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Abstract

Fluorescence microscopy has enabled a dramatic devel-

opment in modern biology. Due to its inherently weak sig-

nal, fluorescence microscopy is not only much noisier than

photography, but also presented with Poisson-Gaussian

noise where Poisson noise, or shot noise, is the dominating

noise source. To get clean fluorescence microscopy images,

it is highly desirable to have effective denoising algorithms

and datasets that are specifically designed to denoise fluo-

rescence microscopy images. While such algorithms exist,

no such datasets are available. In this paper, we fill this gap

by constructing a dataset - the Fluorescence Microscopy

Denoising (FMD) dataset - that is dedicated to Poisson-

Gaussian denoising. The dataset consists of 12,000 real

fluorescence microscopy images obtained with commercial

confocal, two-photon, and wide-field microscopes and rep-

resentative biological samples such as cells, zebrafish, and

mouse brain tissues. We use image averaging to effectively

obtain ground truth images and 60,000 noisy images with

different noise levels. We use this dataset to benchmark

10 representative denoising algorithms and find that deep

learning methods have the best performance. To our knowl-

edge, this is the first real microscopy image dataset for

Poisson-Gaussian denoising purposes and it could be an

important tool for high-quality, real-time denoising appli-

cations in biomedical research.

1. Introduction

Fluorescence microscopy is a powerful technique that

permeates all of biomedical research [15]. Confocal [23],

two-photon [9], and wide-field [26] microscopes are the

most widely used fluorescence microscopy modalities that

are vital to the development of modern biology. Fluores-

cence microscopy images, however, are inherently noisy

because the number of photons captured by a microscopic
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Figure 1. Examples of images with different noise levels and

ground truth. The single-channel (gray) images are acquired with

two-photon microscopy on fixed mouse brain tissues. The multi-

channel (color) images are obtained with two-photon microscopy

on fixed BPAE cells. The ground truth images are estimated by

averaging 50 noisy raw images.

detector, such as a photomultiplier tube (PMT) or a charge

coupled device (CCD) camera, is extremely weak (∼ 102

per pixel) compared to that in photography (∼ 105 per

pixel [21]). Consequently, the measured optical signal in

fluorescence microscopy is quantized due to the discrete na-

ture of photons, and fluorescence microscopy images are

dominated by Poisson noise, instead of Gaussian noise that

denominates in photography [22]. One way to obtain clean

images is to increase the power of the excitation laser or

lamp, but the excitation power is not only limited by the

dosage of light a biological sample can receive, but also

fundamentally limited by the fluorescence saturation rate;

i.e., the fluorescence signal will stop to increase when the

excitation power is too high [32]. Alternatively, one can

get clean images by increasing the imaging time, e.g., pixel

dwell time, exposure time, number of line or frame aver-

ages; this, however, may cause photodamage to the sample.

Moreover, for dynamic or real-time imaging, increasing the
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imaging time may be impossible since each image has to be

captured within tens of milliseconds. Therefore, develop-

ing an algorithm to effectively denoise (reduce the noise in)

a fluorescence microscopy image is of great importance to

biomedical research. Meanwhile, a high-quality denoising

dataset is necessary to benchmark and evaluate the effec-

tiveness of the denoising algorithm.

Most of the image denoising algorithms and datasets are

created for Gaussian noise dominated images, with a recent

focus on denoising with real noisy images, such as smart

phones [1] or digital single-lens reflex camera (DSLR) im-

ages [24]. However, there is a lack of a reliable Poisson

noise dominated denoising dataset comprising of real flu-

orescence microscopy images. The goal of this work is to

fill this gap. More specially, we create a Poisson-Gaussian

denoising dataset - the Fluorescence Microscopy Denoising

(FMD) dataset - consisting of 12,000 real noisy microscopy

images which cover the three most widely used imaging

modalities, i.e., confocal, two-photon, and wide-field, as

well as three representative biological samples including

cells, zebrafish, and mouse brain tissues. With high-quality

commercial microscopy, we use image averaging to effec-

tively obtain ground truth images and noisy images with five

different noise levels. Some image averaging examples are

shown in Figure 1. We further use this dataset to bench-

mark classic denoising algorithms and recent deep learning

models, with or without ground truth. Our FMD dataset is

publicly available1, including the code for the benchmark2.

To our knowledge, this is the first dataset constructed from

real noisy fluorescence microscopy images and designed for

Poisson-Gaussian denoising purposes.

