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Abstract

Age estimation is a classic learning problem in com-

puter vision. Many larger and deeper CNNs have been pro-

posed with promising performance, such as AlexNet, Vg-

gNet, GoogLeNet and ResNet. However, these models are

not practical for the embedded/mobile devices. Recently,

MobileNets and ShuffleNets have been proposed to reduce

the number of parameters, yielding lightweight models.

However, their representation has been weakened because

of the adoption of depth-wise separable convolution. In this

work, we investigate the limits of compact model for small-

scale image and propose an extremely Compact yet efficient

Cascade Context-based Age Estimation model(C3AE).

This model possesses only 1/9 and 1/2000 parameters

compared with MobileNets/ShuffleNets and VggNet, while

achieves competitive performance. In particular, we re-

define age estimation problem by two-points representa-

tion, which is implemented by a cascade model. More-

over, to fully utilize the facial context information, multi-

branch CNN network is proposed to aggregate multi-scale

context. Experiments are carried out on three age estima-

tion datasets. The state-of-the-art performance on compact

model has been achieved with a relatively large margin.

1. Introduction

Convolutional neural networks (CNNs) are being devel-

oped deeper and larger for more precise accuracy in recent

years. This trend has brought in unprecedented computa-

tion cost to either training or deploying. In particular, de-

ploying existing classic large models, e.g., AlexNet [17],

VggNet [33] and ResNet [11], on mobile phones, cars and

robots is next to impossible due to the model size and com-

putational cost.

To deal with above problem, recently MobileNets [12,

31] and ShuffleNets [40, 23] have been proposed to greatly

reduce the parameters by exploiting the depth-wise separa-
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Figure 1: Human can recognize the age of person in one of

the four images, regardless of different resolutions or scales.

Is it necessary to use the first image that is with large size?

In this work, we use small-scale image (64 × 64 × 3) for

age estimation, which can achieve very competitive perfor-

mance.

ble convolution. In these models, the traditional convolu-

tion is replaced by two step convolutions, namely the filter-

ing layer and combining layer. For example, in MobileNets,

the filtering layer first convolves each corresponding chan-

nel separately, thus breaking the interactions among various

output channels, which can reduce the number of parame-

ters dramatically. A 1×1 convolution then stitches different

channels to combine the information acquired from differ-

ent input channels. For large-scale images, such operation is

reasonable because images need to be represented by large

number of channels, e.g., 512 and 384 in VggNet [33] and

ResNet [11]. Whereas, for small-scale images, e.g., images

with low resolution and small dimension, such predicate re-

mains questionable.

In contrast to large-scale images, small-scale images can

be often represented by fewer number of channels in the

network, and so does the number of parameters and mem-

ory. Therefore, standard convolution layer with small size

kernel does not require much more parameters and memory

compared with depth-wise separable convolution [12, 40].

From the perspective of image representation, the output

channels of depth-wise convolution are many times larger

than that of standard convolution. To compensate the rep-

resentation ability, the depth-wise convolution has to pay

for the cost of increased parameters. Therefore, we believe
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the conventional convolution layer with small kernel size is

more suitable for processing small-scale images than depth-

wise counterpart.

Images must often be stored and processed with low res-

olution and scale, aka small-scale images, on low-cost mo-

bile devices. One of the eminent problems which falls into

the category is age estimation. For example, human can eas-

ily recognize the age of the man in Fig. 1 in either full or low

resolution and partial or full view of the face. We, therefore,

conjecture such ability is applicable to contemporary CNNs

and design a compact with standard convolution layers with

small-scale face images as input for age estimation.

Recent advances in age estimation are usually summa-

rized into two mainstream directions: jointly category clas-

sification and value regression, and distribution matching.

For the former, the psychological evidence [15] reveals that

humans are inclined to give categorical ratings on image

rather than continuous scores, i.e., preferring to different

levels. Some works [19, 4] utilize the category informa-

tion and ordinal information to implement classification and

regression simultaneously. For the latter one, distribution

matching can achieve promising results under the assump-

tion that distribution label of each image is provided. Never-

theless, acquiring distributional labels for thousands of face

images itself is a non-trivial task. In this work, we propose

to exploit the information on classification, regression and

label distribution simultaneously. This is achieved by repre-

senting discrete age as a distribution over two discrete age

levels and the training objective is to minimize the match

between distributions. In deep regression model, a fully

connected layer with semantic distribution is inserted in be-

tween the feature layer and age value prediction layer.

