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Abstract

The cosine-based softmax losses [21, 28, 39, 8] and their

variants [40, 38, 7] achieve great success in deep learning

based face recognition. However, hyperparameter settings

in these losses have significant influences on the optimiza-

tion path as well as the final recognition performance. Man-

ually tuning those hyperparameters heavily relies on user

experience and requires many training tricks.

In this paper, we investigate in depth the effects of two

important hyperparameters of cosine-based softmax losses,

the scale parameter and angular margin parameter, by ana-

lyzing how they modulate the predicted classification prob-

ability. Based on these analysis, we propose a novel cosine-

based softmax loss, AdaCos, which is hyperparameter-free

and leverages an adaptive scale parameter to automati-

cally strengthen the training supervisions during the train-

ing process. We apply the proposed AdaCos loss to large-

scale face verification and identification datasets, includ-

ing LFW [13], MegaFace [16], and IJB-C [23] 1:1 Veri-

fication. Our results show that training deep neural net-

works with the AdaCos loss is stable and able to achieve

high face recognition accuracy. Our method outperforms

state-of-the-art softmax losses [28, 40, 7] on all the three

datasets.

1. Introduction

Recent years witnessed the breakthrough of deep Con-

volutional Neural Networks (CNNs) [17, 12, 25, 35] on sig-

nificantly improving the performance of one-to-one (1 : 1)
face verification and one-to-many (1 : N) face identifi-

cation tasks. The successes of deep face CNNs can be

mainly credited to three factors: enormous training data

[9], deep neural network architectures [10, 33] and ef-

fective loss functions [28, 21, 7]. Modern face datasets,

such as LFW [13], CASIA-WebFace [43], MS1M [9] and

MegaFace [24, 16], contain huge number of identities

which enable the training of deep networks. A number

of recent studies, such as DeepFace [36], DeepID2 [31],

DeepID3 [32], VGGFace [25] and FaceNet [29], demon-

strated that properly designed network architectures also

lead to improved performance.

Apart from the large-scale training data and deep struc-

tures, training losses also play key roles in learning accu-

rate face recognition models [41, 6, 11]. Unlike image clas-

sification tasks, face recognition is essentially an open set

recognition problem, where the testing categories (identi-

ties) are generally different from those used in training. To

handle this challenge, most deep learning based face recog-

nition approaches [31, 32, 36] utilize CNNs to extract fea-

ture representations from facial images, and adopt a metric

(usually the cosine distance) to estimate the similarities be-

tween pairs of faces during inference.

However, such inference evaluation metric is not well

considered in the methods with softmax cross-entropy loss

function1, which train the networks with the softmax loss

but perform inference using cosine-similarities. To miti-

gate the gap between training and testing, recent works [21,

28, 39, 8] directly optimized cosine-based softmax losses.

Moreover, angular margin-based terms [19, 18, 40, 38, 7]

are usually integrated into cosine-based losses to maximize

the angular margins between different identities. These

methods improve the face recognition performance in the

open-set setup. In spite of their successes, the training

processes of cosine-based losses (and their variants intro-

ducing margins) are usually tricky and unstable. The con-

vergence and performance highly depend on the hyperpa-

rameter settings of loss, which are determined empirically

through large amount of trials. In addition, subtle changes

of these hyperparameters may fail the entire training pro-

cess.

In this paper, we investigate state-of-the-art cosine-based

softmax losses [28, 40, 7], especially those aiming at max-

imizing angular margins, to understand how they provide

supervisions for training deep neural networks. Each of the

functions generally includes several hyperprameters, which

have substantial impact on the final performance and are

usually difficult to tune. One has to repeat training with dif-

1We denote it as “softmax loss” for short in the remaining sections.
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ferent settings for multiple times to achieve optimal perfor-

mance. Our analysis shows that different hyperparameters

in those cosine-based losses actually have similar effects on

controlling the samples’ predicted class probabilities. Im-

proper hyperparameter settings cause the loss functions to

provide insufficient supervisions for optimizing networks.

Based on the above observation, we propose an adap-

tive cosine-based loss function, AdaCos, which automati-

cally tunes hyperparameters and generates more effective

supervisions during training. The proposed AdaCos dy-

namically scales the cosine similarities between training

samples and corresponding class center vectors (the fully-

connection vector before softmax), making their predicted

class probability meets the semantic meaning of these co-

sine similarities. Furthermore, AdaCos can be easily imple-

mented using built-in functions from prevailing deep learn-

ing libraries [26, 1, 5, 15]. The proposed AdaCos loss leads

to faster and more stable convergence for training without

introducing additional computational overhead.

