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Abstract

We present a neural network that predicts HDR outdoor

illumination from a single LDR image. At the heart of our

work is a method to accurately learn HDR lighting from

LDR panoramas under any weather condition. We achieve

this by training another CNN (on a combination of synthetic

and real images) to take as input an LDR panorama, and

regress the parameters of the Lalonde-Matthews outdoor

illumination model [17]. This model is trained such that it

a) reconstructs the appearance of the sky, and b) renders the

appearance of objects lit by this illumination. We use this net-

work to label a large-scale dataset of LDR panoramas with

lighting parameters and use them to train our single image

outdoor lighting estimation network. We demonstrate, via

extensive experiments, that both our panorama and single

image networks outperform the state of the art, and unlike

prior work, are able to handle weather conditions ranging

from fully sunny to overcast skies.

1. Introduction

Estimating outdoor illumination is critical for a number

of tasks such as outdoor scene understanding, image edit-

ing, and augmented reality. However, images are formed

by illumination interacting with other scene properties like

geometry and surface reflectance, thus making the inversion

of this process to recover lighting a highly ill-posed problem.

Prior work on this problem has used heuristics to map

image features to lighting [16]. Instead of using hand-

crafted features, a recent approach proposed learning the

mapping from image appearance to outdoor illumination [9]

using a deep neural network. In particular, they propose a

non-linear optimization scheme to fit the parameters of the

Hošek-Wilkie (HW) HDR sky model [10, 11] to SUN360—a

large dataset of outdoor, low dynamic range (LDR) panora-

mas [24]. From this set of panoramas with (now labeled)

parameters, they extract limited field of view crops, and train

a CNN to regress the HW parameters from a single crop.

1 Research partly done when Jinsong Zhang was an intern at Adobe Research.

(a) Input (b) [9] (c) Our lighting

Figure 1. We estimate HDR outdoor lighting from a single image

(a) and use it to render a car into the scene. The state-of-the-art

method of [9] (b) produces sunny estimates for both clear (top)

and overcast scenes (bottom). Our method (c) produces accurate

estimates for both conditions leading to more realistic composites.

The accuracy of [9] thus rests on a) the ability of the

HW model to represent outdoor illumination, and b) the

ability to reliably fit the HW model to sky pixels in an out-

door panorama. Unfortunately, both of these steps have

limitations. Indeed, the HW sky model was designed to

accurately represent a subset of possible weather conditions,

specifically, completely clear skies with varying amounts

of turbidity (amount of atmospheric aerosol) [13]. More-

over, the optimization scheme to fit the HW model to LDR

panoramas can be sensitive to issues like arbitrary camera

processing and outliers like patches of clouds. This leads to a

clear bias towards sunny skies in their results (see fig. 1(b)).

Other recent approaches to estimating outdoor illumina-

tion have eschewed parametric models in favor of completely

data-driven models. Zhang et al. [26] learn to hallucinate

HDR outdoor environment maps from LDR panoramas by

training an encoder-decoder on synthetic data. Calian et

al. [2] learn a data-driven sky model by training an auto-

encoder on HDR sky panoramas [15, 17], and use this rep-

resentation in an inverse rendering framework to recover

outdoor lighting from a single image of a face. While these

learned models can better approximate outdoor lighting con-

ditions, they conflate many of the “intuitive” sky parameters
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such as the sun position, sky color, etc. into an opaque

representation that can only be decoded by a network.

In this work, we propose a method to robustly estimate

a wide variety of outdoor lighting conditions from a single

image. Unlike [9], we use the Lalonde-Matthews (LM) sky

model [17] that can represent a much wider set of lighting

conditions, ranging from completely overcast to fully sunny.

While more expressive, the sky and sun illumination com-

ponents in this model are uncorrelated; as a result, it is not

possible to recover HDR sun illumination by fitting an illu-

mination model to LDR sky pixels, as is done by [9]. Thus,

our main contribution is a novel method to learn to label

LDR panoramas with HDR lighting parameters. Specif-

ically, we train a network—PanoNet—to take as input an

LDR panorama, and regress the parameters of the LM model.

