
Causes and Corrections for Bimodal Multi-path Scanning with Structured Light

Yu Zhang1, Daniel L. Lau2, Ying Yu2

1 Nanjing University
2 University of Kentucky

zhangyu606@gmail.com dllau@uky.edu ying.yu@uky.edu

Abstract

Structured light illumination is an active 3D scanning

technique based on projecting/capturing a set of striped

patterns and measuring the warping of the patterns as they

reflect off a target object’s surface. As designed, each pixel

in the camera sees exactly one pixel from the projector;

however, there are multi-path situations when the scanned

surface has a complicated geometry with step edges and

other discontinuities in depth or where the target surface

has specularities that reflect light away from the camera.

These situations are generally referred to multi-path where

a camera pixel sees light from multiple projector positions.

In the case of bimodal multi-path, the camera pixel re-

ceives light from exactly two positions which occurs along

a step edge where the edge slices through a pixel so that

the pixel sees both a foreground and background surface.

In this paper, we present a general mathematical model to

address the bimodal multi-path issue in a phase-measuring-

profilometry scanner to measure the constructive and de-

structive interference between the two light paths, and by

taking advantage of this interesting cue, separate the paths

and make two decoupled phase measurements. We validate

our algorithm with a number of challenging real-world sce-

narios, outperforming the state-of-the-art method.

1. Introduction

Structured light illumination (SLI) refers to a method

of 3D scanning that uses a projector to project a series of

light striped patterns such that a camera can reconstruct

depth based on the warping of the pattern over the target

object’s surface [22, 11, 16, 14, 20, 13, 27, 26]. Exam-

ple of SLI includes single pattern techniques which project

a static pattern that is continuously projected and from

which a 3D reconstruction can be made from a single snap-

shot [11, 2, 10, 8].

Multiple pattern SLI scanners, alternatively, project a se-

ries of patterns, trading temporal resolution for spatial reso-

lution such that each pixel can be independently processed

from its neighbors to produce a single point for each pixel

in the camera. In Phase Measuring Profilometry (PMP), the

row coordinates of each pixel are encoded through phase

modulation [28, 20, 11, 3]. These PMP scanners are com-

mon for industrial metrology applications with resolutions

that can be below 10 microns.

As an active imaging technique, structured light is sus-

ceptible to errors and distortions caused by the redirection

of the projected light to form multiple paths from projec-

tor to camera besides the direct path of projector to target to

camera [29]. It is a common problem and one of great inter-

est to researchers because of the potentially catastrophic ef-

fects on scans. The same problem can be found in a range of

3D imaging modalities such as time-of-flight (ToF) where

light will reflect off specular surfaces onto neighboring sur-

face points before reflecting back to the camera.

Examples of how to deal with multi-path issues in ToF

include Dorrington et al. [7] as well as Bhandari et al. [1]

and Godbaz et al. [12] who take the common approach of

making multiple depth measurements over many different

modulation frequencies such that they derive a set of equa-

tions from which to fit the phase and magnitude of a multi-

tude of possible component paths. Freedman et al. [9] as-

sume sparsity in reflection and assume the problem is re-

stricted to a small number of multi-path components, which

restrict further extension to other scenarios.

Naik et al. [23] take the approach of deriving a light

transport model [24] to combine the standard measurements

from a ToF camera with information from direct and global

light transport. By doing so, they separate the phase as-

sociated with the direct light path, placing all subsequent

paths into a single indirect light component. O’Toole et

al. [26, 25] employ the epipolar geometry constraint and

re-design the optical system to separate the direct and indi-

rect light paths. They modify the optical system and block

the global component during the data capture procedure.

Gupta et al. [15] study temporal illumination and report that

global light transport vanishes at high frequencies. They

propose a ToF based shape recovery technique and a method

to separate direct and global light. Kadambi et al. [17] use
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a coded illumination ToF camera to achieve light sweep

imaging with multi-path correction.

