L1 loss on the gradients of the

predicted alpha matte since it is beneficial to remove the

over-blurred alpha matte after classification:

Lg(F̄p) = |∇x(F̄p)−∇x(αp)|+|∇y(F̄p)−∇y(αp)|. (5)

The cross-entropy (CE) loss for the foreground classifica-

tion branch at a pixel p is given by:

CE(F̄p) = wp · (−α̂p log(F̄p)− (1− α̂p) log(1− F̄p)),
(6)

The weight wp is set to 1 when αp = 1 or 0 and set to

0.5 when αp is in (0, 1). We let α̂p be 1 inside both the

foreground and the transition regions (0 inside background

region) so that the cross-entropy loss encourages the seg-

mentation network to output probability value towards 1 for

an upper bound. However, it does not provide useful gra-

dients within the transition region. We thus adopt a small

weight in the transition region and combine it with the L1

and L2 loss below to obtain a preliminary alpha matte.

The final loss function of the foreground classification

branch with respect to an image is:

LF =
∑

p

CE(F̄p) + Ld(F̄p) + Lg(F̄p). (7)

For the background classification branch, its loss LB can

be simply computed by setting αp = 1−αp in Eq. 1, 4 and

5. We also impose the LF and LB loss at each decoder

block of two branches to further regulate the behavior of

the network, similar to the side loss used in [24].

Note that the combination of the cross-entropy and the

L1 loss inside the transition regions tries to give larger prob-

abilities than the ground truth values since the cross-entropy

loss will drag the probabilities to 1. Thus, the true alpha val-

ues can be bracketed in the interval formed by the two prob-

abilities predicted by the two branches, since the 1− B̄p in

Eq. 2 should be less than the αp in our setting. This de-

sign enables us to regress for the precise alpha values after

Figure 3. Implicit trimaps predicted by our network for two images

in Fig. 1. The implicit transition regions are indicated by gray pix-

els where the predicted foreground/background probabilities are

less than 1.

applying the fusion network. Moreover, enforcing the fore-

ground and background segmentation branches to be trained

with different losses helps to learn different features of the

input image. These characteristics benefit the result of en-

semble learning. As illustrated in Fig. 3 and Fig. 4, this

design of the segmentation loss does lead to the generation

of meaningful implicit trimaps. Moreover, the alpha values

between 0 and 1 are mostly bracketed by the two predicted

probabilities.

3.3. Fusion Network

The goal of the fusion network is to output βp at pixels to

fuse the foreground and background classification results.

Network structure. It is a fully convolutional network

with five convolution layers and one sigmoid layer to com-

pute the blending weights βp (see Fig. 2). The input of the

network consists of (1) the feature maps from the last block

of the foreground and background decoders; (2) the feature

from the convolution with the input RGB image. We set the

size of convolution kernel to 3 × 3 according to the exper-

iments and found that the fusion network with this kernel

size can better produce the details of the alpha matte.

Training loss. Assuming that the foreground and back-

ground decoders already provide reasonable segmentation

results for the solid pixels, we design the training loss to

lean towards pixels in the transition region. The loss func-

tion of the fusion network can be directly derived according

to Eq. 2:

Lu =
∑

p

wp · |βpF̄p + (1− βp)(1− B̄p)− αp|. (8)

Specifically, the weights of pixels wp are set to 1 whenever

0 < αp < 1, and 0.1 otherwise.

3.4. Training Details

We use DenseNet-201 network pre-trained with

ImageNet-1K [11] as our encoder backbone. We first

perform the segmentation network pre-training for 15

epochs. In the fusion network pre-training step, we freeze
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Figure 4. The bracketed alpha values after segmentation. Left: an

input image. Middle: the ground truth alpha matte. Right: the

groundtruth alpha values of the red highlighted pixels are brack-

eted by two probabilities F̄p and 1 − B̄p which are outputted by

our two decoder branches.

the segmentation stage and train the fusion stage alone for

4 epochs. Finally, we perform the end-to-end joint training

for 7 epochs, which back-propagates the gradient of the

fusion result to both the segmentation and fusion network

to further reduce the training loss. All batch normalization

layers are frozen in the joint training step to save the

memory footprint. Cyclical learning rate strategy [32] is

used to accelerate the convergence speed during the whole

training procedure. The base learning rate is 5.0 × 10−4

for all steps. The maximum learning rate in pre-training

steps is 1.5 × 10−3. A smaller maximum learning rate

1.0× 10−3 is set during the joint training steps.