2. Related Work

There are consistent efforts in constructing denois-

ing dataset with real images to better capture the

real-world noise characteristics and evaluate denoising

algorithms, such as RENOIR [4], Darmstadt Noise

Dataset [24], Smartphone Image Denoising Dataset [1], and

PolyU Dataset [28]. Those datasets contain real images

taken from either DSLR or smartphones with different ISOs

and different number of scenes. The dominating noise in

those images is Gaussian or Poisson-Gaussian in real low-

light conditions. However, there is no dedicated dataset for

Poisson noise dominated images, which are inherently dif-

ferent from Gaussin denoising datasets. This work is dedi-

cated for fluorescence microscopy denoising where the im-

ages are corrupted by Poisson-Gaussian noise; in particular,

Poisson noise, or shot noise, is the dominant noise source.

Image averaging is the most used method to obtain

ground truth images when constructing denoising dataset.

1http://tinyurl.com/y6mwqcjs
2https://github.com/bmmi/denoising-fluorescence

The main efforts are spent on image pre-processing, such as

image registration to remove the spatial misalignment of an

image sequence with the same field of view (FOV) [3, 1], in-

tensity scaling due to the changes of light strength or analog

gain [24], and methods to cope with clipped pixels due to

over exposure or low-light conditions [4]. The images cap-

tured by commercial microscopes in our dataset turns out to

be well aligned, and the analog gain is carefully chosen to

avoid clipping and to utilize the full dynamic range.

There are two main approaches to denoise an image

corrupted by Poisson-Gaussian noise. One way is to di-

rectly apply an effective denoising algorithm, such as the

PURE-LET method [17], which is designed to handle the

Poisson-Gaussian denoising problem based on the statistics

of the noise model. Another approach is using a nonlin-

ear variance-stabilizing transformation (VST) to convert the

Poisson-Gaussian denoising problem into a Gaussian noise

removal problem, which is well studied with a consider-

able amount of effective denoising algorithms to choose

from, such as NLM, BM3D, KSVD, EPLL, and WNNM

[6, 8, 2, 33, 11] etc. The VST-based denoising process

generally involves three steps. First, the noisy raw images

are transformed using a VST designed for the noise model.

In our case, we use the generalized Anscombe transfor-

mation (GAT) that is designed for Poisson-Gaussian noise

[19]. The VST is able to remove the signal-dependency of

the Poisson component, whose noise variance varies with

the expected pixel value, and results in a modified image

with signal-independent Gaussian noise only and a constant

(unitary) noise variance. Next, a Gaussian denoising algo-

rithm is applied to the transformed image. And finally, the

Gaussian-denoised data is transformed back via an inverse

VST algorithm, such as the exact unbiased inverse transfor-

mation [19], and the estimation of the noise-free image is

obtained.

Recently there is an increasing interest in deep learn-

ing based methods for image denoising, where fully con-

volutional networks (FCNs) [16] are used for this image-

to-image regression problem. With residual learning and

batch normalization, DnCNN [30] reports better perfor-

mance than traditional denoising methods such as BM3D.

Further development towards blind image denoising in-

cludes incorporating non-uniform noise level map in the

input of FFDNet [31], or noise estimation network as in

CBDNet [12], or utilizing the non-local self-similarity in

UDNet [13] and [25]. These methods all require clean im-

ages to supervise the training. There are also progress on

denoising methods without paired clean images [7] using

generative adversarial networks to learn the noise model.

In [14], a Noise2Noise model is trained without clean im-

ages at all and outperforms VST+BM3D by almost 2dB on

synthetic Poisson noise.

We perform intensive study of the noise statistics of the
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FMD dataset and show that the noise is indeed Poisson-

dominated for two-photon and confocal microscopy, and

has larger Gaussian component for wide-field microscopy.

We then benchmark 10 representative denoising algorithms

on the FMD dataset, and show better denoising performance

with deep learning models than with traditional methods on

the real noisy images.