We train PanoNet with a combination of of synthetic and real

data. Moreover, because no sky model will exactly reproduce

real sky pixel intensities, we show that merely learning to

match sky appearance is not sufficient for this task. Instead,

we propose a novel render loss that matches the appearance

of a rendered scene under the ground truth and predicted

lighting. PanoNet produces HDR lighting estimates that are

significantly better than previous work. We use PanoNet

to label the SUN360 dataset with lighting parameters, and

similar to [9], train CropNet—a network that regresses the

lighting labels from a single crop image. Through extensive

experiments (and as can be seen in fig. 1), we demonstrate

that both PanoNet and CropNet significantly outperform the

state-of-the-art, both qualitatively and quantitatively.

2. Related work

A wide array of lighting estimation methods have been

presented in the literature. In this section, we focus on

outdoor lighting modeling and estimation that is most related

to this work.

Outdoor lighting modeling Modeling the solar and sky

dome illumination has been extensively studied in atmo-

spheric science, physics, and computer graphics. The Perez

All-Weather model [20] was first introduced as an improve-

ment over the previous CIE Standard Clear Sky model, and

modeled weather variations using 5 parameters. Preetham

et al. [21] simplified this to a model with a single weather

parameter—atmospheric turbidity. Hošek and Wilkie in-

troduced an improvement over the Preetham model, which

resulted in both a sky dome [10] and solar disc [11] analytical

models. See [13] for a comparison of how these sky models

approximate clear skies on a rich outdoor dataset provided

by the authors. In addition, Lalonde and Matthews [17]

proposed an empirical model for HDR skies, which they

show better approximate captured skies (in RGB) under a

wide variety of illumination conditions. They subsequently

employ their sky model for estimating outdoor lighting from

outdoor image collections. In this paper, we exploit that

model (which we dub the “LM” model) and show that its

parameters can be predicted from a single image by a CNN.

Outdoor lighting estimation Lighting estimation from a

single, generic outdoor scene was first proposed by Lalonde

et al. [16]; they use a probabilistic combination of multiple

image cues—such as cast shadows, shading, and sky appear-

ance variation—to predict lighting. Karsch et al. [12] match

the input image to a large dataset of panoramas [24], and

transfer the panorama lighting (obtained through a light clas-

sifier) to the image. However, the matching metric, that relies

on image features, may not yield results that have consistent

lighting. Other approaches rely on known geometry [18]

and/or strong priors on geometry and surface reflectance [1].

Deep learning for lighting estimation Recent ap-

proaches have applied deep learning methods for lighting es-

timation. Rematas et al. [22] learn to infer a reflectance map

(i.e., the convolution of incident illumination with surface

reflectance) from a single image of an object. Subsequently,

Georgoulis et al. [6] factor reflectance maps into lighting

and material properties [5]. Closely related to our work,

Hold-Geoffroy et al. [9] model outdoor lighting with the

parametric Hošek-Wilkie sky model [10, 11], and learn to es-

timate its parameters from a single image. As mentioned in

the introduction, we take inspiration from this work and sig-

nificantly improve upon it proposing a novel learning-based

approach to robustly annotate LDR panoramas with different

weather conditions with the parameters of the LM illumina-

tion model. This is closely related to Zhang et al. [26] who

learn to map LDR panoramas to HDR environment maps

via an encoder-decoder network. Similarly, Calian et al. [2]

(as well as the concurrent work of Hold-Geoffroy et al. [8])

employ a deep autoencoder to learn a data-driven illumina-

tion model. They use this learned model to estimate lighting

from a face image via a multi-step non-linear optimization

approach over the space of face albedo and sky parame-

ters, that is time-consuming and prone to local minima. In

contrast to the high-dimensional environment map and the

learned auto-encoder representations, we use a compact and

intuitive sky model—the aforementioned LM model. This

allows us to easily annotate a large-scale LDR panorama

dataset [24] with lighting parameters and subsequently infer

lighting from a single image of a generic outdoor scene in

an end-to-end framework. Cheng et al. [3] estimate lighting

from the front and back camera of a mobile phone. How-

ever, they represent lighting using low-frequency spherical

harmonics (SH), which, as demonstrated in [2], does not

appropriately model outdoor lighting.

