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Abstract

This paper presents the first end-to-end network for

exemplar-based video colorization. The main challenge

is to achieve temporal consistency while remaining faith-

ful to the reference style. To address this issue, we intro-

duce a recurrent framework that unifies the semantic cor-

respondence and color propagation steps. Both steps al-

low a provided reference image to guide the colorization

of every frame, thus reducing accumulated propagation er-

rors. Video frames are colorized in sequence based on the

colorization history, and its coherency is further enforced

by the temporal consistency loss. All of these components,

learnt end-to-end, help produce realistic videos with good

temporal stability. Experiments show our result is superior

to the state-of-the-art methods both quantitatively and qual-

itatively.

1. Introduction

Prior to the advent of automatic colorization algorithms,

artists revived legacy images or videos through a careful

manual process. Early image colorization methods relied on

user-guided scribbles [1, 2, 3, 4, 5] or a sample reference [6,

7, 8, 9, 10, 11, 12, 13] to address this ill-posed problem, and

more recent deep-learning works [14, 15, 16, 17, 18, 19, 20]

directly predict colors by learning color-semantic relation-

ships from a large database.

A more challenging task is to colorize legacy videos. In-

dependently applying image colorization (e.g., [15, 16, 17])

on each frame often leads to flickering and false discontinu-

ities. Therefore there have been some attempts to impose

temporal constraints on video colorization. A naı̈ve ap-

proach is to run a temporal filter on the per-frame coloriza-

tion results during post-processing [21, 22], which can alle-

viate the flickering but cause color fading and blurring. An-

other set of approaches propagate the color scribbles across
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frames using optical flow [1, 2, 23, 24, 25]. However, scrib-

bles propagation may be not perfect due to flow error, which

will induce some visual artifacts. The most recent methods

assume that the first frame is colorized and then propagate

its colors to the following frames [26, 27, 28, 29]. This is

effective to colorize a short video clip, but the errors will

progressively accumulate when the video is long. These ex-

isting techniques are generally based on color propagation

and do not consider the content of all frames when deter-

mining the colors.

We instead propose a method to colorize video frames

jointly considering three aspects, instead of solely relying

on the previous frame. First, our method takes the result

of the previous frame as input to preserve temporal consis-

tency. Second, our method performs colorization using an

exemplar, allowing a provided reference image to guide the

colorization of every frame and reduce accumulation error.

Thus, finding semantic correspondence between the refer-

ence and every frame is essential to our method. Finally,

our method leverages large-scale data from learning, so that

it can predict natural colors based on the semantics of the in-

put grayscale image when no proper matching is available

in either the reference image or the previous frame.

To achieve the above objectives, we present the first end-

to-end convolutional network for exemplar-based video col-

orization. It is a recurrent structure that allows history in-

formation for maintaining temporal consistency. Each state

consists of two major modules: a correspondence subnet to

align the reference to the input frame based on dense seman-

tic correspondences, and a colorization subnet to colorize a

frame guided by both the colorized result of its previous

frame and the aligned reference. All subnets are jointly

trained, yielding multiple benefits. First, the jointly trained

correspondence subnet is tailored for the colorization task,

thus achieving higher quality. Second, it is two orders of

magnitude faster than the state-of-the-art exemplar-based

colorization method [30] where the reference is aligned in

a pre-processing step using a slow iterative optimization al-

gorithm [31]. Moreover, the joint training allows adding

temporal constraints on the alignment as well, which is es-
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sential to consistent video colorization. This entire net-

work is trained with novel loss functions considering nat-

ural occurrence of colors, faithfulness to the reference, spa-

tial smoothness and temporal coherence.

The experiments demonstrate that our video colorization

network outperforms existing methods quantitatively and

qualitatively. Moreover, our video colorization allows two

modes. If the reference is a colorized frame in the video, our

network will perform the same function as previous color

propagation methods but in a more robust way. More im-

portantly, our network supports colorizing a video with a

color reference of a different scene. This allows the user to

achieve customizable multimodal results by simply feeding

various references, which cannot be accomplished in previ-

ous video colorization methods.

2. Related work

Interactive Colorization. Early colorization methods fo-

cus on using local user hints in the form of color points

or strokes [1, 2, 3, 4, 5]. The local color hints are propa-

gated to the entire image according to the assumption that

coherent neighborhoods should have similar colors. These

pioneering works rely on the hand-crafted low-level fea-

tures for the color propagation. Recently, Zhang and Zhu et

al. [32] proposed to employ deep neural networks to prop-

agate the user edits by incorporating semantic information

and achieve remarkable quality. However, all of these user-

guided methods require significant manual interactions and

aesthetic skills to generate plausible colorful images, mak-

ing them unsuitable for colorizing images massively.

