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Abstract

In image co-saliency detection problem, one critical is-

sue is how to model the concurrent pattern of the co-salient

parts, which appears both within each image and across all

the relevant images. In this paper, we propose a hierar-

chical image co-saliency detection framework as a coarse

to fine strategy to capture this pattern. We first propose a

mask-guided fully convolutional network structure to gener-

ate the initial co-saliency detection result. The mask is used

for background removal and it is learned from the high-level

feature response maps of the pre-trained VGG-net output.

We next propose a multi-scale label smoothing model to fur-

ther refine the detection result. The proposed model joint-

ly optimizes the label smoothness of pixels and superpixel-

s. Experiment results on three popular image co-saliency

detection benchmark datasets including iCoseg, MSRC and

Cosal2015 demonstrate remarkable performance compared

with the state-of-the-art methods.

1. Introduction

Image saliency detection mimics human vision system

when looking at one image, through detecting the region

that attracts human attention most. Given a group of images,

the image co-saliency refers to common salient objects or

regions in a group of relevant images. Discovering image

co-saliency has been widely used as a pre-processing step

in many applications, such as video/image foreground co-

segmentaion [17, 16], object localization [42], surveillance

video analysis [37] and image retrieval [38, 47].

One major theme in co-saliency detection research is im-

age pixel or region feature representation. Traditional man-

ually designed cues such as color histograms, Gabor filters,

and SIFT descriptors, have been used in image co-saliency

detection [8, 41, 15]. However, due to the limited feature
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Figure 1. Illustration of different maps. (a) Input images; (b)

Ground truth; (c) Single salient results with the proposed FCN

without mask guidance; (d) Masked co-saliency maps; (e) Final

refined results.

discrimination, the performance of those methods are in

general unsatisfactory. More recently, the deep learning

methods have achieved superior accuracy because neural

networks can generate more discriminative feature repre-

sentations [51, 52]. The second major theme is to discov-

er the repeated saliency across all images through a prop-

er association strategy. The unsupervised learning meth-

ods look for the common objects or salient regions across

images, by a series of models such as clustering [53, 48],

multi-instance learning [54, 24] and graphical model [23].

With co-saliency label information, the supervised learn-

ing methods are promising to achieve more accurate result-

s. The supervised single image saliency detection method-

s [22, 56, 55] can be used for co-saliency detection. How-

ever, they ignore the pattern concurrency of salient regions

within all images, which is the essential characteristic of the

co-saliency detection problem compared with single image

saliency detection task. Several recent efforts are conducted

to model the between-image pattern concurrency in the for-

m of distance metric learning [20] and collaborative learn-

ing [45].

In this paper, the proposed hierarchical method is also

to capture the salient pattern concurrency across images.

Intuitively, image co-saliency can be derived from the sin-

gle image saliency repeated in all images [8]. This moti-

vates us to design a two-step framework. In the first step,
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we generate the initial co-saliency detection results by a

mask-guided fully convolutional network (FCN). The idea

of mask-guided network has been successfully applied in

various tasks such as object segmentation [12] and detec-

tion [57], because the mask encodes useful semantical and

spatial information and hence the learned convolutional fea-

tures are more discriminative with such a guidance. In our

network we use the mask to remove the background infor-

mation in convolutional feature learning, as shown in Fig-

ure 1 (d). The network co-saliency detection results of the

mask-guided FCN are further refined by a multi-scale label

smoothing model, leading to the final results in Figure 1 (e).

The proposed method has the following technical novelties:

• We propose a mask-guided FCN structure for image

co-saliency detection. The convolutional part of the

proposed network has two channels and the mask is

added at different convolutional layers in the two chan-

nels. The outputs of the two channels are merged and

fed into the deconvolution layers to obtain the initial

co-saliency detection results.

• To make the FCN targeted for the concurrent feature

pattern learning, a mask is used as a guidance in the

network. The mask is learned from the feature re-

sponse map output of a pre-trained VGG net [40]. We

design a learning objective that jointly maximizes the

mask variance and encourages entries of the mask to

be sparse. The designed learning objective is solved

by an ADMM-type algorithm.

• A multi-scale label smoothing model is proposed to

refine the detection results of the masked-guided FCN.

