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A woman in 

white is playing 

tennis on a court. 

Input                  GT                    DSS                 BMPM               DGRL              Baseline          CapSal Generated Caption   

A dog sitting on a 

coach with a 

laptop.

Figure 1: Visual comparison with other CNN-based methods. From left to right: input image, ground truth, saliency maps of

DSS [11], BMPM [41], DGRL [35], our baseline model, CapSal model and generated caption by ICN. The words highlighted

in red gain higher attention scores. Our CapSal network is trained to leverage the semantics in captioning task for salient

object detection, which can precisely localize the salient regions from cluttered background.

Abstract

Detecting salient objects in cluttered scenes is a big chal-

lenge. To address this problem, we argue that the model

needs to learn discriminative semantic features for salient

objects. To this end, we propose to leverage captioning

as an auxiliary semantic task to boost salient object detec-

tion in complex scenarios. Specifically, we develop a Cap-

Sal model which consists of two sub-networks, the Image

Captioning Network (ICN) and the Local-Global Percep-

tion Network (LGPN). ICN encodes the embedding of a gen-

erated caption to capture the semantic information of major

objects in the scene, while LGPN incorporates the caption-

ing embedding with local-global visual contexts for predict-

ing the saliency map. ICN and LGPN are jointly trained to

model high-level semantics as well as visual saliency. Ex-

tensive experiments demonstrate the effectiveness of image

captioning in boosting the performance of salient object de-

tection. In particular, our model performs significantly bet-

ter than the state-of-the-art methods on several challenging

datasets of complex scenarios.

1. Introduction

Salient object detection is a fundamental problem in

computer vision, aiming to localize and segment the most

conspicuous regions in an image. In recent years, it has

achieved much attention due to its usefulness to many com-

puter vision applications [12, 36, 44].

Although significant progresses have been made in this

area thanks to the deep learning technology, it still remains

a big challenge to accurately detect salient objects in clut-

tered scenes (see Fig.1). To address this problem, we argue

that the model needs to learn discriminative semantic fea-

tures for salient objects, such as object categories, attributes

and the semantic context. However, existing salient object

detection networks are only trained on pixel-level mask an-

notations, with no supervision on higher-level semantics.

In this work, we propose to use image captioning [37,

26, 30] as an auxiliary task to boost the semantics for salient

object detection. The connection between image captioning

and saliency detection has already been explored in the im-

age captioning domain. Some works [1, 28] utilize saliency

detection to make the network attend to relevant regions for

captioning. These works assume that the objects being men-

tioned in caption are largely consistent and correlated with

the salient objects [40]. Based on the same assumption, we

believe that the captioning task can provide rich semantic

supervision for salient object detection. For example, from

the caption “A woman in white is playing tennis on a court”,

we can obtain the overall knowledge about the category, at-

tribute and motion of salient object (see Fig.1).

To this end, we propose CapSal, a salient object de-

tection framework that exploits image captioning to pro-
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Figure 2: An overview of the proposed CapSal model. For

an input image, a shared backbone network is employed to

extract multi-level features. Then a RNN-based caption-

ing model is used to encode each word in the caption. The

latent features for each word are then pooled using an at-

tention mechanism to obtain a Caption Embedded Vector

(CEV). The caption embedded vector and multi-level fea-

tures are incorporated into local-global perception network,

which predicts salient objects in both local and global view.

At the end, we obtain the final saliency map S by fusing

the saliency maps, Sl and Sg , from the local and the global

perception modules.

mote the semantic feature learning for salient object de-

tection. The CapSal model consists of two sub-networks

with a shared backbone, which are Image Captioning Net-

work (ICN) and Local-Global Perception Network (LGPN),

for caption generation and saliency prediction, respectively.

The framework of our CapSal model is shown in Fig.2. The

ICN is a CNN+LSTM architecture, which takes an image

as input and generates a caption. In order to capture the

object-level semantic knowledge from caption, we use the

hidden vectors of LSTM to represent the encoding feature

of each generated word. Considering that not every word

in the caption is relevant for describing the salient object,

we propose a textual attention mechanism to weight the im-

portance of each word. Then a caption embedded feature

vector can be obtained via weighted pooling of the LSTM

hidden vectors.