To demonstrate the effectiveness of the proposed Ada-

Cos loss function, we evaluated it on several face bench-

marks, including LFW face verification [13], MegaFace

one-million identification [24] and IJB-C [23]. Our method

outperforms state-of-the-art cosine-based losses on all these

benchmarks.

2. Related Works

Cosine similarities for inference. For learning deep

face representations, feature-normalized losses are com-

monly adopted to enhance the recognition accuracy. Coco

loss [20, 21] and NormFace [39] studied the effect of nor-

malization and proposed two strategies by reformulating

softmax loss and metric learning. Similarly, Ranjan et al. in

[28] also discussed this problem and applied normalization

on learned feature vectors to restrict them lying on a hyper-

sphere. Movrever, compared with these hard normalization,

ring loss [45] came up with a soft feature normalization ap-

proach with convex formulations.

Margin-based softmax loss. Earlier, most face recog-

nition approaches utilized metric-targeted loss functions,

such as triplet [41] and contrastive loss [6], which utilize

Euclidean distances to measure similarities between fea-

tures. Taking advantages of these works, center loss [42]

and range loss [44] were proposed to reduce intra-class

variations via minimizing distances within each class [2].

Following this, researchers found that constraining mar-

gin in Euclidean space is insufficient to achieve optimal

generalization. Then angular-margin based loss functions

were proposed to tackle the problem. Angular constraints

were integrated into the softmax loss function to improve

the learned face representation by L-softmax [19] and A-

softmax [18]. CosFace [40], AM-softmax [38] and ArcFace

[7] directly maximized angular margins and employed sim-

pler and more intuitive loss functions compared with afore-

mentioned methods.

Automatic hyperparameter tuning. The performance

of an algorithm highly depends on hyperparameter settings.

Grid and random search [3] are the most widely used strate-

gies. For more automatic tuning, sequential model-based

global optimization [14] is the mainstream choice. Typ-

ically, it performs inference with several hyperparameters

settings, and chooses setting for the next round of testing

based on the inference results. Bayesian optimization [30]

and tree-structured parzen estimator approach [4] are two

famous sequential model-based methods. However, these

algorithms essentially run multiple trials to predict the opti-

mized hyperparameter settings.

3. Investigation of hyperparameters in cosine-

based softmax losses

In recent years, state-of-the-art cosine-based softmax

losses, including L2-softmax [28], CosFace [40], Arc-

Face [7], significantly improve the performance of deep

face recognition. However, the final performances of those

losses are substantially affected by their hyperparameters

settings, which are generally difficult to tune and require

multiple trials in practice. We analyze two most important

hyperparameters, the scaling parameter s and the margin

parameter m, in cosine-based losses. Specially, we deeply

study their effects on the prediction probabilities after soft-

max, which serves as supervision signals for updating entire

neural network.

Let ~xi denote the deep representation (feature) of the i-
th face image of the current mini-batch with size N , and

yi be the corresponding label. The predicted classification

probability Pi,j of all N samples in the mini-batch can be

estimated by the softmax function as

Pi,j =
efi,j

∑C
k=1 e

fi,k
, (1)

where fi,j is logit used as the input of softmax, Pi,j repre-

sents its softmax-normalized probability of assigning ~xi to

class j, and C is the number of classes. The cross-entropy

loss associated with current mini-batch is

LCE = − 1

N

N
∑

i=1

logPi,yi
= − 1

N

N
∑

i=1

log
efi,yi

∑C
k=1 e

fi,k
.

(2)

Conventional softmax loss and state-of-the-art cosine-

based softmax losses [28, 40, 7] calculate the logits fi,j in

different ways. In conventional softmax loss, logits fi,j are

obtained as the inner product between feature ~xi and the j-

th class weights ~Wj as fi,j = ~W T
j ~xi. In the cosine-based

softmax losses [28, 40, 7], cosine similarity is calculated by

cos θi,j = 〈~xi, ~Wj〉/‖~xi‖‖ ~Wj‖. The logits fi,j are calcu-

lated as fi,j = s·cos θi,j , where s is a scale hyperparameter.

To enforce angular margin on the representations, ArcFace

[7] modified the loss to the form
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Figure 1: Changing process of angles in each mini-batch

when training on WebFace. (Red) average angles in each

mini-batch for non-corresponding classes, θi,j for j 6= yi.
(Blue) median angles in each mini-batch for corresponding

classes, θi,yi
. (Brown) average angles in each mini-batch

for corresponding classes, θi,yi
.

fi,j = s · cos (θi,j + ✶{j = yi} ·m), (3)

while CosFace [40] uses

fi,j = s · (cos θi,j − ✶{j = yi} ·m), (4)

where m is the margin. The indicator function ✶{j = yi}
returns 1 when j = yi and 0 otherwise. All margin-based

variants decrease fi,yi
associate with the correct class by

subtracting margin m. Compared with the losses without

margin, margin-based variants require fi,yi
to be greater

than other fi,j for j 6= yi, by a specified m.