Dedrick [6] identifies multi-path in SLI scans without

presenting an effective algorithm for extracting the absolute

paths from the collected scans. Courture et al. [4] design

special pattern to overcome interreflections which is quite

different from traditional phase shifting pattern. Nayar et

al. [24] show that the radiance of a scene point is due to

direct illumination of the point by the source and global il-

lumination arising from diffuse interreflection, subsurface

scattering, volumetric scattering and translucency. Gupta

and Nayar [14] use this conclusion [24] and present a state-

of-the-art approach using a narrow, high frequency band

structured light pattern to separate direct and global illu-

mination for shape recovery for real scenes. However, the

separated direct component can still suffer from bimodal

multi-path. Their method cannot address bimodal multi-

path in the direct image and will cause severe artifacts in

the reconstruction because they still use traditional phase

shifting method to solve phase/depth in the direct compo-

nent.

1.1. Contributions

While this paper limits its discussion to the two-path

problem, we note that it can easily be extended to more

paths; however, the two-path problem is particularly im-

portant because its presence is unavoidable in any scanning

situation where a target surface includes a step edge, re-

sulting in pixels of the camera collecting light from a fore

and background surface. We further note that this problem

has received little attention in the published literature even

through extensive studies have been published on phase-

shifting structured light.

This paper studies the causes and corrections for bi-

modal multi-path in terms of a structured light scanner and

includes an intuitive construction that explains how paths

interact as a function of the spatial frequency to produce

standing waves of constructive and destructive interference.

In doing so, we establish an equation for this interference

such that we can visualize multi-path as a sinusoidal pattern

plotted versus pattern frequency and varying as a function

of the phase difference between component paths.

The experimental results that we present also deal with

a problem unique to structured light, and that is the low-

pass filtering effect of the component optics that cause high

spatial frequency patterns to have a lower amplitude than

low spatial frequencies. In traditional structured light, this

is an issue that is largely ignored since the final phase is

determined by the high spatial frequency, with lower fre-

quencies used for unwrapping the high frequencies. This

paper deals directly with the issue by establishing an enve-

lope function during scanner calibration such that we can

observe bimodal multi-path in the presence of a non-flat

spatial frequency response.

To the best of our knowledge, we are the first to report

the interesting constructive and destructive cue for bimodal

multi-path using signal processing theory and present a

practical approach to simultaneously identify and extract

the dominant and non-dominant phases/magnitudes by tak-

ing advantage of that cue in an intuitive way without any

hardware modifications or additional requirements for cus-

tomized patterns. As a result, it is easy to be integrated

with existing structured light systems. Central to this sep-

aration, we propose the idea of a zero-frequency PMP pat-

terns which projects a time-varying but spatially constant

structured light patterns as a way to observe the modulated

light component absent the multi-path interference that may

otherwise partially cancel the modulated light.

2. Background

Three-dimensional surface scanning by means of struc-

tured light is performed using a series of striped patterns

projected onto a target scene and captured by a digital cam-

era, placed at a triangulation angle of the projector’s line of

sight. The pixels of the captured images are then processed

to identify a unique projector row coordinate for which the

subject camera pixel corresponds. Perhaps one of the sim-

plest means of SLI is through the use of phase-shift key-

ing where the component patterns are defined by the set,

{Ipn : n = 0, 1, . . . , N − 1}, according to:

Ipn(x
p, yp) =

1

2
+

1

2
cos

(

2π(
n

N
− yp)

)

. (1)

where (xp, yp) is the column and row coordinate of a pixel

in the projector, Ipn is the intensity of that pixel in a projector

with dynamic range from 0 to 1, and n represents the phase-

shift index over the N total patterns.

For reconstruction, a camera captures each image where

the sine wave pattern is distorted by the scanned surface

topology, resulting in the patterned images expressed as:

Icn(x
c, yc) = Ac +Bc cos

(

2πn

N
− θ

)

. (2)

where (xc, yc) is the coordinates of a pixel in the camera

while Icn(x
c, yc) is the intensity of that pixel. θ represents

the phase value of the captured sinusoidal pattern. The term

Ac is the averaged pixel intensity across the pattern set that

includes the ambient light component, which can be derived

according to:

Ac =
1

N

N−1
∑

n=0

Icn(x
c, yc). (3)

Correspondingly, the term Bc is the intensity modulation of

a given pixel and is derived from Icn(x
c, yc) in terms of real
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and imaginary components where:

Bc
R =

N−1
∑

n=0

Icn(x
c, yc) cos

(

2πn

N

)

(4)

and

Bc
I =

N−1
∑

n=0

Icn(x
c, yc) sin

(

2πn

N

)

(5)

such that

Bc = ‖Bc
R + jBc

I‖ =
{

Bc
R

2 +Bc
I
2
}

1

2

, (6)

which is the amplitude of the observed sinusoid.