3. Noise Modeling in Fluorescence Microscopy

The microscopy imaging system is modeled with a

Poisson-Gaussian noise model [10, 19]. The model is com-

posed of a Poisson noise component that accounts for the

signal-dependent uncertainty, i.e., shot noise, and an addi-

tive Gaussian noise component which represents the signal-

independent uncertainty such as thermal noise. Specifically,

let zi, i = 1, 2, · · · , N , be the measured pixel values ob-

tained with a PMT or a CCD, and

zi = yi + ni = yi + np(yi) + ng, (1)

where yi is the ground truth and ni is the noise of the

pixel; the noise ni is composed of two mutually indepen-

dent parts, np and ng , where np is a signal-dependent Pois-

son noise component that is a function of yi, and ng is a

signal-independent zero-mean Gaussian component. De-

noting a > 0 as the conversion or scaling coefficient of

the detector, i.e., a single detected photon corresponds to a

measured pixel value of a, and b ≥ 0 as the variance of the

Gaussian noise, we can describe the Poisson and Gaussian

(normal) distributions as

(yi + np(yi))/a ∼ P(yi/a), ng ∼ N (0, b). (2)

Note that a is related to the quantum efficiency of the detec-

tor. Assuming that the Poisson and Gaussian processes are

independent, the probability distribution of zi is the convo-

lution of their individual distributions, i.e.,

p(zi) =

+∞∑

k=0

((
yi

a

)k
e−

yi
a

k!
× 1√

2πb
e−

(zi−ak)2

2b

)
. (3)

The denoising problem of a microscopy image is then to es-

timate the underlying ground truth yi given the noisy mea-

surement of zi.
To denoise a fluorescence microscopy image, one can

use algorithms that are specifically designed for Poisson-

Gaussian denoising. A more common approach is us-

ing VST to stabilize the variance such that the denoising

task can be tackled by a well-studied Gaussian denoising

method. As a representative VST method, GAT transforms

the measured pixel value zi in the image to

f(zi) =
2

a

√
max

(
azi +

3

8
a2 + b, 0

)
, (4)

which stabilizes its noise variance to approximately unity,

i.e., Var{f(zi)} ≈ 1. A Gaussian denoising algorithm,

such as NLM and BM3D, can then be applied to f(zi) be-

cause its noise can be considered as a signal-independent

Gaussian process with zero mean and unity variance. Once

the denoised version of f(zi), denoted as D(zi), is ob-

tained, an inverse VST is used to estimate the signal of in-

terest yi. However, simply applying an algebraic inverse

f−1 to D will generally result in a biased estimate of yi.
An asymptotically unbiased inverse can mitigate the bias,

but the denoising accuracy will be problematic for images

with low signal levels, a common property of fluorescence

microscopy images [29]. To address this problem, we use

the exact unbiased inverse transformation, which can es-

timate the signal of interest accurately even at low signal

levels [19]. In practice, since the exact unbiased inverse

requires tabulation of parameters, one can employ a closed-

form approximation of it [18], i.e.,

Ĩ(D) =
1

4
D2 +

1

4

√
3

2
D−1 − 11

8
D−2 +

5

8

√
3

2
D−3 − 1

8
.

(5)

The closed-form approximation ensures the denoising ac-

curacy while reducing the computational cost, and the esti-

mated noise-free signal is ỹi = Ĩ[D(zi)].
To evaluate and benchmark the performances of differ-

ent denoising algorithms, a ground truth and images with

various noise levels are needed, which can be obtained by

averaging a series of noisy raw fluorescence microscopy im-

ages taken on the same FOV. In this work, the raw images

are the immediate outputs of microscopy detectors, without

any preprocessing. The averaging is performed after ensur-

ing that no image shift larger than a half-pixel can be de-

tected by an image registration algorithm. Since for differ-

ent raw images, their Poisson-Gaussian random processes

are independent, the average of S noisy raw images, vSi ,

can be written as

vSi =
1

S

S∑

j=1

zji =
a

S

S∑

j=1

yi + nj
p(yi)

a
+

1

S

S∑

j=1

nj
g (6)

∼ a

S
P
(
Syi
a

)
+

1

S
N (0, Sb),

where nj
p and nj

g are the noise realizations of the j-th noisy

image. Based on the properties of Poisson and Gaussian

distributions, the mean and variance of the averaged image,

vSi , can be written as

E[vSi ] = yi, Var[vSi ] =
a

S
yi +

b

S
. (7)

As the number of noisy images used for averaging in-

creases, the noise of ground truth estimation,
√
Var[vSi ],

decreases, while the ground truth signal, E[vSi ] is invariant;
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Figure 2. Examples of raw fluorescence microscopy images and

their estimated ground truth from our FMD dataset. Shown here

are FOVs from different microscopy modalities on different bio-

logical samples.

therefore, image averaging is equivalent to increasing the

signal-to-noise ratio (SNR) of estimating the ground truth.

We make S = 1, 2, 4, 8, 16 to create images with five differ-

ent noise levels, and S = 50 to generate the ground truth.