We also use a special loss while performing the end-to-

end joint training for fine-tuning the whole network. The

loss is based on the loss of the fusion network while adding

the loss of the segmentation network to avoid overfitting.

The overall joint training loss is described as following:

LJ = Lu + w1(LF + LB) + w2Ls. (9)

We set w1 = 0.5 and w2 = 0.01 in our implementation.

The third term Ls is directly adopted from [20] to penalize

the amount of soft segmentation pixels, i.e.:

Ls =
∑

p

αγ
p + (1− αp)

γ , γ ∈ [0, 1]. (10)

where γ is set to 0.9 in our experiments.

4. Experimental Results

In this section, we evaluate our late fusion CNN on two

testing datasets. (1) Human image matting testing dataset,

which is to measure the performance of our method on a

specific task. To this end, we collect 40 human images

in which 29 are from the internet whose alpha mattes are

carefully matted by designers and 11 are from composition-

1k testing dataset in [39] due to their abundant details.

Methods SAD MSE Gradient Connectivity

Shared Matting [19] 16.54 0.022 30.85 15.75

Comprehensive [30] 13.31 0.014 18.92 11.80

Learning Based [27] 15.80 0.020 25.04 13.77

Global Matting [7] 27.47 0.029 33.76 24.98

Closed-form [40] 15.92 0.021 25.71 13.87

KNN Matting [14] 18.27 0.023 25.11 16.88

DCNN [9] 14.92 0.017 21.56 13.02

SHM [6] 13.34 0.017 24.41 12.71

DIM [39] 10.39 0.014 19.20 9.64

Ours-FG/BG-Only-25 20.93 0.033 44.01 20.34

Ours-Fusion-Only-25 14.23 0.019 24.46 13.26

Ours-raw-25 10.08 0.010 15.57 9.24

Ours-refined-25 9.75 0.010 15.60 8.96

Ours-raw-full 10.87 0.002 16.91 9.80

Ours-refined-full 10.49 0.002 16.97 9.52

Table 1. The quantitative results of our human image matting test-

ing dataset. Ours-FG/BG-only: pre-trained segmentation network

stage. Ours-Fusion-only: pre-trained fusion network stage. Ours-

raw: end-to-end jointly trained network. Ours-refined: refined by

guided filter [17]. “-25”: computed in the transition regions gen-

erated by 25 pixels dilation. “-full”: computed over the whole

image.

We compose each testing image with 25 random back-

ground images from PASCAL VOC [12] to form a test-

ing dataset with 1000 images. The training dataset for this

task is independent on the testing images, which consists

of 228 human images with high-quality alpha mattes com-

bined with another 211 human foreground objects from the

DIM dataset [39]. Similarly, we compose these foregrounds

with randomly picked unique background images from MS-

COCO [23] to form the final dataset, totally 28610 images

for training. (2) Composition-1k testing dataset in [39],

which is to evaluate how our network performs on natural

images. This testing dataset contains 1000 images, com-

posed of 50 unique foregrounds and 20 background im-

ages. For this evaluation, we train our network on the DIM

dataset [39] independent on the testing images. It consists

of 431 unique foreground objects with alpha mattes. Each

object is composed of 100 background images randomly

picked from MS-COCO.