The other sub-network, LGPN, is designed for integrat-

ing the caption embedded vector with multi-contextual vi-

sual features for identifying salient object. It consists of

three components: a Local Perception Module (LPM), a

Global Perception Module (GPM) and a Fusion Module

(FM). In LPM, caption embedded vector is aggregated with

visual features in a local view to capture fine details of ob-

jects. While the GPM utilizes context in a more global view

to give a holistic estimation of salient regions. LPM and

GPM are complementary in detecting objects of various

sizes, and their saliency maps are fused by FM to gener-

ate the final saliency map. Both LPM and GPM leverage

the caption embedded feature generated by ICN to capture

higher-level semantic information of the scene. ICN and

LGPN are jointly optimized during training using the cap-

tioning and saliency supervision respectively.

To train and evaluate the proposed method, we build a

new saliency dataset, COCO-CapSal, which contains the

ground truth saliency map as well as the corresponding

captions for each image. Images in the dataset are from

the MSCOCO [22] dataset and have multiple salient ob-

jects from 80 categories with cluttered background. Our

experiments validate the effectiveness of image captioning

in boosting the performance of salient object detection. In

particular, our model significantly outperforms the state-of-

the-art methods on several challenging datasets, such as our

COCO-CapSal test set, PASCAL-S [19] and a recent dataset

SOC [6] focused on cluttered scenes.

Our contributions are summarized as follows.

• To the best of our knowledge, this is the first work

to explore the usefulness of captioning for salient ob-

ject detection. And we establish a new dataset, which

provides the annotations of salient regions and corre-

sponding captions.

• We propose a new deep neural network model, Cap-

Sal, to leverage the captioning information together

with the local and global visual contexts for predict-

ing salient regions.

• Extensive experimental results have demonstrated that

captioning is indeed effective at promoting the perfor-

mance of salient object detection, especially in some

complicated scenarios.

2. Related Work

Salient Object Detection. Driven by the remarkable

success of CNN, many deep learning models have been

proposed for salient object detection. Early methods [31,

16, 15] utilize the CNN features and fully connected lay-

ers to predict the saliency scores of image patches. For

example, Li et al. [17] propose to extract multi-scale con-

textual CNN features for each superpixel to formulate its

saliency probability. In [31], Wang et al. put forward

two networks for locally estimating salient superpixels and

globally searching salient proposals. These methods sig-

nificantly break the bottleneck of traditional saliency ap-

proaches [3, 45, 38, 39]. However, the fully connected

layers in the network largely drop the computational effi-

ciency. To address this problem, many attempts [24, 4, 34]

have been made to use FCN [25] for generating pixel-wise

saliency prediction. Wang et al. [33] take the saliency prior

to recurrently guide the generation of the final saliency map.

In [23], Liu et al. first produce a coarse global saliency pre-

diction and refine it by progressively incorporating fine de-

tails from lower-level features. In [41], Zhang et al. build a

bi-directional message passing model for integrating multi-

level CNN features. Although impressive results have been

achieved, the networks trained only on saliency annotations

may not learn sufficient semantic knowledge for handling

6025



extra complicated scenes. To address this problem, we pro-

pose a CapSal model, which leverages the high-level object

knowledge from captioning to boost the semantic feature

learning for salient object detection.

Image Captioning. Image captioning aims to generate a

syntactically reasonable sentence for describing the image

content. Most existing image caption models are beneficial

from the CNN+RNN architecture [37, 26, 30, 8], in which

the CNN is used to encode the information of image content

and RNN is exploited to translate them into caption. Based

on the CNN+RNN architecture, top-down visual attention

mechanism is introduced to image captioning, which en-

courages models to selectively focus on the relevant regions

described in caption. In [37], Xu et al. utilize the LSTM

hidden state from last time to formulate the spatial atten-

tion, which would be further used for the next word predic-

tion. Recently, a few works [1, 28] have attempted to utilize

visual saliency to improve the performance of image cap-

tioning models. They use saliency prediction to assist the

model to better concentrate on objects of interest. Inspired

by the success of these works, we propose to leverage image

captioning as an auxiliary task to promote saliency predic-

tion in complicated scenarios.