The model considers the label smoothness of both im-

age superpixels and pixels. The superpixel smoothness

is modeled by manifold ranking and the pixel smooth-

ness is modelled by a fully-connected CRF objective.

An iterative optimization algorithm is designed to min-

imize the objective.

2. Related work

2.1. Singleimage saliency detection

Exhaustively introducing the related works is beyond the

scope of this paper, and some recent surveys about single-

image saliency detection can be found in [10, 5]. General-

ly, the existing single-image salient detection methods can

be categorized into unsupervised methods and supervised

methods [10]. The unsupervised methods detect image

saliency based on various prior knowledge as assumptions.

In [9], image saliency is detected by region contrast that is

evaluated by global contrast difference and spatial weight-

ed coherence scores. Other priors such as frequency do-

main analysis [1], sparse learning [30, 39], background pri-

or [61, 44] and compactness prior [60] are also considered

in literature. Supervised methods, especially deep learning

type models have demonstrated higher accuracy over unsu-

pervised methods. In [33], image saliency is detected by

predicting eye fixations. Extensive efforts have been con-

ducted on network structure design, with multi-scale feature

fusion network [28], hierarchical network structure [32] and

skip-layer structures within the HED architecture [22] as

representative work. A black box classifier is proposed

in [11] for real-time image saliency detection.

2.2. Image cosaliency detection

Image co-saliency detection methods can be grouped

into bottom-up, fusion based and learning based ones.

Bottom-up methods score image regions based on feature

priors to simulate visual attention [29, 15, 18]. In [15], three

visual attention cues including contrast, spatial and corre-

sponding are adopted. Background and foreground cues are

used in a two-stage propagation framework in [18]. Fusion

based methods ensemble the detection results of existing

saliency or co-saliency methods. For example, Cao et al.

obtain the self-adaptive weight via rank constraint to com-

bine the co-saliency maps [7] and Huang et al. use mul-

tiscale superpixels to jointly detect salient object via low-

rank analysis [25]. High-level semantic features from C-

NNs are extracted in [54, 52] to discover inter-image cor-

respondence. Learning based methods have gained signif-

icant development in recent years, mainly because of the

breakthrough of deep learning models [45, 58, 20, 23]. In

[45], Wei et al. propose an end-to-end framework based

on the FCN [36] to discover co-salient objects. In addition,

an unsupervised CNN [23] is proposed to jointly optimize

the co-saliency maps. A more comprehensive image co-

saliency method survey can be found in [50].

3. Proposed approach

Figure 2 illustrates the overall framework of the pro-

posed method. First, a mask is learned for each image that

can highlight the co-salient regions and remove the back-

ground in the FCN learning (§ 3.1). Then, the mask-guided

FCN detects the co-salient objects (§ 3.2). Finally, a multi-

scale label smoothing model is proposed to refine the output

of the mask-guided FCN (§ 3.3).

3.1. Mask learning

We leverage the VGG-16 network [40] pre-trained on

the ImageNet image classification task [13] by removing

its fully connected layers as generic feature extractor, and

use the convolutional feature maps (CFMs) of the last lay-

er (i.e., conv5-3) for masking learning. Given a group of

images I = {In}Nn=1 that contain co-salient objects of a

category, for each image In ∈ I, the VGG network gener-

ates its feature representation Xn = [xn1 , . . . , x
n
k ]

⊤ ∈ R
k×d,

where xni ∈ R
d is its i-th feature, k is the dimension of
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Figure 2. Proposed framework for co-saliency detection including three cascades: (a) Generate masks that can highlight the co-salient

targets; (b) Develop a mask-guided FCN, wherein two branches of CFMs are masked by the masks (denoted by CFM m), to generate deep

co-saliency maps; (c) Refine the results via iteratively optimizing a multi-scale labeling smoothing model of pixels and superpixels.

the vectorized feature map of each channel and d denotes

the number of channels. We aim to learn a mask function

m(xni ) = w⊤xni (w is equal to the top 1 × 1 convolutional

filter in Figure 2) that classifies the feature xni as foreground

or background, yielding the mask responses

mn = Xnw, (1)

where mn = [m(xn1 ), . . . ,m(xnN )]⊤. However, when learn-

ing the filters w, supervised learning suffers from high an-

notation cost of labeling foreground masks as training data.