As demonstrated in [3] and also shown in Section 4.3, for

fluorescence microscopy images, little image quality im-

provement can be seen after including around 40 images

in averaging.

4. Dataset

In this Section, we describe the experimental setup that

we used to acquire the fluorescence microscopy images. We

then discuss how the raw images are utilized to estimate

ground truth as well as images with different noise levels.

Finally we present the statistics as well as the estimated

noise levels of our dataset.

4.1. Image Acquisition Setup

Our FMD dataset covers the three main modalities

of fluorescence microscopy: confocal, two-photon, and

wide-field. All images were acquired with high-quality

commercial fluorescence microscopes and imaged with

real biological samples, including fixed bovine pulmonary

artery endothelial (BPAE) cells [labeled with MitoTracker

Red CMXRos (mitochondria), Alexa Fluor 488 phal-

loidin (F-actin), and DAPI (nuclei); Invitrogen FluoCells

F36924], fixed mouse brain tissues (stained with DAPI

and cleared), and fixed zebrafish embryos [EGFP labeled

Tg(sox10:megfp) zebrafish at 2 days post fertilization]. All

animal studies were approved by the university’s Institu-

tional Animal Care and Use Committee.

To acquire noisy microscopy images for denoising pur-

poses, we kept an excitation laser/lamp power as low as
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Figure 3. Estimated translation along x and y axes, both within a

half-pixel (0.5). The estimation is performed on the 20-th FOV

of each imaging configuration. Each line in a plot shows the es-

timation of one of the 12 configurations (different modalities on

different samples).

possible for all imaging modalities. Specifically, the ex-

citation power was low enough to generate a very noisy

image, and yet high enough such that the image features

were discernible. We also manually set the detector/camera

gain to a proper value to avoid clipping and to fully uti-

lize the dynamic range. Although pixel clipping could be

inevitable because distinct biological structures with vari-

ous optical properties could generate extremely bright fluo-

rescence signals that could easily saturate the detector, we

were able to maintain a very low number of clipped pixels

(less than 0.2% of all pixels) in all imaging configurations.

A table summarizing the percentages of clipped pixels to all

pixels in the images is presented in the supplementary ma-

terial. The details of the fluorescence microscopy setups,

including a Nikon A1R-MP laser scanning confocal micro-

scope and a Nikon Eclipse 90i wide-field fluorescence mi-

croscope, can also be found in the supplementary material.

For any imaging modality, each sample was imaged with

20 different FOVs, and each FOV was repeatedly captured

for 50 times as 50 noise realizations. The acquired images

were preprocessed and used for noisy image and ground

truth estimation as described in Section 4.2. Figure 2 shows

some example images of a single FOV from different imag-

ing modalities and different samples.

4.2. Noisy Image and Ground Truth Estimation

Image registration The approach to estimate ground

truth by averaging a sequence of captures usually comes

with the issue of spatial misalignment, which is typical in

photos taken by smartphones and DSLR. We use intensity-

based image registration to register a sequence of image

with the same FOV against the mean image of the sequence,

but find that the estimated global translations in both x and

y axis are less than a half-pixel (0.5), as shown in Fig-

ure 3. Translation in sub-pixel smooths out noisy images,

and thus destroys the realness of Poisson noise which is

the main characteristic of our dataset. In short, the image
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sequence obtained by the commercial fluorescence micro-

scopes is already well aligned; thus image registration is

not performed.

Different noise levels As described in Section 4.1, the

raw images are acquired with a low excitation power thus

a relatively high noise level (low SNR) to increase the dif-

ficulty of denoising task. Meanwhile, the raw images with

high noise levels allow us to create images with lower noise

levels by image averaging. Particularly, we obtain aver-

aged images with four extra noise levels by averaging S
(S = 2, 4, 8, 16) raw images, respectively, within the same

sequence (FOV) of 50. We sequentially select each image

within the sequence; for each selected image, S − 1 images

next to it are circularly selected; the S selected images in

total are used for averaging. Using this circular averaging

method, we are able to obtain the same number of averaged

images as the number of raw images in the sequence, i.e.,

50; meanwhile, the newly generated 50 raw images can be

considered as 50 different noise realizations. In this way,

the amount of noisy images in the dataset can be increased

to five-fold (S = 1, 2, 4, 8, 16). Some example images with

different noise levels are shown in Figure 1. As also shown

in Table 2, the peak signal-to-noise ratio (PSNR) of the av-

eraged images increases as the number of raw images used

for averaging increases.