3. Dataset Construction

To train and evaluate our proposed model, we establish a

COCO-CapSal dataset, which provides ground truth masks

of salient objects and the corresponding image captions. We

exploit annotations from two existing datasets, MSCOCO

[22] and SALICON [13], to build our dataset. MSCOCO is

a challenging real-world dataset, which provides both im-

age captions and instance-level annotations for objects in

80 categories. We take it as a source benchmark to collect

images, captions and salient object masks for our COCO-

CapSal dataset. SALICON utilizes the mouse clicks to ap-

proximate the eye gaze data and provides the human gaze

annotations for 15k images of MSCOCO. We conduct two-

stage work to build our dataset, which are image selection

and saliency ground truth generation. We utilize the human

gaze annotation from SALICON to indicate the rough lo-

calization of salient regions (see examples in Fig.3 (b)). In

the first stage, the image would be selected if (1) its caption

descriptions are consistent with salient regions, and (2) the

categories of the salient objects are contained in 80 classes

of MSCOCO. After this stage, we collect 5265 images for

training and 1459 ones for testing. In the second stage,

we aim to generate the salient object annotations for the

collected images. The image selection strategy in the first

stage ensures that the mask of salient object could be col-

lected from MSCOCO dataset. This motivates us to directly

use the instance-level annotations from MSCOCO to gener-

ate saliency ground truth. For each image, we obtain its

object instance masks from MSCOCO and calculate their

1. A man with a bushy
beard and green tie.

2. The man smiles wearing

a green neck tie near a
crowd of people.

1. A pair of dogs laying

down on a couch.

2. White dog and brown

dog resting on sheet
covered couch.

(a)                  (b)                  (c)                       (d)

1. A brown and white cat

sitting next to a brown

and white teddy bear.

2. A cat relaxes next to a
stuffed Teddy Bear.

Figure 3: Examples of proposed COCO-CapSal dataset.

From left to right: (a) input image, (b) human gaze ground

truth from SALICON [13], (c) salient object ground truth

of our COCO-CapSal dataset, (d) corresponding image cap-

tions from MSCOCO [22].

IoUs with the corresponding human gaze annotation from

SALICON. The instances whose IoUs are larger than the

mean IoU of the image by 1.5 times would be selected as

salient objects. Then their corresponding instance masks

are merged to generated the saliency ground truth. With the

above-mentioned two stages, we build our COCO-CapSal

dataset, which contains 6724 challenging images from real

world with well-defined saliency ground truth and caption

expressions (see examples in Fig.3).

4. CapSal Model

In this paper, we propose a CapSal model, which takes

high-level captioning information to bootstrap the learning

of semantics for salient object detection. Our CapSal net-

work consists of three components, shared backbone net-

work, Image Captioning Network (ICN) and Local-Global

Perception Network (LGPN). The detailed architectures of

three sub-networks are shown in Fig.4.

4.1. Shared Backbone Network

We use Resnet101 [10] as feature extractor, and remove

the last average pooling and fully connected layers to make

it fit our task. For an input image I with size W × H , we

use the revised Resnet101 to extract features from Res2 x

to Res5 x, which are represented as F = {fi}
5
i=2 with

size W
2i × H

2i . The multi-level features contain various in-

formation about the salient objects. Features from deeper

layers could capture some high-level semantic knowledge,

which are beneficial for identifying salient regions. And

shallower layers can provide more spatial details about the

object boundary. To effectively exploit the multi-level fea-

tures, we propose to integrate them in a top-down manner:

Pi =

{

ReLU(Wf,ifi + bf,i) + Up(Pi+1), i = 2, 3, 4
ReLU(Wf,ifi + bf,i), i = 5

(1)
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Figure 4: Network Overview. (a) Details of the shared backbone network. (b) Details of Image Captioning Network (ICN).

SAT model is built in the same architecture with [37]. CEV and TA represent Caption Embedded Vector and Textual Atten-

tion. (c) Details of the three modules in Local-Global Perception Network (LGPN). GF is Global Feature map in GPM, UGA

means Union Guided Attention in FM. Sl, Sg , SU and S are local perception saliency map, global perception saliency map,

union saliency map and final saliency map, respectively.

where Wf,i and bf,i are parameters of the convolutional

layer. Up() denotes the up-sampling operation. Features

in the shared backbone network will be used in the subse-

quent ICN and LGPN for image captioning generation and

salient object detection, respectively.