3. Brief review of the LM sky model

In this paper, we make use of the Lalonde-Matthews (LM)

sky model [17]. This is a parameteric sun and sky model
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which, when fit to HDR panoramas, was determined to better

approximate outdoor lighting than other, physically-based

models. We now briefly summarize its form and parameters

for completeness, but refer the reader to [17] for more details.

The LM hemispherical illumination model can concisely

be written as the sum of sun and sky components:

fLM(l;qLM) = fsun(l;qsun, lsun) + fsky(l;qsky, lsun) , (1)

where lsun = [θsun, ϕsun] is the sun position in spherical

coordinates, and the q∗ are component-specific parameters.

The sky component fsky(l) in eq. (1) is simply the

Preetham sky model [21] fP(·), multiplied channel-wise

with an average sky color wsky ∈ R
3:

fsky(l;qsky, lsun) = wskyfP(θsun, γsun, t) , (2)

where γsun is the angle between sky element l and the sun

position lsun, and t is the sky turbidity. The sun component

fsun(l) in eq. (1) is defined as

fsun(l;qsun, lsun) = wsun exp (−β exp (−κ/γsun)) , (3)

where (β, κ) are two parameters controlling the shape of the

sun, and wsun ∈ R
3 is the mean sun color. In short, the LM

sky model has the following 11 parameters:

qLM =
{

wsky, t, wsun, β, κ, lsun

}

. (4)

4. Estimating HDR parametric lighting from

LDR panoramas

One of the main advantages of using the Hošek-Wilkie

model is that only its sky parameters (sun position, turbidity

and exposure) [10] can be fit to an LDR panorama and, be-

cause its sun and sky components are linked via the turbidity

parameter, an HDR sun model can be extrapolated [11]. This

is a practical way of estimating the high dynamic range of

the sun given a saturated LDR panorama [9]. In this paper,

we use the LM model which, because it uses independent

parameters for the sun and the sky (c.f. sec. 3), is more

expressive than the HW model. However, this also means its

HDR sun parameters cannot be fit directly to LDR panora-

mas. In this section, we therefore train a CNN that learns to

predict the LM sky parameters from a single LDR panorama.

4.1. Architecture of PanoNet

To regress the parameters of the LM sky model from a

single LDR panorama, we take inspiration from the work

of [26], who use an autoencoder with skip-links (similar

to the well-known U-net architecture [23]) to regress an

HDR panorama from LDR. For simplicity, they used the

equirectangular format, and assumed the panorama to be

rotated such that the sun is in the center. In addition, they

also had another path from the latent vector z to two fully-

connected layers that estimate the sun elevation, which was

found to add robustness. Finally, they had a third path from

z to an unsupervised domain adaptation branch that helped

the network generalize to real data.

Starting from this base architecture, we add another path

from z, this time to predict the parameters of the LM sky

model. More precisely, we ask the network to learn the

sun and sky intensities (wsun and wsky respectively), the

sun shape parameters β and κ, and the sky turbidity t. The

new path has a structure of two consecutive FC layers with

size of 512 and 256 neurons, the output layer has 9 neurons

corresponding to the LM sky parameters. The resulting CNN

is illustrated in fig. 2.

4.2. Loss functions

Several loss functions are used to train the PanoNet CNN.

First, we use the same loss functions as in [26], namely:

Lpano = ||P∗ − P̂||1

Lθ = ||θ∗sun − θ̂sun||2

Lrender = ||TP∗ −TP̂||2

Lda = −
∑

i=1

a∗i log âi

, (5)

where symbols (∗) and (̂ ) denote the ground truth and

the network output respectively. From top to bottom, the

various outputs of the CNN are compared to their ground

truth counterparts: on the HDR panorama P (Lpano), the

sun elevation θsun (Lθ), a rendered image of a synthetic

scene—a diffuse sphere on a plane (Lrender). The domain

adaptation branch is trained with cross-entropy loss (Lda).

We make the in-network rendering of the synthetic scene

fast by multiplying the reconstructed panorama P with a

pre-computed transport matrix T of the synthetic scene [19].