Exemplar-based Colorization. Another category of

work colorize the grayscale images by transferring the color

from the reference image in a similar content. The pioneer-

ing work [6] transfers the chromatic information to the cor-

responding regions by matching the luminance and texture.

In order to achieve a more accurate local transfer, various

correspondence techniques have been proposed by match-

ing low-level hand-crafted features [7, 8, 9, 10, 11, 12, 13].

Still, these correspondence methods are not robust to com-

plex appearance variations of the same object because low-

level features do not capture semantic information. More

recent works [33, 30] rely on the Deep Analogy method [31]

to establish the semantic correspondence and then refine the

colorization by solving Markov random field model [33]

or a neural network [30]. In those works, the correspon-

dence and the color propagation are optimized indepen-

dently, therefore visual artifacts tend to arise due to corre-

spondence error. On the contrary, we unify the two stages

within one network, which is trained end-to-end and pro-

duces more coherent colorization results.

Fully Automatic Colorization. With the advent of deep

learning techniques, various fully automatic colorization

methods have been proposed to learn a parametric map-

ping from grayscale to color using large datasets [14, 15,

16, 17, 18, 19, 20]. These methods predict the color by

incorporating the low and high-level cues and have shown

compelling results. However, these methods lack the mod-

elling of color ambiguity and thus cannot generate multi-

modal results. In order to address these issues, diverse col-

orization methods have been proposed using the generative

models [34, 35, 36, 37, 38]. However, all of these automatic

methods are prone to produce visual artifacts such as color

bleeding and color washout, and the quality may signifi-

cantly deteriorate when colorizing objects out of the scope

of the training data.

Video Colorization. Comparatively, there has been much

less research effort focused on video colorization. Exist-

ing video colorization can be classified into three categories.

The first is to post-process the framewise colorization with

a general temporal filter [21, 22], but these works tend to

wash out the colors. Another class of methods propagate

the color scribbles to other frames by explicitly calculat-

ing the optical flow [1, 2, 23, 24, 25]. However, scribbles

drawn from one specific image may not be suitable for other

frames. Another category of video colorization methods use

one colored frame as an example and colorize the follow-

ing frames in sequence. While conventional methods rely

on hand-crafted low-level features to find the temporal cor-

respondence [39, 40, 41], a recent trend is to use a deep

neural network to learn the temporal propagation in a data-

driven manner [26, 27, 28, 29]. These approaches generally

achieve better quality. However, a common issue of these

video color propagation methods is that the color propaga-

tion will be problematic if it fails on a particular frame.

Moreover, these methods require a good colored frame to

bootstrap, which can be challenging in some scenes, par-

ticularly when it is dynamic and with significant variations.

By contrast, our work refers to an example reference image

during the entire process, thus not relying solely on color

propagation from previous frames. It therefore yields more

robust results, particularly for longer video clips.

3. Method

3.1. Overall framework

We denote the grayscale video frame at time t as xl
t ∈

R
H×W×1, and the reference image as ylab ∈ R

H×W×3.

Here, l and ab represent the luminance and chrominance in

LAB color space, respectively. In order to generate tempo-

rally consistent videos, we let the network, denoted by GV ,

colorize video frames based on the history. Formally, we

formulate the colorization for the frame x̃l
t to be conditional

on both the colorized last frame x̃lab
t−1 and the reference ylab:

x̃ab
t = GV (x

l
t|x̃

lab
t−1, y

lab) (1)
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Figure 1. The framework of our video colorization network. The

network consists of two subnets: correspondence subnet and col-

orization subnet. The colorization for the frame xl
t is conditional

on the previous colorized frame xl
t−1

.

The pipeline for video colorization is shown in Figure 1.

We propose a two-stage network which consists of two sub-

nets - correspondence network N and colorization network

C. At time t, first N aligns the reference color yab to xl
t

based on their semantic correspondences, and yields two in-

termediate outputs: the warped color Wab and a confidence

map S measuring the correspondence reliability. Then C
uses the warped intermediate results along with the col-

orized last frame x̃lab
t−1 to colorize x̃l

t. Thus, the network

colorizes the video frames in sequence and Eq. 1 can be

expressed as:

x̃ab
t = C(xl

t,N (xl
t, y

lab)|x̃lab
t−1) (2)

3.2. Network architecture

Figure 2 illustrates the two-stage network architecture.

Next we describe these two sub networks.

Correspondence Subnet. We build the semantic cor-

resondence between xl
t and yab using the deep features ex-

tracted from the VGG19 [42] pretrained on image classifi-

cation. In N , we extract the feature maps from layers of

relu2 2, relu3 2, relu4 2 and relu5 2 for both xl and yab.