To summarize, we design a compact model that takes

small-scale image as input. Specifically, we utilize stan-

dard convolution instead of depth-wise convolution, with

suitable kernel and number of channels. To the best of

our knowledge, this is the smallest model that has been

obtained so far on the facial recognition, i.e., 0.19MB for

plain model and 0.25MB for full model. We then repre-

sent the discrete age value as a distribution and design a

cascade model. Moreover, we introduce a context based

regression model which takes as input multiple scales of fa-

cial image. With the Compact basic model, Casaced train-

ing and multi-scale Context, we aim to tackle small-scale

image Age Estimation. Thus we name the network C3AE.

Our main contributions are as follows. First, we study

the relationship between the channel number and the rep-

resentation on depth-wise convolution, especially on the

small scale image. Our discussion and results advocate a

rethinking of MobileNets and ShuffleNets for the small-

scale/medium-scale images. Second, we present a novel

age representation that exploits the information on clas-

sification, regression and label distribution simultaneously

and design a cascade model. Finally, we propose a con-

text based age inference method collecting different granu-

larity of input images. The proposed model, named C3AE,

achieves the state-of-the-art performance compared with al-

ternative compact models and even outperforms many bulky

models. With the extremely compact model (0.19MB and

0.25 MB for plain and full model, respectively), C3AE is

suitable to be deployed on low-end mobiles and embedded

platforms.

2. Related Work

Age Estimation The age progression displayed on faces

is uncontrollable and personalized [5], and the traditional

methods often have the problem of generalization. With

the success of deep learning, many recent works applied

deep CNN to achieve the state-of-the-art performance on

various applications such as image classification [17, 33,

35, 36, 11, 34, 14], semantic segmentation [20, 2], object

detection [8, 27, 26]. As for age estimation, CNNs are

also being used for its strong generalization. Yi et al. [39]

firstly utilized CNN models to extract features from sev-

eral facial regions, and used a square loss for age estima-

tion. AgeNet [18] used one-dimensional real-value as an

age group for age classification. Rothe et al. [29] proposed

to use expected value on the softmax probabilities and dis-

crete age values for age estimation. It is a weighted softmax

classifier only in the testing phase. Niu et al. [24] formu-

lated age estimation as an ordinal regression by employing

multiple output CNNs. Following [24], Chen et al. [3] uti-

lized ranking-CNN for age estimation, in which there were

a series of basic binary CNNs, aggregating to the final esti-

mation. Han et al. [9] used multiple attributes for multi-task

learning. Gao et al. [6] used KL divergence to measure the

similarity between the estimated and groundtruth distribu-

tions for age. Pan et al. [25] designed a new mean-variance

loss for distribution learning.

However, in real applications, the distribution is usually

not available for a face image. In this work, we consider

two objectives simultaneously. The first one minimizes the

Kullback-Leibler loss between distributions, and the second

one optimizes the squared loss between discrete ages.

Compact Model As the increasing requirement of mo-

bile/embedded devices running deep learning, various ef-

ficient models such as GoogLeNet [35], SqueezeNet [16],

ResNet [11] and SENet [13], are designed to cater this

wave. Recently, depth-wise convolution was adopted by

MobileNets [12, 31] and ShuffleNets [40, 23] to reduce

computation costs and model sizes. They were built pri-

marily from depth-wise separable convolutions initially in-

troduced in [32] and subsequently used in Inception models

[36, 34] to reduce the computation in the first few layers. In

particular, the separation of filtering - applying convolution

at each channel separately and combination - recombine
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the output of individual channels achieved fewer computa-

tions. MobileNet-V1 [12] based on the depth-wise separa-

ble convolution explored some important design guidelines

for an efficient model. ShuffleNet-V1 [40] utilized novel

point-wise group convolution and channel shuffle to reduce

computation cost while maintaining accuracy. MobileNet-

V2 [31] proposed a novel inverted residual with linear bot-

tleneck. ShuffleNet-V2 [23] mainly analyzed the runtime

performance of the model and give four guidelines for effi-

cient network design.

For age estimation, we argue that for small-scale images,

the channel size is often small and the depth-wise separation

does not benefit. Instead, a standard convolution is adequate

for the trade-off between accuracy and compactness.

3. The Proposed Model

In this section, we firstly present the compact model and

its architecture as well as some important discussions on

practical guidelines. Then we describe a novel two-points

representation of age, and utilize the cascade style to insert

it in deep regression model. Next a context based module

is embedded into a single regression model by exploiting

facial information at three granularity levels. Finally some

discussions are given for rethinking.