Ground truth estimation We estimate the ground truth

by averaging all 50 captures on the same FOV, similar to

the approaches employed in [3] and [17]; hence in the FMD

dataset, each FOV has only one ground truth that is shared

by all noise realizations from that FOV. As demonstrated in

[3] and also shown in Section 4.3, the image quality or noise

characteristics of a fluorescence microscopy image will see

little improvement after including around 40 images in the

average; therefore, we choose 50 captures as our criterion to

obtain the ground truth. As shown in Equations (6) and (7),

the ground truth yi for images with different noise levels zji
is the same, and image averaging is equivalent to sampling

from a Poisson-Gaussian distribution with a higher SNR.

Regardless of the number of images used for averaging, the

mean stays the same and equals to the ground truth. Fig-

ure 1 shows two ground truth images as well as their corre-

sponding noise realizations.

4.3. Dataset Statistics and Noise Estimation

Taking the combination of each sample (the BPAE cells

are considered as three samples due to its fluorophore com-

position) and each microscopy modality as a configuration,

the FMD dataset includes 12 different imaging configura-

tions that are representative of almost all fluorescence mi-

croscopy applications in practice. For each configuration,

we capture 20 different FOVs of the sample, and for each

Modality Samples a b

CF BPAE (Nuclei) 1.39×10−2 -2.16×10−4

CF BPAE (F-actin) 1.37×10−2 -1.85×10−4

CF BPAE (Mito) 1.21×10−2 -1.54×10−4

CF Zebrafish 9.43×10−2 -1.60×10−3

CF Mouse Brain 1.94×10−2 -2.68×10−4

TP BPAE (Nuclei) 3.31×10−2 -8.39×10−4

TP BPAE (F-actin) 2.55×10−2 -5.43×10−4

TP BPAE (Mito) 2.10×10−2 -4.57×10−4

TP Mouse Brain 3.38×10−2 -9.16×10−4

WF BPAE (Nuclei) 2.29×10−4 2.35×10−4

WF BPAE (F-actin) 1.94×10−3 1.91×10−4

WF BPAE (Mito) 3.55×10−4 1.95×10−4

Table 1. Estimation of noise parameters (a, b) of the FMD dataset.

The shown a and b are average estimation values of 20 raw noisy

images from 20 different FOVs (one raw image from each FOV).

CF, confocal; TP: two-photon; WF: wide-field.

Figure 4. Estimated noise parameters (a and b) of averaged im-

ages obtained with different raw image numbers in the average.

The estimation is performed on the second FOV of each imaging

configuration.

FOV, we acquire 50 raw images. Meanwhile, the 50 raw

images in a FOV can be extended to five-fold using the cir-

cular averaging method described in Section 4.2. There-

fore, in total, the dataset has 12 × 20 = 240 FOVs or

ground truth images, 240 × 50 = 12, 000 raw images, and

12, 000× 5 = 60, 000 noisy images as noise realizations.

While there are blind denoising methods (e.g., DnCNN)

that are able to denoise an image without any additional

information, most denoising algorithms such as NLM and

BM3D, however, require an estimate of the noise levels pre-

sented in the image. In this work, we employ the noise es-

timation method in [10] to estimate the Poisson-Gaussian

noise parameters, a and b, described in Section 3. The esti-

mated values of a and b not only are needed in the bench-

mark of various denoising algorithms, they also reflect the

characteristics of the noise presented in an images. Specif-
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ically, since Poisson-Gaussian noise is a mixture of both

Poisson and Gaussian noises, which are parameterized by a
and b, respectively, an image with a large estimate value of

a but a small b may be considered as a Poisson noise domi-

nated image, while a small a with a large b can indicate that

the image is Gaussian noise dominated. In fluorescence mi-

croscopy, however, it is unlikely to have a Gaussian noise

dominated image due to the low signal levels; most fluores-

cence microscopy images are Poisson noise, or shot noise,

dominated, with certain types of microscopes, such as wide-

field ones, have a considerable amount of Gaussian noise

involved [5, 20]. Note that the noise estimation program

from [10] could generate a negative b value when the Gaus-

sian noise component is small relative to the pedestal level

(offset-from-zero of output). This, however, does not mean

that the image has a “negative” Gaussian noise variance.

More details can be found in [10]. In practice, when b is

estimated to be negative, we make it zero in the subsequent

PURE-LET and VST-based algorithms.