Intuitively, on one hand, the parameter s scales up the

narrow range of cosine distances, making the logits more

discriminative. On the other hand, the parameter m enlarges

the margin between different classes to enhance classifica-

tion ability. These hyperparameters eventually affect Pi,yi
.

Empirically, an ideal hyperparameter setting should help

Pi,j to satisfy the following two properties: (1) Predicted

probabilities Pi,yi
of each class (identity) should span to

the range [0, 1]: the lower boundary of Pi,yi
should be near

0 while the upper boundary near 1; (2) Changing curve of

Pi,yi
should have large absolute gradients around θi,yi

to

make training effective.

3.1. Effects of the scale parameter s

The scale parameter s can significantly affect Pi,yi
. In-

tuitively, Pi,yi
should gradually increase from 0 to 1 as the

angle θi,yi
decreases from π

2 to 02, i.e., the smaller the angle

between ~xi and its corresponding class weight ~Wyi
is, the

larger the probability should be. Both improper probability

range and probability curves w.r.t. θi,yi
would negatively

affect the training process and thus the recognition perfor-

mance.
We first study the range of classification probability Pi,j .

Given scale parameter s, the range of probabilities in all

cosine-based softmax losses is

2Mathematically, θ can be any value in [0, π]. We empirically found,

however, the maximum θ is always around π
2

. See the red curve in Fig. 1

for examples.

1

1 + (C − 1) · es ≤ Pi,j ≤
es

es + (C − 1)
, (5)

where the lower boundary is achieved when fi,j = s ·0 = 0
and fi,k = s · 1 = s for all k 6= j in Eq. (1). Similarly, the

upper bound is achieved when fi,j = s and fi,k = 0 for all

k 6= j. The range of Pi,j approaches 1 when s → ∞, i.e.,

lim
s→+∞

(

es

es + (C − 1)
− 1

1 + (C − 1) · es
)

= 1, (6)

which means that the requirement of the range spanning

[0, 1] could be satisfied with a large s. However it does not

mean that the larger the scale parameter, the better the se-

lection is. In fact the probability range can easily approach

a high value, such as 0.94 when class number C = 10 and

scale parameter s = 5.0. But an oversized scale would lead

to poor probability distribution, as will be discussed in the

following paragraphs.

We investigate the influences of parameter s by taking

Pi,yi
as a function of s and angle θi,yi

where yi denotes the

label of ~xi. Formally, we have

Pi,yi
=

efi,yi

efi,yi +Bi

=
es·cos θi,yi

es·cos θi,yi +Bi

, (7)

where Bi =
∑

k 6=yi
efi,k =

∑

k 6=yi
es·cos θi,k are the log-

its summation of all non-corresponding classes for feature

~xi. We observe that the values of Bi are almost unchanged

during the training process. This is because the angles θi,k
for non-corresponding classes k 6= yi always stay around π

2
during training (see red curve in Fig. 1).

Therefore, we can assume Bi is constant, i.e., Bi ≈
∑

k 6=yi
es·cos(π/2) = C − 1. We then plot curves of prob-

abilities Pi,yi
w.r.t. θi,yi

under different setting of param-

eter s in Fig. 2(a). It is obvious that when s is too small

(e.g., s = 10 for class/identity number C = 2, 000 and

C = 20, 000), the maximal value of Pi,yi
could not reach

1. This is undesirable because even when the network is

very confident on a sample ~xi’s corresponding class label

yi, e.g. θi,yi
= 0, the loss function would still penalize the

classification results and update the network.

On the other hand, when s is too large (e.g., s = 64),

the probability curve Pi,yi
w.r.t. θi,yi

is also problematic.

It would output a very high probability even when θi,yi
is

close to π/2, which means that the loss function with large

s may fail to penalize mis-classified samples and cannot ef-

fectively update the networks to correct mistakes.

In summary, the scaling parameter s has substantial in-

fluences to the range as well as the curves of the probabili-

ties Pi,yi
, which are crucial for effectively training the deep

network.