If Icn(x
c, yc) is constant or less affected by the projected

sinusoid patterns, Bc will be close to zero. Thus Bc is em-

ployed as a shadow noise detector/filter [18] such that the

shadow-noised regions, with small Bc values, are discarded

from further processing. Of the reliable pixels with suffi-

ciently large Bc, θ represents the phase value of the cap-

tured sinusoid pattern derived as:

θ = ∠(Bc
R + jBc

I) = arctan

{

Bc
I

Bc
R

}

, (7)

which is used to derive the projector row according to θ =
2πyp.

Given that the reconstructed θ is affected by distor-

tions in the projector/camera such as thermal noise [5]

or gamma [21], Eq. (2) is commonly modified to include

higher spatial frequencies according to:

Ipn(x
p, yp) =

1

2
+

1

2
cos

(

2π(
n

N
−Kyp)

)

, (8)

where K is the number of sinusoidal wavelengths across the

projector in any one frame. These higher frequency scans

result in ambiguities in θ which are resolved by phase un-

wrapping via lower frequency Ks. For instance, one might

use three separate scans with K = 1, 4, and 16 using the

K = 1 scan to unwrap the K = 4 scan and then using that

resulting scan to unwrap the K = 16 scan. This procedure

results in a scan with 1/16
th

the noise of the K = 1 scan

where yp = θ/(K2π).
In choosing K, an experienced operator knows that

quantization noise in the projector requires that K be se-

lected such that the corresponding wavelength of the spatial

sinusoids corresponds to integer multiples of N pixels; oth-

erwise, banding artifacts are visible in the reconstruction of

θ. At the same time, larger values of N result in less ther-

mal noise as well as in the elimination of gamma. So while

a small N allows for higher spatial frequency K, it also re-

sults in high levels of Gaussian noise in θ while also making

θ susceptible to gamma distortion. As such, we recommend

an N no smaller than 8, meaning a VGA projector is lim-

ited to a maximum frequency of K = 60 with the sinusoid

moving 1 pixel with each step in n.

3. Bimodal Multi-Path Model

In signal processing, it is often convenient to assume a

sample of an analogue signal is its value at an infinitesi-

mally small amount of time, but in fact, a sample is the

average value of the signal over a fixed interval in time. In

digital cameras, a pixel collects light over a fixed angle in

the horizontal and vertical directions. As such, a camera

pixel can collect light from both a fore and background sur-

face. So a more accurate version of Eqs. (4) and (5) can be

written as:

Bc
R = Bc,f

R +Bc,b
R (9)

and

Bc
I = Bc,f

I +Bc,b
I (10)

where we added the superscripts f and b to distinguish be-

tween the foreground and background components on Bc
R

and Bc
I .

Now notice that increasing the spatial frequency of the

PMP patterns by a factor of K increases the phase term

by an equal amount while keeping the amplitude of the si-

nusoid constant. In the case of multi-path, this frequency

scaling has a far different effect as illustrated graphically

in Fig. 1 where we show (left) the foreground and back-

ground components assuming unit frequency while (center)

and (right) show the same components when K = 8 and

K = 12. The red vectors in Fig. 1 show the complex vectors

formed by Bc,f
R and Bc,f

I and Bc,b
R and Bc,b

I , while the blue

vector shows the superimposed vectors forming the single

vector formed by Bc
R and Bc

I .