3.1. Compact Model for Small­scale Image: Revis­
iting Standard Convolution

Our plain model is composed of five standard convolu-

tion and two fully connected layers as shown in Tab. 11. For

standard convolution layer followed by batch normaliza-

tion, Relu and average pooling, its kernel, number of chan-

nels and parameters are 3, 32 and 9248, respectively. As a

basic module, we will show why we use standard convolu-

tion block instead of the separable convolution block that

used in MobileNets and ShuffleNets. We shall demonstrate

later in the experiment, our basic model produces competi-

tive performance compared with fashionable models though

its simplicity.

In MobileNets, the status regarding the saving of param-

eters and computation were analyzed, especially compar-

ing between standard convolution and depth-wise separable

convolution. That analysis is suitable for large-scale image

while for the small-scale/medium image it may not work

well.

Given an input and output as DF ×DF ×M feature map

F and DF ×DF ×N feature map G, DF denotes the size of

feature map, M and N are the number of input channels and

output channels for a convolution layer, respectively. The

number of computation cost is given by D2
K ·M ·D2

F +M ·
N ·D2

F [12]. In comparison, the standard convolution layer

1(-) in the whole manuscript indicates value not available, or also use-

less for comparison.

Table 1: Overall architecture of the compact plain model

Layer Kernel Stride Output size Parameters MACC

Image - 1 64*64*3 - -

Conv1 3*3*32 1 62*62*32 896 3321216

BRA - 1 31*31*32 128 -

Conv2 3*3*32 1 29*29*32 9248 7750656

BRA - 1 14*14*32 128 -

Conv3 3*3*32 1 12*12*32 9248 1327104

BRA - 1 6*6*32 128 -

Conv4 3*3*32 1 4*4*32 9248 147456

BN+ReLu - 1 4*4*32 128 -

Conv5 1*1*32 1 4*4*32 1056 16384

Feat 1*1*12 1 12 6156 -

Pred 1*1*1 1 1 13 -

Total - - - 36377 -

(BRA) indicates batch normalization(BN), Relu and average pooling.

(MACC) Here we only count MACC of the conv layer.

is parameterized by convolution kernel K of size D2
K×M̂×

N̂ . The reduction between standard convolution and depth-

wise separable convolution in computation cost [12] is:

D2
K ·M ·D2

F +M ·N ·D2
F

D2
K · M̂ · N̂ ·D2

F

=
M

M̂N̂
+

MN

M̂N̂D2
K

(1)

Only with the assumption that both the depth-wise con-

volution and standard convolution need the same channel

size, i.e. M = M̂ and N = N̂ , Eq. 1 can be reduced to
1

N
+ 1

D2

K

< 1. However, the depth-wise convolution often

requires much more channel numbers in order to perform

comparable to standard convolution on small-scale images.

Therefore, in reality, M̂ is much less than M and so does

N̂ . For instance, images can be represented by 32 chan-

nels in standard convolution rather than 144 or even larger

in MobileNet-V2. In this situation, the reduction ratio is
M

M̂ ·N̂
+ MN

D2

K
·M̂ ·N̂

= 144

32·32
+ 144·144

32·32·32
= 2.39 > 1. It indi-

cates a standard convolution can even save more than half

of computation cost compared with MobileNet-V2. Hence,

it is reasonable to select the standard convolution layer for

small size image and model.

3.2. Two­Points Representation of Age

In this section, we present a novel age representation as

a distribution over two discrete adjacent bins. Given a set

of images {(In, yn)}n=1,2,··· ,N , deep regression model can

be written as a mapping F : I → Y , where In and yn
represent image and regression label, respectively. For any

regression label yn, it can be represented as a convex com-

bination of two other numbers z1n and z2n (z1n 6= z2n),

yn = λ1z
1
n + λ2z

2
n, (2)

where λ1 and λ2 are the weights, λ1, λ2 ∈ R
+, λ1+λ2 = 1.

Given the age interval [a, b], a label yn ∈ [a, b] and bins

{zm} with uniform interval K , yn can be represented by
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Figure 2: Overview of our compact model on age estimation.

z1n =
⌊

yn

K

⌋

· K and z2n =
⌈

yn

K

⌉

· K, where ⌊·⌋ and ⌈·⌉ are

the floor and ceiling function. Accordingly, the coefficients

λ1 and λ2 are computed as

λ1 =1−
yn − z1n

K
= 1−

yn −
⌊

yn

K

⌋

·K

K

λ2 =1−
z2n − yn

K
= 1−

⌈

yn

K

⌉

·K − yn

K

(3)

For example, as shown in Fig. 3, the corresponding rep-

resentation of 68 or 74 with K = 10 (second row in

Fig. 3) or K = 20 (third row in Fig. 3) is given. If

K = 10, the set of bins is {10, 20, 30, 40, 50, 60, 70, 80}
and yn is 68, the corresponding vector representation is

yn = [0, 0, 0, 0, 0, 0.2, 0.8, 0]. This operation assigns a dis-

tribution to the label, and will not incur any additional cost

on distribution labeling. Moreover, the distribution of two-

points representation is sparse.