4.2. Image Captioning Network

We leverage the recent advances in image captioning

task to embed the object-level information from caption.

We exploit a CNN+LSTM captioning network, the SAT

[37] model, to generate the Caption Embedded Vector

(CEV) from input image. We take Res5 x (i.e., f5) as the

input of our image captioning network and use the hidden

vectors of LSTM at T steps {ht}
T

t=1 , hi ∈ R
n to represent

the embedding features of the generated words. Consider-

ing that not every word in the caption is equally important

for describing the objects, we propose a Textual Attention

mechanism (TA) to distill the caption to obtain more essen-

tial information. Specifically, we use two fully connected

layers to compute the attention scores {αt}
T

t=1 for T gen-

erated words:

ut = Wu(tanh(Whht)) + bu (2)

αt =
exp(ut)

exp(
∑T

t=1 ut)
(3)

where Wu, Wh and bu are the parameters of the fully con-

nected layers and
∑T

t=1 αt = 1. The attention score αt

reflects the importance of the corresponding word t, and the

caption embedded vector is obtained via a weighted sum of

the hidden states:

c =

T
∑

t=1

αtht (4)

The caption embedded feature vector c ∈ R
n is able to en-

code the overall semantic knowledge of the salient object.

We exploit it to boost the semantics of visual features for

localizing salient object from complex clutters.

4.3. LocalGlobal Perception Network

Contextual information has shown its effectiveness in

salient object detection [31, 18, 17]. Larger context could

capture the global structure of object and provide holistic

estimation of the salient regions. While smaller context fo-

cuses on the local part of the object and is capable of re-

taining more spatial details. We propose a Local-Global

Perception Network (LGPN), which incorporates the cap-

tion embedded vector with multi-contextual visual features

for saliency prediction. The LGPN contains three compo-

nents, Local Perception Module (LPM), Global Perception

Module (GPM) and Fusion Module (FM). The detailed ar-

chitecture of each module is shown in Fig.4.

Local Perception Module. Previous works [31, 18, 17]

tend to exploit superpixels to extract the local information

of salient objects. While these segments destroy the spatial

consistence of salient regions and make the models fail to
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uniformly highlight the object interior. To avoid this prob-

lem, we propose a Local Perception Module (LPM), which

exploits bounding box to capture the local context for lo-

calizing and segmenting salient regions. We employ the

Mask-RCNN [9] to implement our LPM. Given an image,

the Mask-RCNN first uses Region Proposal Network (RPN)

to produce a set of candidate RoIs (i.e., bounding boxes).

Then two parallel networks are designed for bounding box

recognition (denoted as φrecog ) and object mask segmenta-

tion (denoted as φmask).

We exploit the Mask RCNN to generate the saliency

probability and object mask for each candidate box. To ef-

fectively utilize the multi-level CNN feature, we build the

Mask-RCNN on top of Feature Pyramid Network (FPN)

[21]. Specifically, we apply the RPN and RoIAlign on the

integrated multi-level features {Pi}
5
i=2 to produce candi-

date boxes {Bi}
NB

i=1 and their corresponding feature maps

{fB,i}
NB

i=1. The feature vector before the final classification

layer is used to represent the local context of each bound-

ing box (defined as f̃B,i). In LPM, we utilize the high-level

semantic information from captioning to boost the classifi-

cation of bounding box. We integrate the caption embedded

vector c with bounding box context f̃B,i as follows:

li = ReLU(WB,c(Cat(̃fB,i, c↑) + bB,c) (5)

where WB,c and bB,c are convolutional parameters, Cat()
represents cross-channel concatenation operation. c↑ is the

CEV after dimension augmentation via 1 × 1 convolution.