Moreover, the learned model may not work well for unseen

object categories in testing since it cannot be well general-

ized to unseen categories. To address this issue, motivated

by principle component analysis (PCA) [4], we learn the

filters w in an unsupervised learning manner. However, P-

CA selects the projection direction of maximum variance,

which may lead to strong class overlap. As for our task,

the direction selected by PCA may cause high classifier re-

sponses at all locations, leading to an inaccurate mask (refer

to the middle row in Figure 3). To prevent this issue, we add

an additional sparse regularization on the mask mn, leading

to the following objective function

L(w) = −
N
∑

n=1

‖Xnw − X̄w‖22 + λ1‖w‖22 + λ2

N
∑

n=1

|mn|11,

s.t., mn = Xnw, n = 1, . . . , N,
(2)

where X̄ = [x̄, . . . , x̄]⊤ is composed of the sample set mean

x̄ = 1
Nk

∑N
n=1

∑k
i=1 xni . The first term encourages the

mask responses for all locations to have maximal variance,

the second term leverages l2 norm to control overfitting, and

the last term penalizes high responses of mn at background

while making the first term encourage mn to have high re-

sponses at foreground, thereby reducing class overlap com-

pared to PCA that only resorts to maximal variance.

The objective L(w) in (2) is convex with respect to the

variables w, and can be minimized to achieve the globally

optimal solution via ADMM [6]. By introducing the step
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parameter ρ, the Augmented Lagrangian form of (2) can be

formulated as

Lρ(w,m, s) = g(w) + λ2

N
∑

n=1

|mn|11 +
N
∑

n=1

sn
⊤(Xnw − mn)

+
ρ

2

N
∑

n=1

‖Xnw − mn‖22,

(3)

where g(w) = −
∑N

n=1 ‖Xnw− X̄w‖22 +λ1‖w‖22, and sn is

the Lagrange multiplier. By introducing zn = sn/ρ, (3) can

be reformulated as

Lρ(w,m, z) = g(w)+λ2

N
∑

n=1

|mn|11+
ρ

2

N
∑

n=1

‖Xnw−mn+zn‖22.

(4)

We then adopt the ADMM algorithm that alternatingly

solves the following subproblems











w(i+1) = argminw g(w) +
ρ
2

∑N
n=1 ‖Xnw − mn + zn‖22,

mn(i+1) = argminm λ2|m|11 +
ρ
2‖Xnw − m + zn‖22,

zn(i+1) = zn(i) + Xnw(i+1) − mn(i+1).
(5)

Update w: Taking the derivative of the top equation in

(5) be zero, we can obtain the closed-form solution for w as

w =

(

−2S + 2λ1I + ρ

N
∑

n=1

Xn⊤
Xn

)−1

ρ

N
∑

n=1

Xn⊤(mn−zn),

(6)

where S =
∑N

n=1(X
n − X̄)⊤(Xn − X̄).

Update m: The middle equation in (5) can be readily

solved by the soft thresholding method, and its closed-form

solution is

mn(i) =











(Xnw + zn)(i)− λ2

ρ
, if (Xnw + zn)(i) > λ2

ρ
,

0, if |(Xnw + zn)(i)| ≤ λ2

ρ
,

(Xnw + zn)(i) + λ2

ρ
, else.

(7)

Note that the proposed objective function (2) is con-

vex, and the ADMM algorithm has closed-form solution for

each subproblem in (5). Therefore, it satisfies the Eckstein-

Bertsekas condition [14] that is guaranteed to converge to

global optimum. Moreover, we empirically find that the

proposed ADMM can converge within 3 iterations on most

images, and thus we set the iteration number to 3 for effi-

ciency.

After obtaining the optimal mask mn, we reshape it to

the size of the feature map of the conv5-3 layer, and then

use bicubic interpolation to resize it to the desired size of

each masked feature map, yielding a group of masks M =
{Mn}Nn=1 for the input image set I.

Figure 3. Illustration of the masks generated by PCA (middle row)

and our method (bottom row). PCA yields noisy background re-

sponses while our method can uniformly highlight the foreground

common targets.