We evaluate the noise characteristics of our FMD dataset

by estimating the noise parameters of raw noisy image (1

in each FOV, 240 in total). The estimated a and b are then

grouped according to their corresponding imaging configu-

rations (20 FOVs in each configuration, 12 configurations

in total) and averaged. The results are presented in Ta-

ble 1. For confocal and two-photon microscopy, the es-

timated a are comparably large while the b are negative;

hence confocal and two-photon images are Poisson noise

dominated. For wide-field microscopy, however, the a are

much smaller than above, possibly due to the much lower

sensitivity of CCD cameras used in wide-field microscopy

compared to the PMTs used in confocal and two-photon mi-

croscopy; meanwhile, the b are now all positive, which indi-

cates that wide-field images have a mixed Poisson-Gaussian

noise with a considerable amount of Gaussian noise pre-

sented. We further evaluate the effect of image averaging on

its noise characteristics. Figure 4 shows the estimated a and

b values when different number of images, S, are included

in the average. The results are in good agreement with the

theory in Equation 7 and the observations in Table 1, as the

estimated parameters follow the trend of a/S and b/S, and

their initial values (S = 1) are close to the ones in Table 1.

Figure 4 also shows that the values of a and b exhibit little

change when the number of captures used for averaging is

more than 40; this confirms the observation reported in [3]

that the image quality or noise characteristics of a fluores-

cence microscopy image will see little improvement after

including around 40 images in the average.

5. Benchmark

In this Section we benchmark several representative

denoising methods, including deep learning models, on

our fluorescence microscopy images with real Poisson-

Gaussian noise. We show that deep learning models per-

form better than traditional methods on the FMD dataset.

5.1. Setup

The FMD dataset is split to training and test sets, where

the test set is composed of images randomly selected from

the 19-th FOV of each imaging configuration and noise lev-

els (the rest 19 FOVs are for training and validation pur-

poses). The mixed test set consists of 4 images randomly

selected from the 19-th FOV of 12 imaging configurations

(combination of microscopy modalities and biological sam-

ples), organized in different noise levels. Thus we have 5

mixed test sets each of which have 48 noisy images with a

specific noise level corresponding to 1 (raw), 2, 4, 8, and 16

times averaging. We also test the denoising algorithms on

all 50 images from the same FOV (19-th) of a specific imag-

ing configuration, also organized in different noise levels,

with denoising results shown in the supplementary material.

Considering GPU memory constraint for training fully

convolutional networks [30, 14] on large images, we crop

the raw images of size 512 × 512 to four non-overlapping

patches of size 256×256. We evaluate the computation time

on Intel Xeon CPU E5-2680, and additionally on Nvidia

GeForce GTX 1080 Ti GPU for deep learning models.

The 10 benchmarked algorithms in this work can be di-

vided into three categories. The first category is for the

methods that are specifically designed for Poisson-Gaussian

denoising; we benchmark PURE-LET [17], an effective and

representative Poisson-Gaussian denoising algorithm. The

second category is for using well-studied Gaussian denois-

ing methods in combination with VST and inverse VST;

we combine GAT and the exact unbiased inverse transfor-

mation with classical denoising algorithms including NLM

[6], BM3D [8], KSVD and its two variants KSVD(D) (over-

complete DCT dictionary) and KSVD(G) (global or given

dictionary) [2], EPLL [33], and WNNM [11]. The last cat-

egory is for deep learning based methods; we benchmark

DnCNN [30] and Noise2Noise [14]. Note that the estima-

tion of noise parameters a (scaling coefficient) and b (Gaus-

sian noise variance) are required for the algorithms in the

first and second categories to work. The estimation is per-

formed according to Section 4.3 and then the images as well

as the estimated parameters are sent to the denoising algo-

rithms.

For benchmarking deep learning methods, unlike previ-

ous work [1] that directly tests with the pre-trained models,

we re-train these models with the same network architec-

ture and similar hyper-parameters on the FMD dataset from

scratch. Specifically, we compare two representative mod-

els, one of which requires ground truth (DnCNN) and the

other does not (Noise2Noise).
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Number of raw images for averaging