0 100100 20 30 40 50 60 70 80 90

74

68 in [60, 70]
74 in [70, 80]

68

60 8070 68 = 60 *0.2 + 70 * 0.8
74 = 70 *0.6 + 80 * 0.4

8 4

60 80

8 12

7468

68

2 6

74

68 = 60 *0.6 + 80 * 0.4
74 = 60 *0.3 + 80 * 0.7

14 6

68       (0, 0, 0, 0, 0, 0, 0.2, 0.8, 0, 0, 0) 
74       (0, 0, 0, 0, 0, 0, 0.6, 0.4, 0, 0, 0) 

68       (0, 0, 0, 0.6, 0.4, 0)  
74       (0, 0, 0, 0.3, 0.7, 0)  

Figure 3: A new definition on the age estimation by two-

points representation. Any point is represented by two ad-

jacent bins instead of any other two or more bins.

In fact, λ1 and λ2 represent the probability belonging to

two bins, which include rich distribution information. The

main trend on age estimation includes two aspects: simulta-

neously classification and regression, and distribution learn-

ing. For the former, according to the above Fig. 3, 68 more

likely belongs to bin 70 instead of bin 60. Two-points repre-

sentation can disambiguate this problem naturally. For the

latter, some methods [7, 6, 25] use distribution matching for

better results. However, that requires extensive labeling to

obtain the distribution that is very costly.

What is more, two-points representation gets two adja-

cent bins instead of any other two or more points, and the

two adjacent bins are assigned with nonzero elements. In

fact, each point/age in the linesegment can be represented

by multiple points in which the number of combinations

is very diversified. Each point can also be represented

by two points or any other more points. However, those

combinations is probably not what we want, e.g., 50 =
0.5×0+0.5×100 = 0.2×10+0.2×40+0.2×60+0.2×90.

For age estimation, these representation is useless. While

for deep regression model, these combinations need to be

eliminated.

3.3. Cascade Training

From the above section, age value yn can be represented

as distribution vector yn. However, the combination of yn

is diversified. Two-points representation is suitable to con-

trol it. The next question is how to embed the vector infor-

mation into an end-to-end network. We implement this step

by the cascade model shown in Fig. 2. In specific, a fully

connected layer with semantic distribution is inserted in be-

tween feature layer yn and the regression layer yn. The

mapping f from feature X to age value y can be decom-

posed into two steps f1 and f2, i.e., f = f2 ◦ f1. In fact,

the whole process can be denoted as f : In
Conv
−−−→ X

W1−−→

yn

W2−−→ yn.

Here we define two losses for two cascade task. The first

one measures discrepancy between ground-truth label and

predicted age distribution. We adopt KL-Divergence as the

measurement,

Lkl(yn, ŷn) =
∑

n

DKL(yn|ŷn) + λ||W1||1

=
∑

n

∑

k

yk
nlog

yk
n

ŷ
k
n

+ λ||W1||1,
(4)

where W1 is the weight of the mapping f1 from concate-

nated feature X to the distribution ŷn, λ is used to control
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the sparsity of the ŷn. The second loss controls the pre-

diction of the final age and is implemented as L1 distance

(MAE loss),

Lreg(yn, ŷn) =
∑

n

||yn − ŷn||. (5)

In the training process, two loss functions are trained in

cascade style as shown in Fig. 2. However they are still

trained jointly, and the total loss is given as

Ltotal = αLkl + Lreg (6)

where α is the hyperparameter to balance two losses. The

cascade training can properly control the distribution ŷn in

case of diversified combination.

3.4. Context­based Regression Model

The resolution and the size of small-scale image is lim-

ited. Exploiting facial information at different granularity

levels is necessary. As shown in Fig. 1, each cropped image

has a special view on the face. The image with high res-

olution contains rich local information, in return one with

low resolution may contain global and scene information.

Other than selecting one aligned facial center in SSR [38],

we crop face centers with three granularity levels, as shown

in Fig. 2, then fed them into the shared CNN network. Fi-

nally the bottlenecks of three-scale facial images are aggre-

gated by concatenation that followed by cascade module.

3.5. Discussions

In this section, we summarize two non-trivial empirical

guidelines for small-scale images and models. We will sup-

port our claims by experiments in the next section.