The multi-layer feature maps are concatenated to form fea-

tures Φx,Φy ∈ R
H×W×C for xl

t, y
ab respectively. Features

Φx and Φy are fed into several residual blocks to better ex-

ploit the features from different layers, and the outputs are

reshaped into two feature vectors: Fx, Fy ∈ R
HW×C for

xl
t and yab respectively. The residual blocks, parameterized

by θN , share the same weights for xl
t and yab.

Given the feature representation, we can find dense cor-

respondence by calculating the pairwise similarity between

the features of xl
t and yab. Formally, we compute a correla-

tion matrix M ∈ R
HW×HW whose elements characterize

the similarity of Fx at position i and Fy at j:

M(i, j) =
(Fx(i)− µFx

) · (Fy(j)− µFy
)

‖Fx(i)− µFx
‖2 ‖Fy(j)− µFy

‖2
(3)

where µFx
and µFy

represent mean feature vectors. We em-

pirically find such normalization makes the learning more

stable. Then we can warp the reference color yab towards

xl
t according to the correlation matrix. We propose to cal-

culate the weighted sum of yab to approximate the color

sampling from yab:

Wab(i) =
∑

j

softmax
j

(M(i, j)/τ) · yab(j) (4)

We set τ = 0.01 so that the row vector M(i, ·) approaches

to one-hot vector and weighted color Wab approximates

selecting the pixel in the reference with largest similarity

score. The resulting vector Wab serves as an aligned color

reference to guide the colorization in the next step. Note

that Equation 4 has a close relationship with the non-local

operator proposed by Wang et al. [43]. The major difference

is that the non-local operator computes the pairwise similar-

ity within the same feature map so as to incorporate global

information, whereas we compute the pairwise similarity

between features of different images and use it to warp the

corresponding color from the reference.

Given that the color warping is not accurate everywhere,

we output the matching confidence map S indicating the

reliability of sampling the reference color for each position

i of xl
t:

S(i) = max
j

M(i, j) (5)

In summary, our correspondence network generates two

outputs: warped color Wab and confidence map S:

(Wab,S) = N (xl
t, y

lab; θN ) (6)

Colorization Subnet. The correspondence is not accu-

rate everywhere, so we employ the colorization network C
which is parameterized by θC , to select the well-matched

colors and propagate them properly. The network receives

four inputs: the grayscale input xl
t, the warped color map

Wab and the confidence map S , and the colorized previous

frame x̃lab
t−1. Given these, this network outputs the predicted

color map x̃ab
t for the current frame at t:

x̃ab
t = C(xl

t,W
ab,S|x̃lab

t−1; θC) (7)

Along with the luminance channel xl
t, we obtain the col-

orized image x̃lab
t , also denoted as x̃t.

8054



 

  

    

     
 

     

 
   

 

  

  

       

Figure 2. The detailed diagram of the proposed network. The correspondence subnet finds the correspondence of source image xl
t and

reference image ylab in the deep feature domain, and aligns the reference color accordingly. Based on the intermediate result of the

correspondence map along with the last colorized frame, the colorization subnet predicts the color for the current frame.

3.3. Loss

Our network is supposed to produce realistic video col-

orization without temporal flickering. Furthermore, the col-

orization style should resemble the reference in the corre-

sponding regions. To accomplish these objectives, we im-

pose the following losses.

Perceptual Loss. First, to encourage the output to be per-

ceptually plausible, we adopt the perceptual loss [44] which

measures the semantic difference between the output x̃ and

the ground truth image x:

Lperc = ‖ΦL
x̃ − ΦL

x‖
2
2 (8)

where ΦL represent the feature maps extracted at the

reluL 2 layer from the VGG19 network. Here we set

L = 5 since the top layer captures mostly semantic in-

formation. This loss encourages the network to select the

confident colors from Wab and propagate them properly.

Contextual Loss. We introduce a contextual loss, to en-

courage colors in the output to be close to those in the refer-

ence. The contextual loss is proposed in [45] to measure the

local feature similarity while considering the context of the

entire image, so it is suitable for transferring the color from

the semantically related regions. Our work is the first to

apply the contextual loss into exemplar-based colorization.

The cosine distances dL(i, j) are first computed between

each pair of feature points ΦL
x̃ (i) and ΦL

y (j), and then nor-

malized as d̃L(i, j) = dL(i, j)/(mink d
L(i, k) + ǫ), ǫ =

1e − 5. The pairwise affinities AL(i, j) between features

are defined as:

AL(i, j) = softmax
j

(1− d̃L(i, j)/h) (9)

where we set the bandwidth parameter h = 0.1 as a rec-

ommendation. The affinities Al(i, j) range within [0, 1] and

measure the similarity of x̃t(i) and y(j) with the Lth layer

features. Contrary to the backward matching in [45], we

use forward matching where for each feature Φl
x̃,i we find

the closest feature Φl
y,j in y. This is because some objects

in xl
t may not exist in y. Consequently, the contextual loss

is defined to maximize the affinities between the result and

the reference:

Lcontext =
∑

l

wL

[

− log

(

1

NL

∑

i

max
j

AL(i, j)

)]

.