In addition, we also add loss functions on the estimated

LM sun and sky parameters. Unfortunately, we do not have

explicit targets for those parameters, so we rely on render

losses exclusively:

Lsky = ||TP∗

LDR −Tfsky(q̂sky)||2

Lsun = ||T(P∗

HDR −P∗

LDR)−Tfsun(q̂sun)||2

LLM = ||TP∗

HDR −TfLM(q̂LM)||2

. (6)

Here, we employ the same transport matrix T to efficiently

render an image at 64×64 resolution, and compute L2 loss

on the image. The sky-only loss Lsky relies on a “ground

truth” LDR panorama P∗

LDR, which is obtained by clipping

the HDR panorama P∗

HDR at 1, and quantize the result to

8 bits. Among the render losses in eq. 6, we use a smaller

weight for the Lsky, which is set to 0.2.

4.3. Datasets

To train the PanoNet CNN, we rely on data from 5 com-

plementary datasets. First, we employ 44,646 panoramas
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Figure 2. Architecture of PanoNet. We use an autoencoder with skip-links to regress HDR panorama from LDR. The high dynamic range

lighting information is likely encoded in the bottleneck layer [26]. From this layer we estimate the LM sky parameters by 2 FC layers. Then

we use the estimated parameters to drive the LM sun and sky model and generate HDR environment maps separately. The generated sun and

sky environment maps are used to render an object with a pre-computed transport matrix, T. We compute the loss on the renders w.r.t the

supervised data. Additional losses on the sun elevation θ̂sun, hallucinated HDR sky P̂ and its render are used to force the network to encode

as much lighting information in the latent vector (red). We also ask the latent vector to be insensitive to the data domain by adding the

unsupervised domain adaptation branch.

from the dataset of synthetic HDR panoramas from [26].

This dataset was created by lighting a virtual 3D city model,

obtained from the Unity Store, with 9,732 HDR sky panora-

mas from the Laval HDR sky database [15]. Second, we

use 149 daytime outdoor panoramas from the HDRI Haven

database [25]. Third, we use 102 panoramas from a database

of HDR outdoor panoramas [8]. Finally, we also train on

19,571 panoramas from the SUN360 dataset [24], and 4,965

from images we downloaded from Google Street View. Since

these last two sets of panoramas are LDR, we only use them

for the domain adaptation loss Lda. Conversely, that loss

is not evaluated when the synthetic panoramas are given as

input to the network.

4.4. Training details

For training our PanoNet, we use the ADAM optimizer

with a minibatch size of 80 and an initial learning rate of

0.001. Each minibatch contains 36 (45%) synthetic HDR

panoramas [26], 4 (5%) captured panoramas [8], 4 (5%)

HDRI Haven panoramas [25], 4 (5%) Google Street View

images, and 32 (40%) of SUN360 LDR panoramas [24].

Training 500 epochs takes approximately 50 hours on an

Nvidia TITAN X GPU. At test time, inference takes approx-

imately 8ms.

4.5. Labeling the SUN360 panorama dataset with
the PanoNet network

Once the PanoNet CNN has been trained, we run it on all

the outdoor panoramas in the SUN360 database, to obtain

their estimated sun and sky LM parameters q̂sun and q̂sky,

respectively. As in [9], the sun position lsun is obtained by

finding the center of mass of the largest saturated region in

the sky. We will employ those estimates, denoted by (̂ ), as

targets for the second network, CropNet, whose goal will

be to predict these same labels from a single limited field of

view image instead of the panorama. CropNet is the subject

of the next section.

5. Learning to estimate HDR parametric light-

ing from a single LDR image

5.1. Architecture of CropNet

Fig. 3 describes the architecture used for the CropNet

CNN. Its task is to take a single LDR image as input, and es-

timate the LM sun parameters lsun, qsun = {wsun, β, κ} and

the sky parameters qsky = {wsky, t} respectively, from that

image (see sec. 3). It employs a relatively straightforward

architecture à la AlexNet [14], composed of 5 convolution

layers, followed by two consecutive FC layers. Each con-

volution layer is followed by a sub-sampling step (stride of

2), batch normalization, and the ELU activation function [4]

are used on all convolution layers. The sun position branch

outputs a probability distribution over the discretized sun

position. As in [9], we use 64 bins for azimuth and 16 bins

for elevation.