By using a frequency scaling of K, we expect the direc-

tion or phase of the foreground and background vectors to

scale by an equal amount. Graphically, this is depicted by

a rotation of the vectors around the origin. Notice, though,

that by rotating the vectors separately, it is quite likely that

the phase of the combined vectors are not equal to the scal-

ing of the phase term prior to frequency scaling. Like-

wise, the vectors may swing from constructively interfering

where the magnitude of the combined vectors is equal to the

sum of the individual magnitudes to destructively interfer-

ing where the magnitude of the combined vectors is equal

to the difference of the individual magnitudes.

4. Bimodal Multi-Path Reconstruction

Mathematically, the magnitude and phase of the subject

pixel can be defined according to vector ~AB, with fore-

ground vector ~A and background vector ~B, such that:

| ~AB|2 = | ~A|2 + | ~B|2 +2| ~A|| ~B|cos(2πK(ypa − ypb )) (11)

where ya and yb are the projector row coordinates for the

two paths. This change in vector phase and magnitude, in

the superimposed vectors, as a function of K is the prime

means by which to detect multi-path in the scanned image.
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Figure 1: Illustration of the change in direction and magni-

tude, on the (Bc
R, Bc

I)-axis, in the (blue) observed complex

vector Bc
R+jBc

I created by the superposition of (red) com-

plex vectors from multi-path fore and background objects

for (a) K = 1, (b) K = 8, and (c) K = 12.
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Figure 2: Illustration of the change in (vertical axis) mag-

nitude of the observed complex vector, Bc
R + jBc

I , as a

function of the (horizontal axis) scaling factor K.

The goal is to separate the vectors ~A = | ~A|e(iya) and ~B =

| ~B|e(iyb) from the observation ~AB. The search space of

this task is determined by the four independent variables

| ~A|, | ~B|, ypa, and ypa with computational complexity O(n4).
In order to reduce the complexity, we present a two-step

procedure where the first step finds the parameters | ~A|, | ~B|,
and dy = ypa − ypb that minimize the mean-squared error

given by:

(| ~A∗|, | ~B∗|, dy∗) = argmin
| ~A|,| ~B|,dy

∑

K

{| ~AB|−| ~A+ ~B|}2. (12)

And once this is solved, the second step is to obtain

the absolute phases, ypa and ypb , by minimizing the mean

squared error given by:

(yp
∗

a , yp
∗

b ) = argmin
y
p
a,y

p

b

∑

K

{ ~AB − ( ~A+ ~B)}2 (13)

such that | ~A| = | ~A∗|, | ~B| = | ~B∗|, and ypa − ypb = dy∗.

Specifically to reduce the search space in the first step

from the three independent variables | ~A|, | ~B|, and dy to

the two | ~A| and dy, we define a zero-frequency scan where

K = 0 to obtain ~AB0 such that:

| ~AB0|
2 = | ~A|2 + | ~B|2 + 2| ~A|| ~B|. (14)

From this, we get the constraint:

| ~A|+ | ~B| = | ~AB0| (15)

0.0
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Figure 3: Stem plots showing the normalized intensity, in

the range [0,1], versus frequency, K, for noiseless | ~AB|
of (top) the background/foreground pixel, and (bottom) the

edge pixel where the red line illustrates | ~AB| over continu-

ous frequency.

so that we can perform an exhaustive search over | ~A|, | ~B|,

and the phase difference ypa − ypb along the line | ~B| =

| ~AB0| − | ~A| to find the values that minimize the mean-

squared error in Eq. (11) over all scanned values of K. In

this way, we reduce the computing complexity in the first

step from O(n3) to O(n2) while keep the second step as

O(n) since ypa − ypb has already been determined from the

first step. So the overall algorithm complexity is reduced

from O(n4) to O(n2) based on the proposed two-step opti-

mization.

As an illustration of the proposed algorithm, Fig. 3

shows plots of simulated | ~AB| over K for two pixels, sep-

arated in the projector by 12 pixels, with (top) the back-

ground/foreground pixel, and (bottom) a linear combination

of 55% foreground and 45% background pixel. As will be

the case for these stem plots in this paper, the frequency, K,

ranges from 1 to 60 sinusoids, at wavelength intervals of 8

pixels, across the projector field of view and is plotted in

Fig. 3 on the log scale. Also note that, the x-axis represents

K, the y-axis is normalized by | ~AB0| and will range from

0 to 1. Shown in red are plots of the resulting best-fit ~A and
~B vectors where | ~AB| is plotted over continuous K from 1

to 60 Hz.