The feature vector li, which incorporates both caption se-

mantics and visual cues, is further processed with two fully

connected layers to produce candidate saliency probability

and box regression. Then the bounding boxes whose class

probabilities are larger than a fixed threshold θT would be

chosen as salient candidates. Their corresponding object

masks are mapped to the original location in the image to

generate the local perception saliency map Sl. In order to

obtain the saliency probability map, we here do not binarize

the object mask like [9]. By capturing local appearance of

object with bounding box, the LPM is capable of uniformly

highlighting the interior of the salient objects and retain-

ing some fine details (as shown in Fig.5 (c)). However, the

LPM may bring some mistaken detection results due to the

lack of enough global contextual information. Thus we also

propose a global perception module to distinguish salient

regions by considering more global contexts.

Global Perception Module. Global context is an effec-

tive cue to give a convincing estimation of the salient re-

gions. We propose a Global Perception Module (GPM),

which incorporates the caption embedded vector with

global visual context, to give a precise localization of salient

object. We take feature map P2 with resolution W
22 × H

22 as

visual representation of GPM. Different from LPM, which

uses caption embedding to assist the classification of bound-

(a)            (b)            (c)            (d)            (e)

Figure 5: Saliency maps generated in LGPN. (a) Input im-

age, (b) ground truth, (c)-(e) saliency map generated by

LPM, GPM and FM.

ing box, GPM incorporates the caption embedded vector c

with visual feature P2 in a pixel-wise manner,

g = ReLU(Wp,c(Cat(P2, tile(c↓)) + bp,c) (6)

where Wp,c and bp,c are weight and bias of convolutional

layer. c↓ is the 256-dimensional CEV. tile() is to tile the

caption vector c↓ into feature map of size W
22 ×

H
22 ×256. The

obtained Global Feature map (GF) (denoted as g) is capa-

ble of integrating both semantic knowledge from captioning

and visual information. We process the global feature map

with a convolutional layer and sigmoid function to generate

the saliency probability for each pixel,

Sg = Sigmoid(Wgg + bg) (7)

where Wg and bg are paramether of convolutional layer for

predicting global perception saliency map Sg .

Fusion Module. As above-mentioned, we propose the

LPM and GPM to integrate high-level caption embedding

with visual features for saliency inference. By capturing

the local appearance of salient object, the LPM is capa-

ble of uniformly detecting the interior of salient object and

retaining some fine details. On the other hand, the GPM

is able to give a promising estimation of the saliency lo-

calization by considering more global contexts. Saliency

maps generated by LPM and GPM are complementary (see

Fig.5). We propose to combine them to produce the final

saliency map. An intuitive fusion method is to concatenate

two saliency maps and use a convolutional layer to learn

their combination weight. However, without the prior infor-

mation about salient object, some common mistakes in both

saliency maps may not be avoided. To address this problem,

we propose an effective Fusion Module (FM) which utilizes

CNN feature map as prior information for facilitating the

learning of combination weight. To strengthen the feature

of salient regions, we first propose a Union Guided Atten-

tion mechanism (UGA), in which the union of two saliency

maps is exploited as spatial attention map. Then the feature

map after UGA is concatenated with local, global percep-

tion saliency maps for producing the final result. Specifi-

cally, we take the global feature map g from GPM as input
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and the fusion process is conducted by:

S = Sigmoid(Ws(Cat(Sl, Sg, (g ⊙ SU ))) + bs) (8)

where Ws and bs are the parameters of the combination

convolutional layer. ⊙ represents element-wise multiplica-

tion. SU = Sl + Sg is the union of local and global per-

ception saliency maps. And S represents the final saliency

map.

In the training process, we propose a multi-task loss for

jointly optimizing ICN and LGPN:

L = LL + LG + LF + λLC (9)

LL is the loss of LPM, which has the same definition as

Mask RCNN [9]. LG indicates the loss for GPM, which

is defined as the cross entropy loss between the global per-

ception saliency map Sg and ground truth. Similarly, LF is

formulated as the cross entropy loss between final saliency

map S and ground truth. LC is the loss for ICN with the

same definition of SAT model [37] and λ represents the

trade-off between losses for ICN and LGPN. During in-

ference, our CapSal model can simultaneously produce the

caption as well as saliency map for each input image.