5.2. Loss functions

As with PanoNet, a variety of loss functions are used

to train the CropNet CNN. First, we use a KL-divergence

loss for the sun position lsun. Numerical loss functions

are used to compare the estimated other sun/sky parame-

ters (wsun, β, κ,wsky, t) with the parameters provided by
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Figure 3. Architecture of CropNet. CropNet estimates LM sky parameters from a single LDR image. All the input images are cropped from

the SUN360 panoramas [24], which have been labeled by PanoNet (sec. 4) with LM sky parameters κ̂, β̂, ŵsun, t̂, ŵsky. The sun position lsun

is detected from the panorama. We enforce a loss on these parameters, as well as on renders with the estimated lighting.

PanoNet (see sec. 4), (q̂sun, q̂sky). Note here that we do not

have actual “ground truth” for those parameters—we aim

for CropNet to match the predictions of PanoNet, but from a

limited field of view image instead of the entire panorama.

We begin by computing the L2 loss on all sun and sky

parameters individually:

Lβ = ||β̂ − β̃||2 Lκ = ||κ̂− κ̃||2 Lt = ||t̂− t̃||2

Lwn = ||ŵsun − w̃sun||2 Lwy = ||ŵsky − w̃sky||2
, (7)

where (̃ ) denotes CropNet outputs. Prior to computing the

loss, each parameter is normalized in the [0, 1] interval ac-

cording to the minimum and maximum values in the training

set, and the weights are all set to 1 except for Lκ, Lβ and

Lwn which are set to 5, 10, and 10 respectively to balance

the loss functions.

As with PanoNet, we also employ render losses to help

with the training. Since CropNet does not have ground

truth HDR lighting, two render losses are used in contrast to

PanoNet. Since the sun position lsun is treated independently

from the other lighting parameters, we exclude the sun po-

sition from the render loss. The following render losses are

employed:

Lsky = ||Tfsky(q̂sky)−Tfsky(q̃sky)||2

Lsun = ||Tfsun(q̂sun)−Tfsun(q̃sun)||2
. (8)

In practice, this corresponds to rendering a simple scene

(diffuse sphere on a plane as in sec. 4.2) with the estimated

sky(sun)-only parameters, and comparing it with a render of

that same scene with the sky(sun)-only parameters predicted

from the PanoNet (c.f. sec. 4). The weight for both of these

losses is set to 1.

5.3. Training details

To train our CropNet, we use the ADAM optimizer with

a minibatch size of 256 and an initial learning rate of 0.001.

Each minibatch contains 230 (90%) SUN360 LDR panora-

mas [24] and 26 (10%) captured panoramas [8]. Training

500 epochs takes approximately 90 hours on an Nvidia TI-

TAN X GPU. At test time, inference takes approximately

25ms.

6. Experimental validation

We evaluate both of our proposed CNNs on a dataset

of HDR outdoor panoramas [8] and the SUN360 LDR

dataset [24]. First, we show that reliable sky parameters

can be estimated from LDR panoramas using our proposed

PanoNet through both quantitative and qualitative compar-

isons with ground truth data. Then, we show how the Crop-

Net network can robustly estimate the same sky parameters

from a single LDR image.

6.1. Evaluating the PanoNet CNN

To evaluate the ability of the PanoNet network to predict

the LM sky parameters from a single LDR panorama, we

employ 103 outdoor HDR panoramas [8]. We first convert

each panorama to LDR by applying a random exposure

factor to the HDR panorama, clipping its maximum value

at 1, and quantizing to 8 bits. To quantify performance,

the scale-invariant (si-)RMSE error metric is computed by

rendering the diffuse sphere+plane scene (sec. 4.2) with the

ground truth panorama (original HDR), the results of the

non-linear fitting approach of [9], and our PanoNet. For the

scene, we use a simple sphere placed on a ground plane,

viewed from the top. We place the sun of both methods to

its ground truth position—this ensures that sun position is

factored out in the evaluation.

We show some qualitative visual examples in fig. 4; these

are accompanied by the quantitative comparison results

shown in fig. 5. To better highlight the different lighting

conditions in the HDR panorama dataset, we split it into 3

categories based on the softness of shadows in the scene.