Figure 3 shows some examples of masks generated by

our method and PCA. The input images consist of multi-

ple targets such as cat, girl, helmet, baseball, etc, making it

challenging to accurately localize the common baseballs. P-

CA suffers from noisy background, failing to uniformly lo-

calize the common targets. On the contrary, by introducing

sparse representation to suppress the background responses,

the proposed approach enables to better highlight the com-

mon targets than PCA.

3.2. Maskguided FCN

The recently proposed SPP-Net [21] shows that CFMs

encode both the semantics (by strengths of their activations)

and spatial layouts of objects (by their positions), and hence

SPP-Net masks the CFMs by a rectangular region, and di-

rectly pools the masked CFMs for recogniton. Afterwards,

Dai et al. [12] further show that using a fine segment with

an irregular shape to mask the CFMs enables to achieve top-

level performance for semantic segmentation. Motivated by

these works, we further propose the mask-guided FCN that

masks out the CNN features of concurrent patterns across

images for co-saliency detection.

We use the backbone architecture as the FCN proposed

by [36], which consists of 16 convolutional layers inter-

leaved by ReLU non-linearity, 5 max pooling and 2 dropout

layers, and one deconvolutional layer. Given the train-

ing samples {In,Gn}, where Gn is the binary ground-truth

mask of the input image In. In is then fed forward through

the FCN to generate the CFMs Fn = {Fn
1 ,F

n
2 , . . .}. Then,

we mask each feature map Fn
k in Fn with the learned mask

Mn introduced by § 3.1

F̂n
k = Fn

k ⊙ Mn, (8)

where ⊙ denotes the element-wise multiplication.

As shown in Figure 2 (b), after the conv3 layer, we

achieve two branch features. One is only masking the pool3

layer while the other is only masking the pool5 layer. A-
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Figure 4. Top row: input images; middle row: co-saliency de-

tection results of the mask-guided FCN, among which the gray

geese with the same category are mistakenly detected; bottom row:

through multi-scale label smoothing, the common salient targets

are accurately detected while the distractors are suppressed.

mong them, the CFMs of pool3 layer mainly encode mid-

level patterns such as triangular structures, red blobs, spe-

cific textures, etc., which are generic to describe all cate-

gories [19, 43]. Therefore, masking the pool3 layer captures

salient regions of category-agnostic objects and can bet-

ter generalize to unseen categories. In addition, the CFMs

of pool5 layer encode rich high-level semantic information

that is robust to significant appearance variations across the

images, and masking these high-level features can further

boost performance, which is verified by our ablative study

in § 4.4. Then, to make full use of the complementary ad-

vantages of the two branch features, we fuse them by adding

them together to feed forward through the following layer-

s. Finally, we apply a 1 × 1 convolutional layer to com-

pute the saliency map, and apply a deconvolutional layer to

make the output map have the same size as the input im-

age. The output layer is a sigmoid layer, which converts the

saliency score into [0, 1]. For each input image In, the FC-

N finally outputs a probability map Sn(θ) with θ denoting

the network parameters, and is trained by minimizing the

following loss function

L(θ) =
∑

n

‖Sn(θ)− Gn‖2F + λ3‖θ‖
2
2, (9)

where ‖ · ‖F denotes the Frobenius norm, the last term de-

notes weight decay and λ3 > 0 is a pre-defined trade-off

parameter. Minimizing L(θ) via the stochastic gradient de-

scent (SGD) method yields the optimal solution θ̂, and the

FCN outputs the deep co-saliency maps for image set {In}

as S = {Sn(θ̂)}.

3.3. Refinement with multiscale label smoothing

The presented mask-guided FCN uses high-level seman-

tic features for co-saliency detection, which are not only

robust to appearance changes, but also can well tell the

salient objects from cluttered background. However, these

Figure 5. Alternatively optimizing the pixel-level and superpixel-

level models.

features are not discriminative enough to different object-

s of the same category. As shown in Figure 4, there exist

several geese with different colors, among which only the

white ones are the co-salient targets, but our mask-guided

FCN also mistakenly detects the gray goose distractors as

co-salient targets (see middle row of Figure 4). To address

this issue, we complement the semantic features with pixel-

level and superpixel-level cues, and propose a multi-scale

label smoothing model that alternatively optimizes the two

models with these cues (refer to Figure 5).