5. Experimental Evaluations

In order to demonstrate the proposed de-coupling tech-

nique, we consider the case of scanning two layers of a half-

inch, textureless, foam board where Fig. 4 (bottom) shows

the variance in the magnitude in the observed phasors, ~AB,

over all K where the step edge is clearly visible as indicated

by the bright vertical line. To illustrate this sinusoidal shape

on | ~AB|, Fig. 5 shows stem plots of | ~AB| versus K for the

three pixels in Fig. 4, labeled A, B, and AB where A cor-

responds to the foreground surface to the right of the edge,

B the background surface to the left of the edge, and AB a

pixel on the edge of the surface.

Observing the stem plot in Fig. 5, one can see a consis-
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B AB A

Figure 4: Illustration of the variance in | ~AB| versus K (bot-

tom) for a textureless surface (top) with a step edge com-

posed of foreground pixel labeled A, background pixel la-

beled B, and edge pixel AB.
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Figure 5: Stem plots showing the measured | ~AB| versus K
for (top) the background/foreground pixel B/A, and (bot-

tom) the edge pixel AB.
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Figure 6: Stem plot of the measured | ~AB| versus K for a

flat, textureless surface at the center of the scanners focal

distance averaged over all pixels as an estimate of the sys-

tems modulation transfer function.

tent drop in magnitude at higher frequencies. This is caused

by the low-pass nature of the projector and camera optics,

blurring the peaks and valleys of the projected sinusoids.

In order to account for the modulation transfer function of

the projector/camera optics, we scan a white, textureless

foam board at the center of our depth range and then av-

erage the value of | ~AB| over all pixels for all K to produce

the stem plot in Fig. 6. This resulting vector is then used

as a normalizing factor for all subsequent scans. Apply-

Spatial frequency of the projected PMP pattern
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Figure 7: Plots showing the measured | ~AB| over K for (top)

the background/foreground pixel B/A, (bottom) the edge

pixel AB where the red line illustrates best-fit | ~AB| over

continuous frequency.

ing this normalization to Fig. 5 produces the stem plots in

Fig. 7 which now show the expected flat response to fore-

ground and background pixels A and B and the distinctive

sinusoidal shape for the edge pixel AB.

Using the proposed algorithm on the edge pixel AB, we

obtain the normalized magnitudes of 0.5560 and 0.4440 and

phases of 0.3647 and 0.3917 (projector row coordinates 188

and 175 or 13 pixels difference), respectively, where the ac-

tual pixels have phases of 0.3650 and 0.3916. If we also

apply the algorithm to background pixel B under the as-

sumption of multi-path, we extract magnitudes of 0.9770

and 0.0230 with phase values 0.3918 and 0.1698, resulting

in the small sinusoidal curve. For the foreground pixel A,

we extract magnitudes of 0.9680 and 0.0320 with phase val-

ues 0.3648 and 0.0998. We associate these weak, secondary

multi-path signals with noise in the sensor and, ignoring

these terms, focus on the edge pixel, AB, noting how close

our estimated values are to the true phases derived through

the traditional structured light phase processing.

Applying the exhaustive search over | ~A|, | ~B|, and the

phase difference ypa − ypb along the line | ~A|2 + | ~B|2 =

| ~AB0|
2 for a small region of interest about the step edge,

Fig. 8a shows the value of the magnitude of the (left) pri-

mary, the larger of | ~A| or | ~B|, and the (right) secondary or

smaller term. The corresponding primary and secondary

phase terms are illustrated in Fig. 8b. Relying on the pri-

mary term for reconstructing depth, Fig. 9 illustrates the

improved edge rendition sans bimodal multi-path.