3.2. Effects of the margin parameter m

In this section, we investigate the effect of margin pa-

rameters m in cosine-based softmax losses (Eqs. (3) & (4)),
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Figure 2: Curves of Pi,yi w.r.t. θi,yi by choosing different sclae and margin parameters. (Left) C = 2000. (Right) C = 20000. Fig. 2(a)

is for choosing different scale parameters and Fig. 2(b) is for fixing s = 30 and choosing different margin parameters.

and their effects on feature ~xi’s predicted class probability

Pi,yi
. For simplicity, we here study the margin parameter

m for ArcFace (Eq. 3); while the similar conclusions also

apply to the parameter m in CosFace (Eq. (4)).

We first re-write classification probability Pi,yi
follow-

ing Eq. (7) as

Pi,yi
=

efi,yi

efi,yi +Bi

=
es·cos (θi,yi+m)

es·cos (θi,yi+m) +Bi

. (8)

To study the influence of parameter m on the probability

Pi,yi
, we assume both s and Bi are fixed. Following the

discussion in Section 3.1, we set Bi ≈ C − 1, and fix s =
30. The probability curves Pi,yi

w.r.t. θi,yi
under different

m are shown in Fig. 2(b).

According to Fig. 2(b), increasing the margin parame-

ter shifts probability Pi,yi
curves to the left. Thus, with

the same θi,yi
, larger margin parameters lead to lower prob-

abilities Pi,yi
and thus larger loss even with small angles

θi,yi
. In other words, the angles θi,yi

between the feature

~xi and its corresponding class’s weights ~Wyi
have to be

very small for sample i being correctly classified. This is

the reason why margin-based losses provide stronger super-

visions for the same θi,yi
than conventional cosine-based

losses. Proper margin settings have shown to boost the final

recognition performance in [40, 7].

Although larger margin m provides stronger supervi-

sions, it should not be too large either. When m is over-

sized (e.g., m = 1.0), the probabilities Pi,yi
becomes un-

reliable. It would output probabilities around 0 even θi,yi

is very small. This lead to large loss for almost all samples

even with very small sample-to-class angles, which makes

the training difficult to converge. In previous methods, the

margin parameter selection is an ad-hoc procedure and has

no theoretical guidance for most cases.

3.3. Summary of the hyparameter study

According to our analysis, we can draw the following

conclusions:

(1) Hyperparameters scale s and margin m can substan-

tially influence the prediction probability Pi,yi
of feature ~xi

with ground-truth identity/category yi. For the scale param-

eter s, too small s would limit the maximal value of Pi,yi
.

On the other hand, too large s would make most predicted

probabilities Pi,yi
to be 1, which makes the training loss in-

sensitive to the correctness of θi,yi
. For the margin parame-

ter m, a too small margin is not strong enough to regularize

the final angular margin, while an oversized margin makes

the training difficult to converge.

(2) The effect of scale s and margin m can be unified

to modulate the mapping from cosine distances cos θi,yi
to

the prediction probability Pi,yi
. As shown in Fig. 2(a) and

Fig. 2(b), both small scales and large margins have simi-

lar effect on θi,yi
for strengthening the supervisions, while

both large scales and small margins weaken the supervi-

sions. Therefore it is feasible and promising to control the

probability Pi,yi
using one single hyperparameter, either s

or m. Considering the fact that s is more related to the range

of Pi,yi
that required to span [0, 1], we will focus on auto-

matically tuning the scale parameter s in the reminder of

this paper.

4. The cosine-based softmax loss with adaptive

scaling

Based on our previous studies on the hyperparameters of

the cosine-based softmax loss functions, in this section, we

propose a novel loss with a self-adaptive scaling scheme,

namely AdaCos, which does not require the ad-hoc and

time-consuming manual parameter tuning. Training with

the proposed loss does not only facilitate convergence but

also results in higher recognition accuracy.

Our previous studies on Fig. 1 show that during the train-

ing process, the angles θi,k for k 6= yi between the feature

~xi and its non-corresponding weights ~Wk 6=yi
are almost al-

ways close to π
2 , In other words, we could safely assume

that Bi ≈
∑

k 6=yi
es·cos(π/2) = C−1 in Eq. (7). Obviously,

it is the probability Pi,yi
of feature xi belonging to its cor-

responding class yi that has the most influence on supervi-

sion for network training. Therefore, we focus on designing

an adaptive scale parameter for controling the probabilities

Pi,yi
.

From the curves of Pi,yi
w.r.t. θi,yi

(Fig. 2(a)), we ob-

serve that the scale parameter s does not only simply affect

Pi,yi
’s boundary of of determining correct/incorrect but also

squeezes/stretches the Pi,yi
curvature; In contrast to scale

s, margin parameter m only shifts the curve in phase. We

therefore propose to automatically tune the scale parameter

s and eliminate the margin parameter m from our loss func-
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tion, which makes our proposed AdaCos loss different from

state-of-the-art softmax loss variants with angular margin.