Methods 1 2 4 8 16 Time

Raw 27.22 / 0.5442 30.08 / 0.6800 32.86 / 0.7981 36.03 / 0.8892 39.70 / 0.9487 -

VST+NLM [6] 31.25 / 0.7503 32.85 / 0.8116 34.92 / 0.8763 37.09 / 0.9208 40.04 / 0.9540 137.10 s

VST+BM3D [19] 32.71 / 0.7922 34.09 / 0.8430 36.05 / 0.8970 38.01 / 0.9336 40.61 / 0.9598 5.67 s

VST+KSVD [2] 32.02 / 0.7746 33.69 / 0.8327 35.84 / 0.8933 37.79 / 0.9314 40.36 / 0.9585 341.21 s

VST+KSVD(D) [2] 31.77 / 0.7712 33.45 / 0.8292 35.67 / 0.8908 37.69 / 0.9300 40.32 / 0.9579 67.96 s

VST+KSVD(G) [2] 31.98 / 0.7752 33.64 / 0.8327 35.83 / 0.8930 37.82 / 0.9312 40.44 / 0.9584 58.82 s

VST+EPLL [33] 32.61 / 0.7876 34.07 / 0.8414 36.08 / 0.8970 38.12 / 0.9349 40.83 / 0.9618 288.63 s

VST+WNNM [11] 32.52 / 0.7880 34.04 / 0.8419 36.04 / 0.8973 37.95 / 0.9334 40.45 / 0.9587 451.89 s

PURE-LET [17] 31.95 / 0.7664 33.49 / 0.8270 35.29 / 0.8814 37.25 / 0.9212 39.59 / 0.9450 2.61 s

DnCNN [30] 34.88 / 0.9063 36.02 / 0.9257 37.57 / 0.9460 39.28 / 0.9588 41.57 / 0.9721 3.07 s†

Noise2Noise [14] 35.40 / 0.9187 36.40 / 0.9230 37.59 / 0.9481 39.43 / 0.9601 41.45 / 0.9724 2.94 s†

Table 2. Denoising performance using the mixed test set, which includes confocal, two-photon, and wide-field microscopy images. PSNR

(dB), SSIM, and denoising time (seconds) are obtained by averaging over 48 noise realizations in the mixed test set for each of 5 noise

levels. Results of DnCNN and Noise2Noise are obtained by training on dataset with all noise levels. All 50 captures of each FOV (except

the 19-th FOV which is reserved for test) are included in the training set, with 1 (DnCNN) or 2 (Noise2Noise) samples of which randomly

selected from each FOV when forming mini-batches during training for 400 epochs. †Note that test time for deep learning models on GPU

is faster in orders of magnitude, i.e. 0.62 ms for DnCNN and 0.99 ms for Noise2Noise on single GPU in our experiment.

5.2. Results and Discussion

The benchmark denoising results on the mixed test set is

shown in Table 2, including PSNR, structural similarity in-

dex (SSIM) [27] and denoising time. From the table, BM3D

(in combination with VST) is still the most versatile tradi-

tional denoising algorithm regarding its high PSNR and rel-

atively fast denoising speed. PURE-LET, though its PSNR

is not the highest, is the fastest denoising method among

all the benchmarked algorithms thanks to its specific de-

sign for Poisson-Gaussian denoising. Finally, deep learn-

ing models outperform the other 8 methods by a significant

margin in all noise levels, both in terms of PSNR and SSIM,

even thought they are blind to noise levels. This is differ-

ent from the observation made before in [1, 24], probably

because the nature of Poisson dominated noise is different

from Gaussian noise while most of the denoising methods

are developed for Gaussian noise model. Even if we ap-

plied the VST before Gaussian denoising, the transformed

noise may still be different from a pure Gaussian one. More

importantly, here the models are re-trained with our FMD

dataset instead of pre-trained on other datasets.

The training data for deep learning models includes all

imaging configurations and noise levels; thus we use one

trained model to perform blind denoising on various imag-

ing configurations and noise levels. We confirm that overall

the Noise2Noise model has similar denoising performance

as DnCNN, but without the need of clean images, and with

almost 2dB higher than VST+BM3D in PSNR [14]. It even

performs slightly better than DnCNN in the high noise do-

main, which is desirable in practice.

We investigate the effect of adding batch normalization

layers for the Noise2Noise model (i.e. N2N-BN in Fig-
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Figure 5. Test PSNR on the mixed test set with raw images dur-

ing training. Each training epoch contains 18240 (5 × 12 ×
19 × 16) images of size 256 × 256. Given enough training time

(e.g. 400 epochs), Noise2Noise eventually outperforms DnCNN

and VST-BM3D. Batch normalization helps stabilize training for

Noise2Noise, and for DnCNN, residual learning does help im-

prove denoising.

Table 3. PSNR (dB) on raw images in the mixed test set for the

models trained with different learning rate.