For a demonstration of multi-path separation in a struc-

tured light system, Fig. 10 shows an experimental setup

(left) where we scanned a white plaster owl figurine through

a polyester lining mesh fabric and four challenging scan

scenarios (right). Shown in Figs. 11 and 12 are the result-

ing phase reconstructions and point cloud showing the ef-

fects of using the proposed multi-path detection scheme. It

should be evident that this phase unwrapping error is devas-

tating to the 3D reconstruction which we illustrate in Fig. 12

where the reconstruction from the raw phase image is given
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Figure 8: Pseudo-color plot of the magnitudes (a) and the

phases (b) of the primary (stronger) and secondary (weaker)

bimodal path component along the step edge in Fig. 4.
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Figure 9: Surface plots of the phase images (left) before

and (right) after applying the multi-path separation proce-

dure where (left) shows the unprocessed phase image while

(right) shows the phase image of the dominant component

from Fig. 8b.

in Fig. 12 (top) while Fig. 12 (bottom) shows the reconstruc-

tion using the multi-path phase image. Again, the multi-

path reconstructions are correct, the traditional phase un-

wrapping is incorrect in these figures. From visual inspec-

tion, the proposed technique is a clear improvement over

the scan produced without the process.

As a demonstration of multi-path reconstruction on

transparent objects, Fig. 13 shows an owl sitting inside of

a semi-transparent plastic box. The 3D point cloud re-

construction (top) showing the raw phase reconstruction,

(middle) and (bottom) showing the multi-path reconstruc-

tion without and with our proposed calibration approach. In

Figure 10: Experimental setup (left) scanning a white owl

figurine through a polyester lining mesh fabric and four

challenging scan scenarios (right).

Figure 11: Pseudo-color plot of the phases of the (left) raw

phase image of the owl figurine beak and eyes through the

mesh and the (right) primary path component.

Figure 12: Point cloud reconstructions of the owl figurine

using (top) raw phase, (bottom) multi-path processed phase.

Left to right: front view, side view and top view.

this illustration, we note that without the multi-path algo-

rithm, traditional SLI reconstruction will result in multiple

layers of the transparent surface that appear at incorrect po-

sitions in front and over the owl. With our proposed algo-

rithm, the ghost-layers disappear and result in an accurate

reconstruction of the transparent surface in front of the owl.

Figs. 13 (middle) and (bottom) also demonstrate the effec-

tiveness of our proposed novel calibration approach with

an incorporated curve estimation as part of routine scan-
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Figure 13: Point cloud reconstructions of the owl figurine

in a semi-transparent box using raw phase (top), multi-path

processed phase without (middle) and with (bottom) our

proposed novel calibration approach. Left to right: front

view, side view and top view.

Figure 14: Scenarios and point cloud reconstruction ren-

dered in top view of the multi-path cases in terms of sharp

step edge and transparent surface with the state-of-the-art

micro phase shifting [14]. Note the left side of each scan

does not have the mesh or the transparent layer. So the left

side represents the ground truth while the right side shows

MicroPS failing.

ner calibration to model the projector defocus effect by es-

timating the shape of | ~AB(K)| for a flat, textureless sur-

face from an in-the-wild scan by taking the median value of

| ~AB(K)|/| ~AB(0)| over all camera pixels.

In order to compare to the current state-of-the-art, we ap-

ply micro phase shifting [14] on our owl scan data. We have

used Micro PS with the 7 optimized patterns from Gupta

and Nayar [14] and it produces obvious artifacts as shown

in Fig. 14. We believe the reason is that they cannot handle

the bimodel multi-path like the step edge in the separated di-

rect image since the authors still use traditional phase shift-

ing method to solve phase/depth in the direct component.

Furthermore, the authors relate that they do not consider

the camera defocus effect, resulting in incorrect depths es-

pecially at depth edges.

As a third demonstration of the multi-path technique,

Fig. 15 shows the phase reconstructions comparing again

the traditional phase unwrapping procedure versus our pro-

posed multi-path procedure when the target image is the in-

side of a white, porcelain bowl. In this sample, specular

reflections off the surface of the bowl create multi-paths,

most evident at the top and the bottom of the bowl where

the reflections stay within the epipolar geometry of the cam-

era/projector lens alignment. While the new multi-path pro-

cedure is not completely immune to issues caused by spec-

ularities on the target surface, it is greatly improved over the

board artifacts introduced through phase unwrapping, as in-

dicated in Fig. 15.