Residual module For small-scale image and model, is

the residual module necessary? At least for age estimation

dataset, it is not. Residual module with shortcut strategy is

first designed by [11] to solve the problem of gradient van-

ishing, especially on very deep network. Its shortcut power

can only be disclosed when enough layers were involved.

The small-size model usually includes only shallow layers.

According to our experiment, common connection on plain

convolution is enough for small image and model. This dis-

cussion reminds us to rethink the apparent ideas in deep

learning, especially on the small size image and model.

SE module The squeeze-and-excitation (SE) module has

been validated by many works [31, 23] for large scale im-

age. While for small size image and model it also works

well. So we integrate the SE module into our network and it

costs very few parameters. For example, when the squeeze

factor is 2, each SE module’s parameters is only 32*16 *2

= 1024.

4. Experiments

The experiments consist of three parts. The first part is

ablation study I on the comparison among SSR, MobileNet-

V2, ShuffleNet-V2 and C3AE using plain model. The sec-

ond one gives ablation study II on necessity of cascade mod-

ule and context based module. The last one mainly provides

the comparison with some state-of-the-arts.

4.1. Datasets

We study age estimation on three datasets: IMDB-

WIKI [29], Morph II [28] and FG-NET [5]. We follow

the conventions in the literature SSR [38], DEX [29] and

Hot [29], WIKI-IMDB are used for pre-training and the ab-

lation study. Because Morph II is the most popular and

large benchmark for age estimation, we choose it for ab-

lation studies. Morph II and FG-NET are used to compare

with the state-of-the-arts.

IMDB-WIKI is the largest facial dataset with age la-

bels, which is introduced in [29] and consists of 523, 051
images in total. The range is from 0 to 100. It is separated as

two parts: IMDB(460, 723 images) and WIKI (62, 328 im-

ages). However, it is not suitable for the performance eval-

uation on the age estimation because it contains much more

noise. Thus, following previous works, e.g., SSR [38] and

DEX [29], we utilize IMDB-WIKI only for pre-training.

Morph II is the most popular benchmark for age esti-

mation, which has around 55, 000 face images of 13, 000
subjects with age label. The age ranges from 16 to 77(on

average, 4 images per subject). Similar to some previous

works [24, 41], we randomly partition the dataset into two

independent parts: training (80%) and testing (20%).

FG-NET contains 1, 002 face images from 82 non-

celebrity subjects with large variation of lighting, pose, and

expression. The age ranges from 0 to 69 (on average, 12
images per subject) [5]. Since the size of FG-NET is small,

some previous methods usually use leave-one-out setting

which needs to train 82 deep models. Under this setting,

there are about 12 samples for the testing. Here we ran-

domly choose 30 samples as the testing set and the remain-

ing ones are for the training. We repeat this split 10 times

and compute their average performance.

4.2. Implementation Details

Following SSR [38] and DEX [29], the model is firstly

pre-trained on the IMDB and WIKI dataset, and is with size

of 64 × 64 × 3. In all the experiments, Adam optimizer

is employed. In the first ablation study, because the plain

model of C3AE is compared with other plain models, each

model is trained 160 epochs with batch size of 50. Simi-

lar to SSR, the initial learning rate, dropout rate, the mo-

mentum and the weight decay are set to 0.002, 0.2, 0.9 and

0.0001, respectively. The learning rate is decreased by a

factor of the regression value with patience epochs 10 on

the change value of 0.0001. In the second ablation study, for

comparing with the state-of-the-art methods, each model is

trained 600 epochs in total with the batch size of 50. We
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use the strategy in [42] with randomly dropping out blocks

on the input image. In this phase, the initial learning rate,

dropout rate, the momentum and the weight decay are set to

0.005, 0.3, 0.9 and 0.0001, respectively. The learning rate is

decreased by a factor of the regression value with patience

epochs 20 on the change value of 0.0005. Following SSR

[38], the evaluation criteria is mean absolute value (MAE).

The factor α in Eq. 6 is set to 10 in all the experiments. For

all the cascade model, K in Eq. 3 is set to 10.

4.3. Ablation Study

The ablation study is conducted as two parts. For the first

one, our plain model is compared with SSR, MobileNet-V2

and ShuffleNet-V2 to demonstrate that standard convolu-

tion yields competitive performance, even better than fash-

ionable models such as MobileNet-V2 and ShuffleNet-V2.

We further study whether the residual module and SE mod-

ule can benefit small network. For the second part, we con-

duct ablation study on the necessity of two-points represen-

tation and context module.

4.3.1 Ablation Study I: the Plain Model of C3AE

This part includes three groups of experiments: compar-

ison among our plain model, SSR, MobileNet-V2 and

ShuffleNet-V2; comparing with/without residual module;

and comparing with/without SE module.