With softmax function, the predicted probability can be de-

fined by

Pi,j =
es̃·cos θi,j

∑C
k=1 e

s̃·cos θi,k
, (9)

where s̃ is the automatically tuned scale parameter to be

discussed below.

Let us first re-consider the Pi,yi
(Eq. (7)) as a function

of θi,yi
. Note that θi,yi

represents the angle between sam-

ple ~xi and the weight vector of its ground truth category

yi. For network training, we hope to minimize θi,yi
with

the supervision from the loss function LCE. Our objective is

choose a suitable scale s̃ which makes predicted probability

Pi,yi
change significantly with respect to θi,yi

. Mathemat-

ically, we find the point where the absolute gradient value

‖∂Pi,yi
(θ)

∂θ ‖ reaches its maximum, when the second-order

derivative of Pi,yi
at θ0 equals 0, i.e.,

∂2Pi,yi
(θ0)

∂θ0
2 = 0, (10)

where θ0 ∈ [0, π
2 ]. Combining Eqs. (7) and (10), we ob-

tain the relation between the scale parameter s and the point

(θ0, P (θ0)) as
s0 =

logBi

cos θ0
, (11)

where Bi can be well approximated as Bi =
∑

k 6=yi
es·cos θi,k ≈ C − 1 since the angles θi,k dis-

tribute around π/2 during training (see Eq. (7) and Fig. 1).

Then the task of automatically determining s̃ would reduce

to select an reasonable central angle θ̃ in [0, π/2].

4.1. Automatically choosing a fixed scale parameter

Since π
4 is in the center of [0, π

2 ], it is natural to regard

π/4 as the point, i.e. setting θ0 = π/4 for figuring out an

effective mapping from angle θi,yi
to the probability Pi,yi

.

Then the supervisions determined by Pi,yi
would be back-

propagated to update θi,yi
and further to update network

parameters. According to Eq. (11), we can estimate the

corresponding scale parameter sf as

s̃f =
logBi

cos π
4

=
log

∑

k 6=yi
es·cos θi,k

cos π
4

(12)

≈
√
2 · log (C − 1)

where Bi is approximated by C − 1.

For such an automatically-chosen fixed scale parameter

s̃f (see Figs. 2(a) and 2(b)), it depends on the number of

classes C in the training set and also provides a good guide-

line for existing cosine distance based softmax losses to

choose their scale parameters. In contrast, the scaling pa-

rameters in existing methods was manually set according to

human experience. It acts as a good baseline method for our

dynamically tuned scale parameter s̃d in the next section.

4.2. Dynamically adaptive scale parameter

As Fig. 1 shows, the angles θi,yi
between features ~xi and

their ground-truth class weights ~Wyi
gradually decrease as

the training iterations increase; while the angles between

features ~xi and non-corresponding classes ~Wj 6=yi
become

stabilize around π
2 , as shown in Fig. 1.

Although our previously fixed scale parameter s̃f be-

haves properly as θi,yi
changes over [0, π

2 ], it does not

take into account the fact that θi,yi
gradually decrease dur-

ing training. Since smaller θi,yi
gains higher probability

Pi,yi
and thus gradually receives weaker supervisions as

the training proceeds, we therefore propose a dynamically

adaptive scale parameter s̃d to gradually apply stricter re-

quirement on the position of θ0 which can progressively en-

hance the supervisions throughout the training process.

Formally we introduce a modulating indicator variable

θ
(t)
med, which is the median of all corresponding classes’ an-

gles, θ
(t)
i,yi

, from the mini-batch of size N at the t-th itera-

tion. θ
(t)
med roughly represents the current network’s degree

of optimization on the mini-batch. When the median angle

is large, it denotes that the network parameters are far from

optimum and less strict supervisions should be applied to

make the training converge more stably; when the median

angle θ
(t)
med is small, it denotes that the network is close to op-

timum and stricter supervisions should be applied to make

the intra-class angles θi,yi
become even smaller. Based on

this observation, we set the central angle θ̃
(t)
0 = θ

(t)
med. We

also introduce B
(t)
avg as the average of B

(t)
i as

B(t)
avg =

1

N

∑

i∈N (t)

B
(t)
i =

1

N

∑

i∈N (t)

∑

k 6=yi

es̃
(t−1)
d

·cos θi,k ,

(13)

where N (t) denotes the face identity indices in the mini-

batch at the t-th iteration. Unlike approximating Bi ≈ C−1
for the fixed adaptive scale parameter s̃f , here we estimate