5. Experiment

5.1. Experimental Setup

Dataset. We utilize our proposed COCO-CapSal dataset

as well as other five saliency datasets to evaluate the perfor-

mance of our model. The COCO-CapSal dataset presented

in Sec.3 has 5265 images for training and 1459 ones for test-

ing. The PASCAL-S dataset [19] contains 850 challenging

images selected from the PASCAL VOC 2009 segmenta-

tion dataset. DUTS [32] is a large-scale dataset, contain-

ing 10553 images for training and 5019 images for testing.

Salient objects in DUTS always have various locations and

scales. HKU-IS [17] has 4447 images with multiple salient

objects and low-color contrast. THUR [2] includes 6,232

images with categories of butterfly, coffee, dog, giraffe and

plane. SOC [6] is a new-built dataset, which includes 3000

images selected from MSCOCO [22] and 3000 ones with

non-salient object. We exploit the images with salient ob-

jects from the SOC validation set to evaluate our method.

Evaluation Criteria. To evaluate our CapSal model as

well as other state-of-the-arts, we use four common met-

rics in salient object detection, including Precision-Recall

(PR) curves, F-measure, S-measure [7] and Mean Abso-

lute Error (MAE). By binarizing the predicted saliency map

with thresholds in [0,255], a sequence of precision and re-

call pairs are calculated for each image of the dataset. The

PR curve is plotted using the average precision and recall of

the dataset at different thresholds. We also use F-measure to

obtain an overall performance evaluation. It is computed as

Fβ = (1+β2)×Precision×Recall

β2×Precision+Recall
, where β2 is 0.3 to weight

precision more than recall [39]. We report the Fβ which is

calculated by thresholding the saliency map with its twice

mean saliency score. Except for PR curve and F-measure,

we also report the MAE and S-measure [7] to provide an

overall evaluation.

Implementation Details. We utilize the training set of

COCO-CapSal dataset to train our proposed model on a

PC with GTX 1080Ti GPU. The parameters of the shared

backbone network is initialized by Resnet101 pretrained on

MSCOCO [22]. Our LPM shares the same architecture and

parameter settings with Mask RCNN [9]. We design a two-

stage training strategy to facilitate the convergence of our

CapSal model. First, we train the ICN using caption data

of COCO-CapSal. In this stage, the shared backbone net-

work and LGPN are fixed without training. We utilize SGD

optimizer with learning rate 0.001 to train ICN until it con-

verges. In the second stage, two sub-networks and shared

backbone are jointly optimized using the multi-task loss de-

fined in Eq.9. The trade-off λ is set to 0.1. The SGD opti-

mizer with learning rate 0.0001 is exploited for the training

of both LGPN and ICN. The weight decay and momentum

are set to 1e-4 and 0.9 in both stages. In our experiment,

the input images are resized and padded into 1024 × 1024.

During inference, the threshold θT in LPM is set to 0.8.

5.2. Comparison with Stateofthearts

We compare the proposed CapSal model with 11

deep learning methods, including LEGS [31], MDF [17],

RFCN [33], DCL [18], DHS [23], NLDF [27], DSS [11],

Amulet [42], UCF [43]), BMPM [41] and DGRL [35]. The

saliency maps of different methods are published by the au-

thors or achieved by running available codes.

Quantitative Evaluation. We compare our CapSal

model with other 11 methods in terms of PR curves, F-

measure and MAE. The comparison results in Fig.6 and

Tab.1 consistently demonstrate our model largely outper-

forms other approaches on challenging COCO-CapSal,

PASCAL-S [19] and SOC [6] datasets, and performs com-

parably on DUTS-test [32], THUR [2] and HKU-IS [17]

datasets. We also provide the S-measure results of three

datasets in Tab. 2, which also verify the effectiveness of our

model. The PR curve on THUR dataset is provided in sup-

plementary material. The MDF [17] use HKU-IS dataset

for training, we do not report its result on this dataset.

Qualitative Evaluation. To qualitatively estimate the

performance of our CapSal model, we show some visual

examples generated by our method and other 11 approaches

in Fig.7. We can observe that our method can accurately

detect salient objects from complicated background.