Shadow softness is estimated by first computing the his-

togram of horizontal gradients on a 5-pixel row immediately

below the sphere. Then, a reference sunny image is manually
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Figure 4. Qualitative comparison between approaches to estimate HDR parametric lighting from a single LDR panorama. We compare our

PanoNet method, which learns to predict the parameters of the LM model [17], to the approach of [9] which directly fits the parameters of

the HW model [10, 11] using non-linear optimization. For each example, we show (a) the input LDR panorama, (b) the reconstructed skies

using both the HW (top) and LM (bottom) models, (c–e) a rendering of a simple scene (viewed from the top) using [9], ours, and the ground

truth respectively. The rows are ordered by si-RMSE percentile for our technique (see fig. 5 for the overall error distribution). All the renders

are tone-mapped with a γ = 2.2 for visualization purposes. Our PanoNet can better fit different weather conditions such that the renders are

similar to the real lighting both in terms of intensity and shadow softness. Please zoom in for details.
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Figure 5. Quantitative comparison of panorama fitting on the real

dataset. We show a distribution of (left) RMSE and (right) scale-

invariant RMSE [7] as a function of the shadow softness, ranging

from very sharp (1) to smooth (3) (see text for the shadow softness

definition used), and over the entire dataset (“all”). Compared to

the previous state-of-the-art [9], our PanoNet provides better fits

to the wide range of illumination conditions. The non-parametric

approach of [26] provides a lower bound on the prediction. The

lower (upper) edge of each box indicates the 25th (75th) percentiles.

identified, and the KL-divergence between the histograms

of each image and that of the reference is computed. Fi-

nally, the dataset is sorted by the KL-divergence, and subse-

quently split into three groups by empirically determining

cutting points where shadows appear sharp (corresponding

to a softness of 1, or sunny skies) and where shadows are

not visible (corresponding to a softness of 3, or overcast

skies). The remainder of the dataset is classified as having a

softness of 2 (partially sunny skies). As shown in fig. 5, the

non-parametric model [26] is unsurprisingly more precise

than both parametric models, however it does not produce

intuitive sky parameters that can be used to subsequently

train CropNet. The approach of [9] yields low errors when

Shadow softness

weather

1

clear

2

mixed

3

cloudy
all

RMSE
eq. 6 only 1.07 0.55 0.59 0.82

eqs 5 and 6 0.92 0.41 0.36 0.73

si-RMSE
eq. 6 only 0.19 0.13 0.08 0.16

eqs 5 and 6 0.15 0.11 0.09 0.13

Table 1. Ablation study comparing the use of different loss functions

(eq. 6 only vs. using both eqs 5 and 6) when training PanoNet.

shadows are sharp (sunny skies), but the error significantly

increases when shadows should be softer (partially cloudy to

overcast skies). In contrast, our PanoNet performs similarly

well across all lighting conditions.

We compare two variants of PanoNet: trained with our

proposed combined loss (eqs 5 and 6) and with the paramet-

ric loss only (eq. 6). The performance at estimating lighting

in different weather conditions is shown in table 1, and in-

dicates that adding the additional losses from [26] helps

PanoNet to encode more information in the latent space.

6.2. Evaluating the CropNet CNN

We extract 7 limited field-of-view photos from each

panorama in the HDR outdoor panorama dataset [8] using

a standard pinhole camera model, and randomly sampling

the camera azimuth. Then, we estimate lighting parameters

from these crops using the approach of [9] and our CropNet.

The sun position angular error from our CropNet and [9]

is shown in fig. 7. Note that the sun position is indepen-

dent from the other radiometric lighting parameters in our

approach. In contrast, the radiometric sky properties are
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(a) Input (b) [9] (c) CropNet (d) GT render

Figure 6. Lighting estimation comparison with ground truth. We

crop an image from an HDR panorama database [8], then the

cropped image (a) is used to estimate the lighting parameters from

[9] and CropNet. The renders from each approach are shown in (b)

and (c); (d) shows the ground truth render from the HDR panorama.

constrained by the sun position in [9]. Therefore, in order

to fairly compare the radiometric lighting parameters, we

employ the network of [9] to estimate the sun position in the

subsequent experiments.