B
(t)
i using the scale parameter s̃

(t−1)
d of previous iteration,

which provides us a more accurate approximation. Be re-

minded that B
(t)
i also includes dynamic scale s̃

(t)
d . We

can obtain it by solving the nonlinear function given by the

above equation. In practice, we notice that s̃
(t)
d changes very

little following iterations. So, we just use s̃
(t−1)
d to calculate

B
(t)
i with Eq. (7). Then we can obtain dynamic scale s̃

(t)
d

directly with Eq. (11). So we have:

s̃
(t)
d =

logB
(t)
avg

cos θ
(t)
med

, (14)

where B
(t)
avg is related to the dynamic scale parameter. We

estimate it using the scale parameter s̃
(t−1)
d of the previous

iteration.
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At the begin of the training process, the median an-

gle θ
(t)
med of each mini-batch might be too large to impose

enough supervisions for training. We therefore force the

central angle θ
(t)
med to be less than π

4 . Our dynamic scale

parameter for the t-th iteration could then be formulated as

s̃
(t)
d =















√
2 · log (C − 1) t = 0,

logB
(t)
avg

cos
(

min(π4 , θ
(t)
med)

) t ≥ 1, (15)

where s̃
(0)
d is initialized as our fixed scale parameter s̃f

when t = 0.

Substituting s̃
(t)
d into fi,j = s̃

(t)
d ·cos θi,j , the correspond-

ing gradients can be calculated as follows

∂L(~xi)

∂~xi
=

C
∑

j=1

(P
(t)
i,j − ✶(yi = j) · s̃(t)d

∂ cos θi,j
∂~xi

,

∂L( ~Wj)

∂ ~Wj

= (P
(t)
i,j − ✶(yi = j)) · s̃(t)d

∂ cos θi,j

∂ ~Wj

,

(16)

where ✶ is the indicator function and

P
(t)
i,j =

es̃
(t)
d

·cos θi,j

∑C
k=1 e

s̃
(t)
d

·cos θi,k
. (17)

Eq. (17) shows that the dynamically adaptive scale param-

eter s̃
(t)
d influences classification probabilities differently

at each iteration and also effectively affects the gradients

(Eq. (16)) for updating network parameters. The benefit of

dynamic AdaCos is that it can produce reasonable scale pa-

rameter by sensing the training convergence of the model in

the current iteration.

5. Experiments

We examine the proposed AdaCos loss function on sev-

eral public face recognition benchmarks and compare it

with state-of-the-art cosine-based softmax losses. The com-

pared losses include l2-softmax [28], CosFace [40], and

ArcFace [7]. We present evaluation results on LFW [13],

MegaFace 1-million Challenge [24], and IJB-C [23] data.

We also present results on some exploratory experiments

to show the convergence speed and robustness against low-

resolution images.

Preprocessing. We use two public training datasets,

CASIA-WebFace [43] and MS1M [9], to train CNN mod-

els with our proposed loss functions. We carefully clean

the noisy and low-quality images from the datasets. The

cleaned WebFace [43] and MS1M [9] contain about 0.45M

and 2.35M facial images, respectively. All models are

trained based on these training data and directly tested on

the test splits of the three datasets. RSA [22] is applied to

the images to extract facial areas. Then, according to de-

tected facial landmarks, the faces are aligned through simi-

larity transformation and resized to the size 144× 144. All

Method 1st 2nd 3rd Average Acc.

Softmax 93.05 92.92 93.27 93.08

l2-softmax [28] 98.22 98.27 98.08 98.19

CosFace [40] 99.37 99.35 99.42 99.38

ArcFace [7] 99.55 99.37 99.43 99.45

Fixed AdaCos 99.63 99.62 99.55 99.60

Dyna. AdaCos 99.73 99.72 99.68 99.71

Table 1: Recognition accuracy on LFW by ResNet-50 trained

with different compared losses. All the methods are trained on the

cleaned WebFace [43] training data and tested on LFW for three

times to obtain the average accuracy.
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Figure 3: The change of the fixed adaptive scale parameter s̃f

and dynamic adaptive scale parameter s̃
(t)
d when training on the

cleaned WebFace dataset. The dynamic scale parameter s̃
(t)
d grad-

ually and automatically decreases to strengthen training supervi-

sions for feature angles θi,yi , which validates our assumption on

the adaptive scale parameter in our proposed AdaCos loss. Best

viewed in color.

image pixel values are subtracted with the mean 127.5 and

dividing by 128.