For the data augmentation during the training process,

we crop the image and trimap pairs centered on random

pixels in the transition regions indicated by trimaps. The

crop sizes are selected to be 512× 512 and 800× 800. We

also resize all the training images to the size of 512 × 512
to warm-up the network. Random flipping and rotation are

applied to all the cropped and resized training data. Due to

the memory limit, we require the longer side of the image to

be less than 800 in the training. This size constraint is also

imposed during inference. The training time of our network

on a GPU server (configuration: E5-2682 CPU, 32G RAM,

and 8 Tesla P100 graphics cards) is 2.5 days for human im-

age matting dataset and 4 days for the DIM dataset. For
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Image Trimap SSS [2] DIM [39] Ours GT

Figure 5. The visual comparisons on human image matting testing dataset. The segments in SSS [2] are hand-picked.

Image Trimap Closed-form [19] DIM [39] Ours GT

Figure 6. The visual comparisons on the composition-1k testing dataset.

testing, the average running time on a 800 × 800 image is

0.39 seconds.

Evaluation metrics. There are four metrics used in the

evaluations: SAD (sum of absolution difference), MSE

(mean square error), gradient and connectivity defined

in [39] . The lower values of the metrics, the better the

predicted alpha matte is. The details of gradient and con-

nectivity metrics can be found in [27], and they are used to

reflect the visual quality of the alpha matte when observed

by a human. For the computation of all the metrics, after

summing the metrics at each pixel p for a testing image, we

then compute their average over all the images in the testing

dataset.

Evaluation on human image matting testing dataset. To

compare our network with the state-of-the-art image mat-

ting methods, we also train the DIM network on this dataset

by feeding both RGB images and trimaps generated by

random dilation at pixels whose alpha values are neither

0 nor 1, while the transition regions of the trimaps used

for the metric computation are generated by 25 pixels di-

lation. Since narrowing down the image type to human im-

age lowers the difficulty of the segmentation, our network

can closely match the DIM network w.r.t. different met-

rics as reported in Tab. 1. If only computing the metrics

in the trimap transition regions as [39], our method outper-

forms the DIM network in all four metrics (see “ours-raw-
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Image Trimap-less DIM Ours

(a) Trimap-less DIM vs. Ours.

Image DIM+small DIM+large Ours

(b) Our network and DIM using different trimaps.

Figure 7. Comparisons to DIM.Top-left in (b): manually specified

trimaps. ‘small’ and ‘large’ indicate the size of the trimap.

Image Single branch GT

FG BG Ours

Image Single branch GT

FG BG Ours

Figure 8. Self-comparisons. Single branch: our foreground branch

plus the DIM refinement network trained with L1 loss. ‘FG’ and

‘BG’: our foreground and background probability maps.

25” and “ours-refined-25” in Tab. 1). After computing the

four metrics on the whole image, the metrics of our algo-

rithm get increased slightly indicating that the segmentation

error is well controlled in this case (see “ours-raw-full” and

“ours-refine-full” in Tab. 1). The “ours-FG/BG-Only-25”

and “ours-Fusion-Only-25” also verify that the matting re-

sults get improved as we gradually add each sub-network

into late fusion CNN. Fig. 5 illustrates three selected mat-

ting results in the testing images. Note that our network

works well for various poses and scales of the human in the

Methods SAD MSE Gradient Connectivity

Shared Matting [19] 115.20 0.074 139.88 121.35

Comprehensive [30] 109.80 0.066 116.27 107.86

Learning Based [27] 100.51 0.058 94.68 104.74

Global Matting [7] 121.46 0.078 125.11 133.23

Closed-form [40] 121.18 0.076 130.63 120.16

KNN Matting [14] 133.99 0.098 140.29 134.03

DCNN [9] 122.40 0.079 129.57 121.80

DIM-Trimap-less-25 70.31 0.110 70.06 70.05

DIM [39] 33.64 0.017 30.23 31.92

Ours-FG/BG-Only-25 103.21 0.077 91.85 109.27

Ours-Fusion-Only-25 66.05 0.034 69.80 69.80

Ours-raw-25 49.05 0.022 36.58 50.70

Ours-refined-25 49.02 0.020 34.33 50.60

Ours-raw-full 58.34 0.011 41.63 59.74

Ours-refined-full 58.29 0.011 36.58 59.63

Table 2. The quantitative results on the Composition-1k testing

dataset. The metrics measured on our results are same with

Tab. 1. ‘DIM-Trimap-less-25’ denotes the results of the DIM

method without trimap as input during training.

foreground. For instance, the woman viewed from the back

(second row in Fig. 5) is difficult for the deep automatic

portrait matting [31].