5.3. Ablation Study

In this section, we analyze the contribution of each com-

ponent in our CapSal model. The results on COCO-CapSal
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Table 1: Quantitative comparisons with other state-of-the-arts in term of F-measure and MAE on six datasets. The best three

results are shown in red, green and blue. “CapSal(DUTS-train)” and “CapSal(COCO-CapSal)” represent the result of our

CapSal model trained on DUTS-train [32] and COCO-CapSal datasets.

Method
COCO-CapSal PASCAL-S DUTS-test HKU-IS THUR SOC-val

Fβ MAE Fβ MAE Fβ MAE Fβ MAE Fβ MAE Fβ MAE

LEGS [31] 0.594 0.187 0.697 0.155 0.584 0.138 0.732 0.119 0.607 0.125 0.445 0.216

MDF [17] 0.665 0.152 0.709 0.146 0.673 0.100 - - 0.636 0.109 0.409 0.168

RFCN [33] 0.754 0.127 0.751 0.133 0.712 0.090 0.835 0.089 0.627 0.100 0.531 0.159

DCL [18] 0.730 0.108 0.714 0.125 0.714 0.149 0.853 0.136 0.676 0.161 0.480 0.177

DHS [23] 0.768 0.097 0.773 0.095 0.724 0.067 0.852 0.054 0.673 0.082 0.519 0.135

UCF [43] 0.662 0.145 0.701 0.127 0.629 0.117 0.808 0.074 0.645 0.112 0.428 0.238

Amulet [42] 0.751 0.102 0.763 0.098 0.678 0.085 0.839 0.052 0.670 0.094 0.497 0.169

NLDF [27] 0.754 0.107 0.779 0.099 0.743 0.066 0.874 0.048 0.700 0.080 0.500 0.158

DSS [11] 0.742 0.133 0.804 0.096 0.791 0.057 0.895 0.041 0.731 0.074 0.493 0.151

BMPM [41] 0.741 0.079 0.769 0.074 0.750 0.049 0.871 0.038 0.690 0.079 0.500 0.134

DGRL [35] 0.780 0.118 0.825 0.072 0.768 0.051 0.882 0.037 0.716 0.077 0.495 0.135

CapSal (DUTS-train) 0.815 0.065 0.830 0.064 0.789 0.044 0.878 0.039 0.728 0.069 0.604 0.105

CapSal (COCO-CapSal) 0.860 0.057 0.823 0.075 0.756 0.063 0.836 0.059 0.711 0.081 0.631 0.117
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Figure 6: Comparisons of the proposed approach and 11 methods on five datasets in terms of PR curves.

Input GT Ours DGRL BMPM DSS Amulet UCF NLDF DHS DCL RFCN MDF LEGS

Figure 7: Qualitative comparisons of the proposed method and state-of-the-art algorithms. Our saliency map is the result of

CapSal model trained on COCO-CapSal dataset.

Table 2: The S-measure results on three datasets.

COCO-CapSal PASCAL-S SOC-val

DSS [11] 0.726 0.797 0.602

BMPM [41] 0.832 0.845 0.656

DGRL [35] 0.740 0.836 0.597

CapSal (DUTS-train) 0.846 0.857 0.705

CapSal (COCO-CapSal) 0.868 0.837 0.710

and DUTS-test [32] datasets are shown in Tab.3.

Analysis of LGPN. We take only visual features as the

input of LGPN to predict saliency map and regard this

model as our baseline network. The comparison results in

Tab.3 demonstrate LPM, GPM and FM all contribute to the

generation of saliency map. From the visual comparisons in

Fig.5, we can see that LPM and GPM are complementary

and combining them using FM can achieve a better result.

Effectiveness of captioning on LGPN. We investigate

the effectiveness of our CapSal model by comparing it with

baseline network. The quantitative results in Tab.3 verify

the efficacy of captioning in promoting the performance of

LPM, GPM and their final fusion. From the visual examples

in Fig.8, we can observe that captioning is helpful for ac-

curately localizing the salient regions in some complicated

scenarios. To demonstrate the effectiveness of textual at-

tention in ICN, we remove this part and use the last hidden
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Table 3: Results of ablation studies of CapSal network on

COCO-CapSal and DUTS-test datasets [32]. LGPN: local-

global perception network, ICN: image captioning network,

LPM: local perception module, GPM: global perception

module, TA: textual attention, JT: joint training.