Superpixel-level model: Given the input image set I and

its corresponding deep co-saliency map set S , we first use

SLIC method [2] to separate each image In ∈ I into a set of

superpixels Yn = {yni }
n̄
i=1, where yni denotes the mean of

superpixel i in the LAB color space, and n̄ is the number of

superpixels. Then, we transform the deep co-saliency map

Sn(θ̂) ∈ S into an initial indicator vector l̄
n

= {l̄ni }
n̄
i=1

with l̄ni = 1, if the mean of values in superpixel i is larger

than the mean of all values in the deep co-saliency map n,

otherwise, l̄ni = 0. We then define a graph G = (V,E),
where the nodes V = {Yn}Nn=1 are the superpixels on the

image set I and the edges E are weighted by an affinity

matrix W = [wij ]N̄×N̄ with the number of nodes N̄ =
∑N

n=1 n̄, and

wij =

{

exp−
|ym

i
−yn

j
|

σ2 , if m 6= n or i ∈ N (j)&m = n,

0, if i /∈ N (j)&m = n,
(10)

where N (j) is the 8-neighbors of the node j. Given G, it-

s degree matrix D = diag{d11, . . . , dN̄N̄}, where dii =
∑

j wij . Then, similar to the manifold ranking algorith-

m [59], the optimal ranking is computed by minimizing the

following objective function

Esup(R|L) =
N̄
∑

i,j=1

wij |ri − rj |
2 + λ4

N̄
∑

i=1

|ri − li|
2,

(11)

where R = {ri}
N̄
i=1 denotes the ranking scores of all nodes
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in V and its corresponding given indicator set L = {li}
N̄
i=1,

which are initialized by the indicators transformed by the

deep co-saliency maps in S .

Pixel-level model: Let X = {xi ∈ {0, 1}} denote random

variables that are the labels associated with all the pixels in

the set I, and given the superpixel ranking scores R, we

define an energy functional in a dense CRF form [27]

Epix(X|R) =
∑

i

ψu(xi) +
∑

i<j

ψp(xi, xj), (12)

where the unary term is defined as

ψu(xi) = −(βs + (1− β)Pr)(i), (13)

where s denotes the deep co-saliency map vector for all im-

ages in I, r = [r1, . . . , rN̄ ]⊤ denotes the ranking score vec-

tor for all superpixels, and P is a position indicator matrix

which projects the superpixel scores to the corresponding

pixel scores. The pairwise term is formulated as

ψp(xi, xj) =

[

w1exp

(

−
‖pi − pj‖

2

2θ2α
−

‖ci − cj‖
2

2θ2β

)

+ w2exp

(

−
‖pi − pj‖

2

2θ2γ

)

]

φ(xi, xj),

(14)

where φ(xi, xj) = 1 if xi 6= xj , and zero otherwise. ci
and pi are RGB feature and position of pixel i respectively.

Parameters w1, w2, θα, θβ and θγ balance the importance

of each Gaussian kernel. These parameters are set follow-

ing [27].

Multi-scale model: The multi-scale model is formulated as

min
R,X ,L

E(R,X ,L) = Esup(R|L) + Epix(X|R), (15)

where Esup(R|L) is the superpixel-level model in (11) and

Epix(X|R) is the pixel-level model in (12).

As shown by Figure 5, (15) is alternatively optimized

with respect to each variables:

Update R: Fixing X and L, we minimize E(R,X ,L)
with respect to R by setting the derivative ofE(R,X ,L) to

zero:

∂E(R,L,X )

∂R
= 2(r − Sr + λ4(r − l))− (1− β)P⊤1 = 0,

(16)

where S = D−
1

2 WD−
1

2 , l = [l1, . . . , lN̄ ]⊤ and 1 denotes

all-ones vector. From (16), we have

r = ((1 + λ4)I − S)
−1

(

λ4l +
(1− β)P⊤1

2

)

. (17)

Update X : Fixing R, L and putting r in (17) into (13),

minimizing E(R,L,X ) with respect to X is equal to min-

imizing Epix(X|R) that is the objective of dense CRF, and

hence we use the algorithm in [27] to efficiently obtain the

optimal solution of X .