Evaluation on composition-1k testing dataset. Fig. 6

shows three qualitative results and visual comparisons on

this dataset. It can be observed that our results are com-

parable to the results of the DIM [39] even in challenging

lace image case. The corresponding metrics are reported

in Tab. 2. Due to the image size constraint imposed in

the training of late fusion CNN, we also compute the met-

rics of the DIM network on the resized testing images for

a consistent comparison. We first compute the four met-

rics inside the transition regions in the trimaps provided in

the testing dataset, a similar strategy adopted in [39]. It is

easy to observe that our method surpasses all the non-CNN

image matting methods on this dataset by a large margin

since our network can exploit multi-scale features to bet-

ter understand the semantics in the image. Comparing to

CNN-based method, our network is better than DCNN but

still inferior to DIM. It is as expected since DIM requests a

much stronger input compared to our setting. Specifically,

the trimap fed into the DIM network can avoid the possible

segmentation errors in our case. After computing the met-

rics over the complete dataset, our results still rank No.2.

To further verify whether or not the refinement network

used in [39] can correct the residual left in single classi-

fication branch results, we train the DIM network without

input trimap channel as a comparison and report the re-

sult of this setup in the row of ”DIM-Trimap-less-25” in

Tab. 2. The qualitative comparison is illustrated in Fig. 7.a.

Fig.7.b shows two additional qualitative comparisons where

the DIM network is fed with the manually specified trimaps.

It demonstrates that the quality of the matting results of the

DIM network downgrades as the size of the transition region
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Figure 9. Internet image matting results.

increases. Therefore, it is important to have image matting

algorithms robust to the trimap quality.

Self-comparisons. The two-branch design provides three

degrees of freedoms, which allows the optimizer to balance

among them for better results. The single branch network

in Fig. 8 is created by discarding the background and fu-

sion branch. Similar to the DIM method, we also add a

fully convolutional network as refinement and use L1 loss

only during training. Its results contain segmentation errors,

which are removed by the two-branch network, as illus-

trated in Fig. 8. In contrast, the foreground and background

probability maps of our method are more ‘solid’ in the non-

transition regions since our segmentation loss there favors a

hard segmentation. The final results of our late-fusion CNN

demonstrate that our fusion network is able to fuse the fore-

ground and background probability maps for detailed alpha

mattes (see the second and fourth row of Fig. 8).

Evaluation on internet images. Fig. 1 and Fig. 9 shows

the matting results for collected internet images to test the

generalization ability of our method.2 All the human image

matting results are obtained through our network trained

with human image matting dataset, and the other results

are from the late fusion CNN trained with the DIM dataset.

The results prove that our network has the ability to cap-

ture transition regions of different types of various objects.

However, the difficulty in capturing the semantic feature of

2Please see the supplementary material for more matting results.

the foreground can possibly lead to segmentation errors in

our results, for example, the error around the mouth of the

horse as shown in the bottom row of Fig. 9.

5. Conclusions and Future Work

In this paper, we proposed a late fusion fully convolu-

tional neural network for image matting. It utilizes two

decoder branches for foreground/background classification

and fuses the classification results to obtain the final alpha

values through a fusion network. The network does not

need trimap as input, which greatly improves the efficiency

of the image matting.

In the future, we would like to explore how to improve

the decoder network structure to further reduce segmenta-

tion errors. The recent development of multi-scale feature

fusion network, such as Refine-net [21], can be tested in

the late fusion CNN. It is also interesting to explore how to

apply the two-branch design to video object matting.
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