5.1. Results on LFW

The LFW [13] dataset collected thousands of identi-

ties from the inertnet. Its testing protocol contains about

13, 000 images for about 1, 680 identities with a total of

6, 000 ground-truth matches. Half of the matches are posi-

tive while the other half are negative ones. LFW’s primary

difficulties lie in face pose variations, color jittering, illu-

mination variations and aging of persons. Note portion of

the pose variations can be eliminated by the RSA [22] fa-

cial landmark detection and alignment algorithm, but there

still exist some non-frontal facial images which can not be

aligned by RSA [22] and then aligned manually.

5.1.1 Comparison on LFW

For all experiments on LFW [13], we train ResNet-50 mod-

els [10] with batch size of 512 on the cleaned WebFace [43]

dataset. The input size of facial image is 144× 144 and the

feature dimension input into the loss function is 512. Differ-

ent loss functions are compared with our proposed AdaCos

losses.

Results in Table 1 show the recognition accuracies of

models trained with different softmax loss functions. Our

proposed AdaCos losses with fixed and dynamic scale pa-

rameters (denoted as Fixed AdaCos and Dyna. AdaCos)
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Figure 4: The change of θi,yi when training on the cleaned Web-

Face dataset. θi,yi represents the angle between the feature vector

of i-th sample and the weight vector of its ground truth category yi.

Curves calculated by proposed dynamic AdaCos loss, l2-softmax

loss [28], CosFace [40] and ArcFace [7] are shown. Best viewed

in color.

surpass the state-of-the-art cosine-based softmax losses un-

der the same training configuration. For the hyperparam-

eter settings of the compared losses, the scaling parame-

ter is set as 30 for l2-softmax [28], CosFace [40] and Arc-

Face [7]; the margin parameters are set as 0.25 and 0.5 for

CosFace [40], and ArcFace [7], respectively. Since LFW is

a relatively easy evaluation set, we train and test all losses

for three times. The average accuracy of our proposed dy-

namic AdaCos is 0.26% higher than state-of-the-art Arc-

Face [7] and 1.52% than l2-softmax [28].

5.1.2 Exploratory Experiments

The change of scale parameters and feature angles

during training. In this part, we will show the change of

scale parameter s̃
(t)
d and feature angles θi,j during training

with our proposed AdaCos loss. The scale parameter s̃
(t)
d

changes along with the current recognition performance of

the model, which continuously strengthens the supervisions

by gradually reducing θi,yi
and thus shrinking s̃

(t)
d . Fig. 3

shows the change of the scale parameter s with our pro-

posed fixed AdaCos and dynamic AdaCos losses. For the

dynamic AdaCos loss, the scale parameter s̃
(t)
d adaptively

decreases as the training iterations increase, which indicates

that the loss function provides stricter supervisions to up-

date network parameters. Fig. 4 illustrates the change of

θi,j by our proposed dynamic AdaCos and l2-softmax. The

average (orange curve) and median (green curve) of θi,yi
,

which indicating the angle between a sample and its ground-

truth category, gradually reduce while the average (maroon

curve) of θi,j where j 6= yi remains nearly π
2 . Compared

with l2-softmax loss, our proposed loss could achieve much

smaller sample feature to category angles on the ground-

truth classes and leads to higher recognition accuracies.

Convergence rates. Convergence rate is an important

Method
Num. of Iteration

25k 50k 75k 100k

Softmax 70.15 85.33 89.50 93.05

l2-softmax [28] 79.08 88.52 93.38 98.22

CosFace [40] 78.17 90.87 98.52 99.37

ArcFace [7] 82.43 92.37 98.78 99.55

Fixed AdaCos 85.10 94.38 99.05 99.63

Dyna. AdaCos 88.52 95.78 99.30 99.73

Table 2: Convergence rates of different softmax losses. At the

same iterations, training with our proposed dynamic AdaCos loss

leads to the best recognition accuracy.
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Figure 5: Recognition accuracy curves on MegaFace dataset

by Inception-ResNet [34] models trained with different softmax

losses and on the same cleaned WebFace [43] and MS1M [9] train-

ing data. Best viewed in color.

indicator of efficiency of loss functions. We examine the

convergence rates of several cosine-based losses at different

training iterations. The training configurations are same as

Table 1. Results in Table 2 reveal that the convergence rates

when training with the AdaCos losses are much higher.

5.2. Results on MegaFace

We then evaluate the performance of proposed AdaCos

on the MegaFace Challenge [16], which is a publicly avail-

able identification benchmark, widely used to test the per-

formance of facial recognition algorithms. The gallery set

of MegaFace incorporates over 1 million images from 690K

identities collected from Flickr photos [37]. We follow Ar-

cFace [7]’s testing protocol, which cleaned the dataset to

make the results more reliable. We train the same Inception-

ResNet [33] models with CASIA-WebFace [43] and MS1M

[9] training data, where overlapped subjects are removed.