The results of three methods (SSR, MobileNet-V2 and

ShuffleNet-V2) on Morph II(M-MAE), IMDB (I-MAE) and

WIKI (W-MAE) are given in Tab. 2. For fair comparison,

we implement extensive factor combinations(Comb.). In

Tab. 2, for MobileNet-V2 (M-V2)2, (αpw, αexp) means the

number of the pointwise filters and the expansion factor for

each expansion layer, respectively. For ShuffleNet-V2 (S-

V2)3, (αra, αfa) means ratio of bottleneck module’s out-

put channels for each stage and the scale factor for each

stage’s output channels, respectively. To conclude from the

comparison, our plain model even with minimal parame-

ters(Param.) and memory achieved best result regardless of

parameter tuning in the alternative three methods.

We also give a speed analysis from two points: MACC

and runtime speed. The former is the theoretical number

of multi-add operations. The latter is the measured speed

all under the same condition (forward single image 2000

times and then average), on CPU(Intel Xeon 2.1GHZ) and

GPU(Titan X). The comparison is shown in Tab. 3.

As shown in Fig. 4, the plain model of C3AE is consis-

tently better than SSR, ShuffleNet-V2 and MobileNet-V2

with lower validation loss (val loss in orange, training loss

in blue). More examples can be found in the supplemen-

tary material. For MobileNet-V2 and ShuffleNet-V2, with

2The code is from keras application
3The code is from https://github.com/opconty/keras-shufflenetV2

the depth-wise convolution, is by no means inferior than our

plain model with standard convolution. In addition, there is

a strange observation that the result of αexp = 4 is supe-

rior to αexp = 6. We believe that too large inverted bottle-

neck may be not suitable for small size model. For SSR, the

standard convolution is also used. However, its full model

is still inferior to our plain model. In addition, the gap be-

tween train and validate loss in our plain is the least. It

shows our plain model has better generalization. All these

observations suggest the effectiveness of our plain model.

Although our plain model is plain enough without any bells

and whistles, it still can get very competitive performance.

We further investigate the effectiveness of residual con-

nection and SE module. According to the results in Tab. 4

and the comparison in supplementary material, we observe

that residual module does not benefit in the small size

model, in particular for three datasets on age estimation.

While SE module work well for small size model.

Table 2: Comparsion among SSR, M-V2, S-V2 and C3AE.

Methods Comb. M-MAE I-MAE W-MAE Param. Memory MACC

M-V2

(0.25, 4) 3.72 7.23 7.29 107129 808.7KB 2.2M

(0.25, 6) 4.26 7.01 7.30 153561 994.7KB 3.0M

(0.5, 4) 3.71 6.76 6.76 354713 1.8MB 5.7M

(0.5, 6) 4.05 6.75 6.83 518857 2.5MB 8.1M

(0.75, 4) 3.24 6.57 6.49 747961 3.4MB 12.3M

(0.75, 6) 4.10 6.69 6.72 1102537 4.8MB 17.7M

S-V2

(0.25, 0.5) 4.85 8.22 8.78 76589 1.0MB 0.6M

(0.25, 1) 4.11 7.67 8.02 464185 2.6MB 4.0M

(0.5, 0.5) 4.11 7.66 8.04 155753 1.3MB 1.4M

(0.5, 1) 3.83 7.40 7.63 1284087 5.9MB 12.7M

(0.75, 0.5) 3.98 7.55 7.91 250829 1.7MB 2.5M

(0.75, 1) 3.63 7.07 7.19 2473043 10.7MB 26.1M

SSR Full model 3.16 6.94 6.76 40915 326.4KB 17.6M

C3AE Plain model 3.13 6.57 6.44 36345 197.8KB 12.8M

Table 3: The Speed analysis

evaluation our-plain SSR M-v2(.5,6) M-v2(.75,6) S-v2(.5,1)S-v2(.75,1)

MACC (M) 12.8 17.6 8.1 17.7 12.7 26.1

runtime-cpu(s) 0.0126 0.0233 0.0245 0.0394 0.0228 0.0295

runtime-gpu(s) 0.0029 0.0050 0.0070 0.0080 0.0080 0.0082

MAE 3.13 3.16 4.05 4.10 3.83 3.63

Table 4: The role of residual module and SE

Datasets w/o Res+w/o SE w. Res w. SE

Morph II 3.13 3.21 3.11

IMDB 6.57 6.66 6.50

WIKI 6.44 6.57 6.36

4.3.2 Ablation Study II: Cascade and Context Module

In this section, we analyze how the choice of cascade mod-

ule (two-points representation) and context module affect

the performance of age estimation.
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Our model(Plain): 197.8KBM-V2(Plain)-0.5-6: 2.5MB M-V2(Plain)-0.75-4: 3.4MB

IM
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S-V2(Plain)-0.25-1: 2.6MB S-V2(Plain)-0.5-0.5: 1.3MB SSR(Full model): 326.4KB

Figure 4: Comparison on the training process of M-V2, S-V2, SSR and our plain model.(Best viewed in color and magnifier.)