Update L: We denote the optimal solution of X as

x = [x1, . . .]
⊤, and then use x to mask the deep co-saliency

map vector s, yielding ŝ = x ⊙ s. Then, we reshape and

split ŝ to generate a group of masked deep co-saliency maps

{Ŝn}Nn=1, which are used to update L by means of generat-

ing the initial indicator vector introduced by the section of

Superpixel-level model.

4. Results and analysis

In this section, we first introduce implementation detail-

s of our algorithm (§ 4.1) and then introduce the bench-

mark datasets and evaluation metrics (§ 4.2). Afterwards,

we show the qualitative and quantitative comparison result-

s of our method with the state-of-the-arts (§ 4.3). Finally,

we conduct ablative study to show the effectiveness of each

component in the proposed method (§ 4.4).

4.1. Implementation details

We leverage MSRA-B [34] as the training set to train the

mask-guided FCN, and all training images are resized to

500× 500 pixels. The parameters in our method are set by

experience as λ1 = λ3 = 0.001, λ2 = 100, λ4 = 1, ρ = 10
and β = 0.9. We minimize the objective function (9) using

mini-batch SGD with a batch size of 64, and momentum of

0.99. The learning rate is set to 1e-10, and the weight decay

is set to 0.0005. The iteration number is set to 12,000. The

CNNs are implemented in Caffe [26] and a Titan X GPU is

used for acceleration.

4.2. Datasets and evaluation metrics

Datasets: We evaluate the proposed algorithm on three

co-saliency benchmark datasets including iCoseg [3], MSR-

C [46] and Cosal2015 [52]. ICoseg has 38 groups of total

643 images, and each group has 4∼42 images. The images

in iCoseg have similar objects with various poses and sizes.

MSRC consists of 8 groups of total 240 images, and the co-

salient object appearances in one group exhibit significant

difference, increasing the difficulty for co-saliency detec-

tion. Cosal2015 is the largest dataset with 2015 images of

50 categories, and it is also the most challenging dataset

since its images from one group suffer from the challeng-

ing factors such as different colors, sizes, poses, appearance

variations and background clutters, etc.

Evaluation metrics: We compare our approach with the

other state-of-the-art methods in terms of five criterions in-

cluding the precision-recall (PR) curve, the receive opera-

tor characteristic (ROC) curve, the average precision (AP)
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Figure 6. Example co-saliency maps generated by our method and the state-of-arts including CSHS [35], ESMG [31], CODR [49], and

CODW [52].

score, the AUC score, and the F-measure score. F-measure

is computed by an adaptive threshold T = µ+ ǫ to segmen-

t the co-saliency maps, where µ and ǫ represent the mean

and standard deviation respectively. Here we define the F-

measure based on the obtained average precision and recall

Fβ =
(1 + β2)Precision×Recall

β2 × Precision+Recall
, (18)

where β2 is set to 0.3 to enhance the importance of recall as

suggested in [54, 52, 5].

4.3. Comparisons with stateoftheart methods

We compare our algorithm with 6 state-of-art co-saliency

detection methods including CBCS [15], CSHS [35], ES-

MG [31], CODR [49], CODW [52], and SPMIL [54]. For

fair comparisons, we directly report the results released by

the authors.

Qualitative comparison results: Figure 6 shows some

qualitative comparison results. Among them, it is obvious

that the proposed method can better extract the co-saliency

regions in cases of different colors, poses, appearance vari-

ance and complex background. In Figure 6, the left two

groups of images are from iCoseg. Among them, in group

of elephant, the grass in the background shares the same

color with the elephants, making the other compared meth-

ods fail to fully detect the elephants, but our method can

achieve satisfying results because it uses the high-level se-

mantic information that can well discriminate target from

background. The middle groups are from MSRC that are

mainly for semantic segmentation, and our method can also

get favorable results under the interface of significant ap-

pearance variations. The right groups are from Cosal2015,

and in both groups, our method can better detect the targets

even they suffer from different complex scenes and signifi-

cant appearance changes.