Learn. Rate 1E-3 5E-4 1E-4 5E-5 1E-5

DnCNN 34.61 - 34.88 34.62 34.01

N2N 34.98 35.19 35.40 35.49 34.65

N2N-BN 35.15 35.07 35.12 35.12 34.60

DnCNN2 33.30 - 34.35 - 33.41

ure 5), which does help stabilize the training process even

when the learning rate is relatively large (e.g. 0.001), but

does not improve PSNR when the learning rate is well

turned (e.g. 0.0001 which is the learning rate for bench-

mark). We also train DnCNN without residual learning

(DnCNN-NRL) where the model directly outputs the de-

noised image instead of the residual between clean and

noisy images, and confirm it is worse than the model with
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(a) Noisy (b) VST+NLM (c) VST+BM3D (d) VST+KSVD (e) VST+KSVD(D) (f) VST+KSVD(G)

(g) VST+EPLL (h) VST+WNNM (i) PURE-LET (j) DnCNN (k) Noise2Noise (l) Ground Truth

Figure 6. Benchmark results for raw single-channel (gray) images

(zebrafish embryo under confocal microscopy). PSNR and SSIM

values are in Table 4.

residual learning (DnCNN-RL), as has been reported in

[30]. The test performance for the mixed test set with raw

images during training is shown in Figure 5 and the PSNR

for each case is shown in Table 3.

We also show benchmark results of the 10 algorithms

on raw single-channel (gray) and raw multi-channel (color)

confocal images in Figures 6 and 7, respectively, where the

PSNR and SSIM of the color images are the mean values of

that of their three channels.

The denoising time for deep learning models is the time

to pass a mini-batch of four 256×256 patches cropped from

one 512 × 512 image through the network. Deep learn-

ing models have similar denoising time with that of VST-

BM3D and PURE-LET when running on CPU. However,

the denoising time can be reduced to less than 1 ms when

running on GPU, which potentially enables real-time de-

noising up to 100 frames per second, which is out of reach

of traditional denoising methods. With such a denoising

speed and high performance, deep learning denoising meth-

ods could dramatically benefit real-time fluorescence mi-

croscopy imaging, which allows biomedical researchers to

observe the fast and dynamic biological processes in a much

improved quality and to see processes that cannot be clearly

seen before.

6. Conclusion

In this work, we have constructed a dedicated denois-

ing dataset of real fluorescence microscopy images with

Poisson-Gaussian noise, which covers most microscopy

modalities. We have used image averaging to obtain ground

truth and noisy images with 5 different noise levels. With

this dataset, we have benchmarked representative denoising

algorithms for Poisson-Gaussian noise including the most

recent deep learning models. The benchmark results show

(a) Noisy (b) VST+NLM (c) VST+BM3D (d) VST+KSVD (e) VST+KSVD(D) (f) VST+KSVD(G)

(g) VST+EPLL (h) VST+WNNM (i) PURE-LET (j) DnCNN (k) Noise2Noise (l) Ground Truth

Figure 7. Benchmark results for raw multi-channel (color) images

(BPAE cells under confocal microscopy). PSNR and SSIM values

are in Table 4.

Table 4. Benchmark results [PSNR (dB) / SSIM] for confocal im-

ages of zebrafish embryo (Figure 6) and BPAE cells (Figure 7).

Methods Zebrafish BPAE

Raw 22.71 / 0.4441 30.67 / 0.7902

VST+NLM 28.49 / 0.7952 34.74 / 0.9108

VST+BM3D 31.99 / 0.8862 35.86 / 0.9338

VST+KSVD 29.25 / 0.8234 35.72 / 0.9209

VST+KSVD(D) 29.04 / 0.8212 35.47 / 0.9139

VST+KSVD(G) 29.23 / 0.8232 35.63 / 0.9176

VST+EPLL 31.71 / 0.8711 35.72 / 0.9335

VST+WNNM 31.22 / 0.8702 35.89 / 0.9322

PURE-LET 30.59 / 0.8332 35.18 / 0.9262

DnCNN 32.35 / 0.8991 36.15 / 0.9413

Noise2Noise 33.02 / 0.9109 36.35 / 0.9441

that deep learning denoising models trained on our FMD

dataset outperforms other methods by a large margin across

all imaging modalities and noise levels. We have made our

FMD dataset publicly available as a benchmark for Poisson-

Gaussian denoising research, which, we believe, will be es-

pecially useful for researchers that are interested in improv-

ing the imaging quality of fluorescence microscopy.
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[24] T. Plötz and S. Roth. Benchmarking denoising algorithms

with real photographs. In CVPR, 2017.
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