Model Setting
COCO-CapSal DUTS-test

Fβ MAE Fβ MAE

Analysis of LGPN (Our baseline)

LPM 0.813 0.067 0.698 0.081

GPM 0.786 0.071 0.701 0.074

LPM+GPM 0.821 0.063 0.717 0.072

Effectiveness of captioning on LGPN

LPM+ICN (w/o JT) 0.830 0.064 0.713 0.074

GPM+ICN (w/o JT) 0.821 0.064 0.713 0.070

LGPN+ICN (w/o JT) 0.843 0.062 0.720 0.069

LPM+ICN (w/o TA) 0.822 0.065 0.715 0.075

GPM+ICN (w/o TA) 0.818 0.069 0.719 0.069

LGPN+ICN (w/o TA) 0.837 0.063 0.725 0.067

LPM+ICN 0.844 0.060 0.730 0.063

GPM+ICN 0.834 0.060 0.731 0.063

LGPN+ICN 0.860 0.057 0.756 0.063

Influence of the captioning accuracy

LPM+GT caption 0.849 0.056 - -

GPM+GT caption 0.839 0.057 - -

LGPN+GT caption 0.866 0.055 - -

state of LSTM as caption embedded vector (denoted as “w/o

TA”). The results in Tab.3 and Fig.8 show that TA can em-

phasize the words about salient object and contributes to the

final result of LGPN. We also verify the efficacy of our joint

training strategy. We use the hidden states of ICN pretrained

in the first stage to generate fixed caption embedded vector

and only update the LGPN in the second training stage. The

results in Tab.3 prove that the joint training of LGPN and

ICN can bring a better performance.

Efficacy on other saliency training dataset. To demon-

strate the effectiveness of captioning on other training data,

we utilize the caption embedding from the first stage ICN

and train our LGPN on DUTS-train dataset [32]. The com-

parison with 11 state-of-the-art (see “CapSal(DUTS-train)”

in Tab.1) verifies the generalization of our CapSal model on

other training dataset.

Influence of the captioning accuracy. To verify the

influence of caption’s accuracy on saliency detection, we

process the ground truth caption with embedding layer and

LSTM for producing caption embedded vector. The results

are also listed in Tab.3. Note that other saliency datasets

do not contain caption data, this experiment is only con-

ducted on our COCO-CapSal dataset. It can be seen that

using caption with higher accuracy could achieve a better

Table 4: Image captioning results of ICN on COCO-CapSal

testing set. “Baseline” and “Joint Training” indicate the

captioning results without/with jointly training with LGPN.

Method BLEU-4 METEOR ROUGE-L CIDEr

Baseline 0.286 0.242 0.527 0.874

Joint Training 0.291 0.245 0.530 0.903

A zebra
standing next 

to a car.

A dog laying on 
the couch next to 

a cat.

A young boy siding 
a skateboard down 

a street.

A dog is standing 
on the ground with 

a bird.

A man is walking 
down the street 

next to a car.

(a)              (b)               (c)               (d)                  (e)

Figure 8: Visual comparison between baseline and CapSal

model. (a) Input image, (b) ground truth, (c)-(d) saliency

maps of baseline and CapSal model, (e) generated caption

by ICN. Word with higher attention score is colored in red.

saliency detection performance.

The performance of ICN. We also investigate the per-

formance of ICN for image captioning. We report the re-

sults on COCO-CapSal dataset in terms of BLEU-4 [14],

METEOR [5], ROUGE-L [20] and CIDEr [29] in Tab.4. We

use the pretrained ICN in the first training stage as baseline.

The comparison results demonstrate that the performance

of ICN could be improved by jointly training with LGPM.

6. Conclusion

We propose a CapSal model, which utilizes image cap-

tioning to boost the semantic feature learning for salient

object detection. We first design an Image Captioning

Network (ICN) to embed the semantic knowledge of cap-

tion. Then a Local-Global Perception Network (LGPN) is

proposed to incorporate caption embedding with local and

global contexts for saliency inference. The ICN and LGPN

are jointly trained with a multi-task loss. Experiments on

six datasets verify the effectiveness of image captioning in

promoting salient object detection.
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