Figure 15: Bowl experiment. The (left) raw and (right)

multi-path phase images of a porcelain bowl.

As a final demonstration, we used a mirror to reflect light

from off to on target, a plastic giraffe figurine, as illustrated

in the photograph in Fig. 10 (bottom right) with phase re-

sults in Fig. 16. Looking at the raw phase image versus

multi-path reconstructed, there are substantial artifacts in

the raw phase as indicated by posterization, most visible in

the region of the giraffe’s neck/chest facing the mirror and

especially in the top-right corner of the background screen

and on the right side wall. These posterization effects are

also visible in the reflected image of the mirror.

Now of course the more frequencies that we use, the bet-

ter the scan will be as we minimize the impact of sensor

noise on our final path estimates. Under ideal or noise-

less conditions, we can separate the two paths with no more

than 9 frequencies. Note these results are for noiseless sim-

ulations. For an illustration of the number of frequencies

used on real data, Figs. 17 and 18 show the evolution of our

reconstructed scenario using an increasing number of fre-

quencies. From visual inspection, the true data show the

same result that 10 unique scan frequencies are able to sep-
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Figure 16: Mirror experiment. The (left) raw and (right)

multi-path phase images of a plastic giraffe.

6 8 10

Figure 17: The evolution of our owl and mesh scan using 6,

8, and 10 unique frequencies.

6 8 10

Figure 18: The evolution of our owl and transparent box

scan using 6, 8, and 10 unique frequencies.

arate the majority of multi-path instances in the scan.

6. Conclusions and Future Work

In this paper, we introduced a novel procedure for ex-

tracting the bimodal multi-path phase terms for a PMP

structured light scan based on modeling the change in mag-

nitude of the observed phasors caused by modulating the

spatial frequency of the projected PMP patterns. Further-

more, we introduced the first PMP scans to employ zero-

frequency PMP patterns as a way to measure the magni-

tude in the observed phasors sans multi-path. As demon-

strated here, the proposed technique is especially geared to-

ward step edges and scanning through semi-transparent sur-

faces; however, the proposed derivation can be expanded to

include more than two paths, although additional investiga-

tion is necessary to gauge how practical doing so is.

For the polyester mesh example, that is a contrived ex-

periment meant to maximize the likelihood of step edge

multi-paths; however, it’s not inconceivable in an industrial

environment to have a screen of some kind between a ma-

chine vision system and a conveyor belt or robotic assembly

line. For the semi-transparent experiment, we are mimick-

ing a situation found in deep water SLI scanners where an

off-the-shelf scanner is placed inside a pressured box with

clear plastic window. Being inside the box, projected light

internally reflects off the window, back at the camera. This

is actually a benefit because we can measure the flexing

of the plastic window when under heavy pressure at deep

depths of the water.

For the bowl and mirror examples, these represent the

kind of multi-path we see for inter-oral dental scanners

where even though we may spray a white power onto tar-

get teeth to cut down on specular reflections, there is al-

ways some part of a tooth that is not adequately covered

with powder. Or there is a gum line or the subject’s tongue

that has a specular/wet surface, and we absolutely have to

scan down to the gum line. And because this is a dynamic

environment, we cannot actively adapt the projector based

on the scene since the patterns are pre-generated and stored

inside the scanner electronics [19]. Our bowl and mirror

test examples are just a way to simulate strong speculari-

ties, such as the inter-oral dental scanning case.

Although not considered here, the problem of multi-

texture is very similar to the multi-path problem. Here, a

single pixel sees a continuous smooth surface, but the sur-

face texture has a discontinuity or step edge mid-way across

the pixel’s field of view. We can define the brighter side

of the edge as the foreground surface and the darker side

of the edge as the background surface. This means that

the phase values inside the foreground surface will have a

greater weight, per unit area, than the background surface.

This has the effect of pushing the combined vector closer

to the foreground phase than the background. While the

change may not be as severe as the multi-path problem, the

solution is the same by taking advantage of the presented in-

teresting cue of measuring the constructive and destructive

interference between the two light paths.
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