The result of two-points representation is implemented

by cascaded training, i.e., with/without cascade module. As

shown in Fig. 5, regardless of the regularizer λ in Eq. 4

we choose, the result with casacde module is consistently

better than that without cascade. If the context module

is further applied (Cascade + Context) it outperforms the

other two.The validations demonstrate the importance of

two-points representation and context module.

In specific, we give some examples in Fig. 6. GT

means the groundtruth value, and the legend gives the pre-

dicted age. The X-axis is the learned weights W2, and the

Y-axis is the predicted vector ŷn. Their dot/inner prod-

uct is the predicted age. We can see that the learned

weights are almost equivalent to groundtruth bins W2 =
[10, 20, 30, 40, 50, 60, 70, 80]. That is to say, W2 controls

two-points representation so that the diversified combina-

tions are eliminated. The last element of the predicted bins

is very strange, i.e., 92.73, 55.49. After the analysis of the

data distribution, we found that there are only 9 samples in

the range [70, 80], and it is easy to explain why the last

element is abnormal. The predicted distribution is sparse

with only two or three adjacent nonzero elements because

of two-points representation. Fully connected layer will

lead to the phenomenon that each age can be represented

by many different combinations.

In addition, as shown in Fig. 6, we also observe that the

predicted distribution and age on the top is better than that

on the bottom. The colors of the bar, legend and the distri-

bution correspond to the colored bounding box on the top

image. Context based model (top) achieves better perfor-

mance than that of single scale input (bottom).

Finally, in order to show generality of our model, we

5e-5 5e-4 5e-3 5e-2 5e-1 5e0

Lambda

2.4

2.6

2.8

3

M
A

E

w/o Cascade

Cascade

Cascade + Context

Figure 5: Evaluation of cascade and context module.

finetune the hyperparameters α as 5, 8, 10, 12 and 15 on

our full model, and the corresponding results are 2.79, 2.79,

2.75, 2.79 and 2.80, respectively. These results does not

change too much. It shows the robustness of our model.

4.4. Comparison with State­of­the­arts on Morph­
II

In this section, we further compare our model with state-

of-the-art models on Morph II. As shown in Tab. 5, our

full model achieves 2.78 and 2.75 MAE under the condi-

tion: trained from scratch and pretrained on IMDB-WIKI,

which is the state-of-the-art performance among compact

models. The previous best performance achieved in the

compact model is 3.16 in SSR [38]. Some results in the

Tab. 5 are from SSR [38]. In fact, our plain model achieves

3.13 MAE even without any bells and whistles. The results

of all other compact models are pretrained on IMDB-WIKI.

Our results on with/without pretrained process are very sim-

ilar. We believe Morph II is large enough to train our tiny

model. On the other hand, our result is much competitive

compared with the bulky models, and it even surpasses sev-
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W2 * [0.42 0.58 0.   0.   0.   0.   0.   0.] = 15.77 W2 * [0.   0.   0.39 0.61 0.   0.   0.   0.] = 36.11

W2 * [0.2   0.74  0.05 0.  0.  0.  0.  0.] = 18.14
W2 * [0.3   0.7    0.     0.  0.  0.  0.  0.] = 16.68
W2 * [0.33 0.66  0.     0.  0.  0.  0.  0.] = 16.33

W2 * [0.  0.02 0.34 0.50  0.12 0.01 0.  0.] = 37.42
W2 * [0.  0.     0.44 0.54  0.01 0.     0.  0.] = 35.55
W2 * [0.  0.01 0.57 0.41  0.     0.     0.  0.] = 34.08

W2 * [0.  0.  0.01 0.33 0.59 0.07 0. 0.] = 47.14
W2 * [0.  0.  0.01 0.53 0.44 0.02 0. 0.] = 44.63
W2 * [0.  0.  0.01 0.45 0.51 0.03 0. 0.] = 45.63