Fig. 6 shows qualitative comparison between the predic-

tion from [9] and our CropNet with the ground truth. Again,

our method can accurately estimate lighting conditions rang-

ing from clear to overcast. For example, in an overcast day

(last row of fig. 6), our approach can successfully estimate

the lighting and produce renders with soft shadows. How-

ever, we notice that the approach in [9] constantly outputs a

clear sky, and usually fails to generate soft shadows.

Those qualitative results are validated quantitatively in

fig. 8, which reports both the RMSE and si-RMSE met-

rics with respect to renders obtained with the ground truth

lighting. Again, our approach shows much improved perfor-

mance across different weather conditions and error metrics.

The RMSE plot demonstrates that our CropNet can obtain a
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Figure 7. Cumulative sun angular error comparison between

our CropNet and [9] on single images extracted from SUN360

dataset [24]. Our method slightly outperforms that of [9].
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Figure 8. Quantitative comparison between our CropNet and [9]

on single images extracted from a dataset of HDR panoramas [8],

where the ground truth lighting is available. The render error is

shown in the box-plots as function of shadow softness ranging from

very sharp (1) to smooth (3) (see text for the exact definition), and

over the entire dataset (“all”). The lower (upper) edge of each

box indicates the 25th (75th) percentiles. While both techniques

perform relatively similarly when shadows are very sharp (in sunny

conditions), the error of [9] increases when the sky is not completely

clear and shadows start to disappear. In contrast, our method

remains much more stable.

much more accurate estimate of exposure in outdoor scenes.

The si-RMSE shows that the estimated lighting generates

more faithful shadows when compared to [9].

Fig. 9 shows qualitative comparison between our CropNet

with [9] for real images. Our approach is able to handle

different weather conditions ranging from fully sunny to

overcast skies. Fig. 10 compares the lighting between our

CropNet and [9] for different viewpoints extracted from

the same panorama. Our approach better adapts the local

crop lighting than [9]. More examples can be found in the

supplementary material.

7. Discussion

In this paper, we presented a method for estimating HDR

lighting from a single, LDR image. At the heart of our

approach lies a CNN that learns to predict the parameters of

an analytical sky model from a single LDR panorama such

that it 1) more realistically reconstructs the appearance of

the sky, and 2) renders the appearance of objects lit by this
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(a) Input image (b) [9] (c) Ours (CropNet)

Figure 9. Lighting estimation for real images. We show different

lighting estimation results from real images. Our approach provides

consistent estimations in a wide range of illumination conditions,

ranging from clear (top) to overcast (bottom). Here, the sun azimuth

is kept fixed to better compare the renders.

illumination. This CNN is used to label a large dataset of

outdoor panoramas, which is in turn used to train a second

CNN, this time to estimate the lighting parameters from a

single, limited field of view image. Due to its intuitive set

of lighting parameters such as the sun shape and color, our

approach is particularly amenable to applications where a

user might want to modify the estimated lighting parameters,

either because they were judged to be not quite right, or to

experiment with different lighting effects. In addition, the

network outputs can be used to render an environment map,

which can readily be used to insert photorealistic objects into

photographs (fig. 1).

O
ri

g
in

al
p

an
o

ra
m

a
C

ro
p

s
O

u
rs

(C
ro

p
N

et
)

[9
]

Figure 10. Estimating lighting for different viewpoints extracted

from the same panorama. From a single panorama (top row),

we extract three different crops from left to right (2nd row), and

compare the lighting estimates obtained with our method (3rd row)

to that of [9] (bottom row). Despite being extracted from the same

panorama, the crops exhibit different lighting conditions. Our

method adapts to these changes naturally, and predicts believable

illumination conditions in all three cases. Here, the sun azimuth is

kept fixed to better compare the renders.

While our approach outperforms the state-of-the-art both

qualitatively and quantitatively, it is not without limitations.

Its most noticeable limitation is that it typically has difficulty

in properly identifying soft shadows, both from panoramas

and from crops. We suspect this is because the HDR training

data does not contain many examples where this is the case.

In addition, since shadows are dimmer, they are harder to see

in the images, as such cues to their existence are most subtle.

Another limitation is the tendency to estimate gray skies,

even when the sky in the image is visible, and blue. Again,

we suspect that this is a data issue: the network has difficulty

in overcoming the fact that most panoramas have clouds

which bring the average sky color closer to gray. These

questions pave the way for exciting future work.
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