Quantitative comparison results: Figure 7 shows the

PR and ROC curves of the compared methods on three

benchmark datasets. The performance statistics are sum-

marized in Table 1. From Figure 7, we can observe that

our algorithm outperforms the other state-of-the-art meth-

ods in terms of both PR and ROC curves on all bench-

marks. Especially on Cosal2015, the curves generated by

the proposed method are much higher than the other meth-

ods. Furthermore, as listed by Table 1, CODW provides

the best performance on the Cosal2015 among the state-of-

the-arts, with AP score of 0.7437, AUC score of 0.9127,

and Fβ score of 0.7046. Meanwhile, our approach achieves

AP score of 0.8527, AUC score of 0.9578, and Fβ score

of 0.8142, and significantly outperforms CODW by 10.9%,

4.51%, and 10.96%, respectively. These results verify the

effectiveness of our mask-guided FCN with multi-scale la-

bel smoothing for co-saliency detection.
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Table 1. Statistic comparisons of our method with the other state-of-the-arts. Here, -R, -P3 and -P5 represent our method in absence of

refinement, pool3 masking and pool5 masking respectively. Red, blue and green bold fonts indicate the best, second best and third best

performance respectively.

Dataset CBCS [15] ESMG [31] CSHS [35] CODR [49] CODW [52] SPMIL [54] -R -P3 -P5 Ours

AP 0.8021 0.8532 0.8397 0.8847 0.8766 0.8749 0.8395 0.8959 0.9007 0.9057

iCoseg AUC 0.9326 0.9559 0.9546 0.9689 0.9574 0.9649 0.9557 0.9688 0.9705 0.9741

Fβ 0.7432 0.7968 0.7540 0.8171 0.7985 0.8143 0.8110 0.8457 0.8434 0.8553

AP 0.6998 0.6842 0.7868 0.8636 0.8435 0.8974 0.8686 0.8875 0.8922 0.9096

MSRC AUC 0.8023 0.8228 0.8679 0.9167 0.9048 0.9395 0.9332 0.9351 0.9408 0.9455

Fβ 0.5986 0.6301 0.7184 0.7675 0.7724 0.8029 0.7971 0.8142 0.8075 0.8250

AP 0.5972 0.5181 0.6212 0.6908 0.7437 - 0.8372 0.8297 0.8335 0.8527

Cosal2015 AUC 0.8166 0.7691 0.8512 0.9084 0.9127 - 0.9499 0.9341 0.9537 0.9578

Fβ 0.5644 0.5201 0.6225 0.6603 0.7046 - 0.7963 0.7999 0.8076 0.8142

     iCoseg MSRC Cosal2015 

Figure 7. Comparisons with the state-of-art methods in terms of PR curves and ROC curves on three benchmark datasets

4.4. Ablative study

To further verify our main contributions, we compare d-

ifferent variants of our method including those without re-

finement (-R), pool3 masking (-P3), and pool5 masking (-

P5) respectively.

From Table 1, we can observe that without refinemen-

t, both the AP and Fβ scores drop obviously on all bench-

mark datasets. Especially on the iCoseg, the AP score drops

significantly from 0.9057 to 0.8395 by 6.62% while the Fβ

score drops from 0.8553 to 0.8110 by 4.43%. This veri-

fies the effectiveness of our multi-scale refinement strategy

that can significantly boost the co-saliency detection accura-

cy. Furthermore, without pool3 masking, most scores of AP,

AUC, and Fβ are lower than those without pool5 masking.

We think this is due to that the pool3 masking can capture

salient regions of category-agnostic objects, leading to bet-

ter generalization to unseen categories. In addition, without

pool5 masking, all three scores drop, verifying the effec-

tiveness of masking high-level semantic features that can

further boost performance.

5. Conclusion

This paper has presented a masked-guided FCN for co-

saliency detection including three cascades: in the first cas-

cade, an unsupervised learning method has been proposed

to learn co-salient object masks. In the second cascade, the

learned masks are leveraged to mask the convolutional fea-

ture maps of the FCN for salient object extraction. In the

third cascade, the output of the FCN has been further refined

by iteratively optimizing a novel multi-scale label smooth-

ing model. Extensive evaluations on three benchmarks have

verified the effectiveness of our method.
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