W2 * [0.   0.   0.   0.5  0.49 0.   0.   0.] = 45.00 W2 * [0.   0.   0.   0.46 0.53 0.01 0.   0.] = 45.43

W2 * [0.  0.01 0.07 0.33 0.47 0.11 0.01 0.] = 46.28
W2 * [0.  0.     0.01 0.30 0.61 0.08 0.     0.] = 47.59
W2 * [0.  0.     0.05 0.53 0.40 0.02 0.     0.] = 43.87

W2 * [0.   0.   0.   0.   0.22 0.75 0.03 0.] = 57.99

W2 * [0. 0. 0. 0.04 0.47 0.46 0.04 0.] = 54.80
W2 * [0. 0. 0. 0.01 0.24 0.66 0.09 0.] = 58.02
W2 * [0. 0. 0. 0.03 0.43 0.49 0.05 0.] = 55.35

GT=16 GT=36 GT=45 GT=45 GT=57

Figure 6: Some examples on the C3AE. Top: the result of the context based regression model. The yellow bars denote the

predicted distribution ŷn, and the X-axis is the learned weight W2 from the distribution to age value. Bottom: Three different

colors RGB correspond to each facial context and predicted distribution ŷn.(Best viewed in color and magnifier.)

eral bulky models despite it consumes only 1/2000 of their

model sizes. All the bulky models are pretrained on Ima-

geNet or IMDB-WIKI using VggNet. Our result without

pretrained process even surpasses some pretrained bulky

models. In general, C3AE gets very competitive perfor-

mance on Morph II with extremely lightweight model.

Table 5: Comparsion with state-of-the-arts that use compact

and bulky basic models on Morph II.

Type Methods MAE Memory Parameters

Compact

ORCNN [24] 3.27 1.7MB 479.7K

MRCNN [24] 3.42 1.7MB 479.7K

DenseNet [14] 5.05 1.1MB 242.0K

MobileNet-V1 [12] 6.50 1.0MB 226.3K

SSR [38] 3.16 0.32MB 40.9K

Bulky

Ranking CNN [3] 2.96 2.2GB 500M

Hot [30] 3.45 530MB 138M

ODFL [19] 3.12 530MB 138M

DEX [29] 3.25 530MB 138M

DEX (IMDB-WIKI) [29] 2.68 530MB 138M

ARN [1] 3.00 530MB 138M

AP [41] 2.52 530MB 138M

MV [25] 2.41 530MB 138M

MV (IMDB-WIKI) [25] 2.16 530MB 138M

C3AE
Full model (Scratch) 2.78 0.25MB 39.7K

Full model (IMDB-WIKI) 2.75 0.25MB 39.7K

4.5. Comparison with State­of­the­arts on FG­NET

As shown in Tab. 6, we compare our model with state-

of-the-art models on FG-Net. Without training 82 models,

we randomly repeat the experiment ten times. This is also

challenging because we use less train dataset. In fact, Han

[10], Luu [21, 22] in Tab. 6 are also use the different splits.

Using mean-variance loss, MV [25] with pre-trained pro-

cess gets the best result of 2.68. While our result with pre-

trained process is 2.95 MAE and 0.17 std, i.e., the second

best performance compared with Bulky models. In addi-

tion, without any pre-trained process, our result of 4.09 is

slightly better than MV [25] of 4.10. In general, the valida-

tion on FG-NET demonstrate the effectiveness of C3AE.

Table 6: Comparison with state-of-the-arts on FG-Net.

Methods MAE Memory Parameters

Geng et al. [7] 5.77 - -

Han et al. [10] 4.80 - -

Luu et al. [21] 4.37 - -

Luu et al. [22] 4.12 - -

Wang et al. [37] 4.26 - -

Feng et al. (1) [4] 4.35 530MB 138M

Feng et al. (2) [4] 4.09 530MB 138M

Zhu et al. (Actual) [43] 4.58 530MB 138M

Zhu et al. (Synthesized) [43] 3.62 530MB 138M

Liu et al. [19] 3.89 530MB 138M

DEX [29] 4.63 530MB 138M

DEX (WIKI-IMDB) [29] 3.09 530MB 138M

MV [25] 4.10 530MB 138M

MV (WIKI-IMDB) [25] 2.68 530MB 138M

C3AE (Scratch) 4.09± 0.19 0.25MB 39.7K

C3AE (WIKI-IMDB) 2.95± 0.17 0.25MB 39.7K

5. Conclusion

In this paper, we have proposed a compact model, C3AE,

that has achieved state-of-the-art performance among com-

pact models and competitive performance among bulky

models. From various ablation study, we have demonstrated

the effectiveness of C3AE. For the small/medium-size im-

age and model, some analysis and rethinking are given. In

the future work, we will evaluate the effectiveness of our

observation on general datasets and applications.
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