Table 3 and Fig. 5 summarize the results of models

trained on both WebFace and MS1M datasets and tested on

the cleaned MegaFace dataset. The proposed AdaCos and

state-of-the-art softmax losses are compared, where the dy-

namic AdaCos loss outperforms all compared losses on the

MegaFace.

5.3. Results on IJBC 1:1 verification protocol

The IJB-C dataset [23] contains about 3, 500 identities

with a total of 31, 334 still facial images and 117, 542 un-

constrained video frames. In the 1:1 verification, there are
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Method
Size of MegaFace Distractor

10
1

10
2

10
3

10
4

10
5

10
6

l2-softmax 99.73% 99.49% 99.03% 97.85% 95.56% 92.05%

CosFace 99.82% 99.68% 99.46% 98.57% 97.58% 95.50%

ArcFace 99.78% 99.65% 99.48% 98.87% 98.03% 96.88%

Fixed AdaCos 99.85% 99.70% 99.47% 98.80% 97.92% 96.85%

Dynamic AdaCos 99.88% 99.72% 99.51% 99.02% 98.54% 97.41%

Table 3: Recognition accuracy on MegaFace by Inception-ResNet [34] models trained with different compared softmax loss and the same

cleaned WebFace [43] and MS1M [9] training data.

Method
True Accept Rate @ False Accept Rate

10
−1

10
−2

10
−3

10
−4

10
−5

10
−6

10
−7

FaceNet [29] 92.45% 81.71% 66.45% 48.69% 33.30% 20.95% -

VGGFace [25] 95.64% 87.13% 74.79% 59.75% 43.69% 32.20% -

Crystal Loss [27] 99.06% 97.66% 95.63% 92.29% 87.35% 81.15% 71.37%

l2-softmax 98.40% 96.45% 92.78% 86.33% 77.25% 62.61% 26.67%

CosFace [40] 99.01% 97.55% 95.37% 91.82% 86.94% 76.25% 61.72%

ArcFace [7] 99.07% 97.75% 95.55% 92.13% 87.28% 82.15% 72.28%

Fixed AdaCos 99.05% 97.70% 95.48% 92.35% 87.87% 82.38% 72.66%

Dynamic AdaCos 99.06% 97.72% 95.65% 92.40% 88.03% 83.28% 74.07%

Table 4: True accept rates by different compared softmax losses on the IJB-C 1:1 verification task. The same training data (WebFace [43]

and MS1M [9]) and Inception-ResNet [33] networks are used. The results of FaceNet [29], VGGFace [25], and Crystal Loss [27] are from

[27].

10−1 10−2 10−3 10−4 10−5 10−6 10−7

False Accept Rate

0

20

40

60

80

100

T
ru

e
A

cc
e
p

t
R

a
te

(%
)

FaceNet

VggFace

Crystal Loss

l2-softmax s = 45

CosFace s = 45,m = 0.15

ArcFace s = 45,m = 0.3

Fixed AdaCos

Dynamic AdaCos

Figure 6: TARs by different compared softmax losses on the IJB-

C 1:1 verification task. The same training data (WebFace [43] and

MS1M [9]) and Inception-ResNet [33] are used. The results of

FaceNet [29], VGGFace [25] are reported in Crystal Loss [27].

19, 557 positive matches and 15, 638, 932 negative matches,

which allow us to evaluate TARs at various FARs (e.g.,

10−7).

We compare the softmax loss functoins, including the

proposed AdaCos, l2-softmax [28], CosFace [40], and Ar-

cFace [7] with the same training data (WebFace [43] and

MS1M [9]) and network architecture (Inception-ResNet

[33]). We also report the results of FaceNet [29], VGGFace

[36] listed in Crystal loss [27]. Table 4 and Fig. 6 exhibit

their performances on the IJB-C 1:1 verification. Our pro-

posed dynamic AdaCos achieves the best performance.

6. Conclusions

In this work, we argue that the bottleneck of existing

cosine-based softmax losses may primarily comes from the

mis-match between cosine distance cos θi,yi
and the clas-

sification probability Pi,yi
, which limits the final recogni-

tion performance. To address this issue, we first deeply an-

alyze the effects of hyperparameters in cosine-based soft-

max losses from the perspective of probability. Based on

these analysis, we propose the AdaCos which automati-

cally adjusts an adaptive parameter s̃
(t)
d in order to reformu-

late the mapping between cosine distance and classification

probability. Our proposed AdaCos loss is simple yet ef-

fective. We demonstrate its effectiveness and efficiency by

exploratory experiments and report its state-of-the-art per-

formances on several public benchmarks.
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