(10)

Here we use multiple feature maps: L = 2 to 5. NL denotes

the feature number of layer L. We set higher weights wL for

higher level features as the correspondence is proven more

reliable using the coarse-to-fine searching strategy [31].

Smoothness Loss. We introduce a smoothness loss to en-

courage spatial smoothness. We assume that neighboring

pixels of x̃t should be similar if they have similar chromi-

nance in the ground truth image xt. The smoothness loss is

defined as the difference between the color of current pixel

and the weighted color of its 8-connected neighborhoods:

Lsmooth =
1

N

∑

c∈{a,b}

∑

i



x̃c
t(i)−

∑

j∈N(i)

wi,j x̃
c
t(j)





(11)

where wi,j is the WLS weight [46] which measures the

neighborhood correlations. This edge-aware weight helps

to produce edge-preserving colorization and alleviate color

bleeding artifacts.
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Adversarial Loss. We also employ an adversarial loss to

constrain the colorization video frames to remain realistic.

Instead of using image discriminator, a video discrimina-

tor is used to evaluate consecutive video frames. We as-

sume that flickering and defective videos can be easily dis-

tinguished from real ones, so the colorization network can

learn to generate coherent natural results during the adver-

sarial training.

It is difficult to stabilize the adversarial training espe-

cially on a large-scale dataset like ImageNet. In this work

we adopt the relativistic discriminator [47] which estimates

the extent in which the real frames (denoted as zt−1 and zt)
look more realistic than the colorized ones x̃t−1 and x̃t. We

adopt the least squares GAN in its relativistic format and

the loss for the generator G is defined as:

LG
adv = E(x̃t−1,x̃t)∼Px̃

[(D(x̃t−1, x̃t)

− E(zt−1zt)∼Pz
D(zt−1, zt)− 1)2]

+ E(zt−1zt)∼Pz
[(D(zt−1, zt)

− E(x̃t−1,x̃t)∼Px̃
D(x̃t−1, x̃t) + 1)2]

(12)

The relative discriminator loss can be defined in a similar

way. From our experiments, this GAN is better to stabilize

training than a standard GAN.

Temporal Consistency Loss. To efficiently consider tem-

poral coherency, we also impose a temporal consistency

loss [48] which explicitly penalizes the color change along

the flow trajectory:

Ltemporal = ‖mt−1 ⊙Wt−1,t(x̃
ab
t−1)−mt−1 ⊙ x̃ab

t ‖

(13)

where Wt−1,t is the forward flow from the last frame xt−1

to xt and mt−1 is the binary mask which excludes the oc-

clusion, and ⊙ represents the Hadamard product.

L1 Loss. With the above loss functions, the network can

already generate high quality plausible colorized results

given a customized reference. Still, we want the network

degenerate to the case where the reference comes from the

same scene as the video frames. This is a common case for

video colorization applications. In this case, we have the

ground truth of the predicted frame, so add one more L1

loss term to measure the color difference between output x̃t

and the ground truth xt:

LL1 = ‖x̃ab
t − xab

t ‖1 (14)

Objective Function. Combining all the above losses, and

the overall objective we aim to optimize is:

LI =λpercLperc + λcontextLcontext + λsmoothLsmooth

+ λadvLadv + λtemporalLtemporal + λL1LL1

(15)

Figure 3. Augmented training images from ImageNet dataset.

where λ controls the relative importance of terms. With the

guidance of these losses, we successfully unify the corre-

spondence and color propagation within a single network,

which learns to generate plausible results based on the ex-

emplar image.

4. Implementation

Network Structure. The correspondence network in-

volves 4 residual blocks each with 2 conv layers. The col-

orization subnet adopts an auto-encoder structure with skip-

connections to reuse the low-level features. There are 3 con-

volutional blocks in the contractive encoder and 3 convolu-

tional blocks in the decoder which recovers the resolution;

each convolutional block contains 2∼3 conv layers. The

tanh serves as the last layer to bound the chrominance out-

put within the color space. The video discriminator consists

of 7 conv layers where the first six layers halve the input

resolution progressively. Also, we insert the self-attention

block [49] after the second conv layer to let the discrimi-

nator examine the global consistency. We use instance nor-

malization since colorization should not be affected by the

samples in the same batch. To further improve training sta-

bility we apply spectral normalization [50] on both genera-

tor and discriminator as suggested in [49].

Training. In order to cover a wide range of scenes, we use

multiple datasets for training. First, we collect 1052 videos

from Videvo stock [51] which mainly contains animals and

landscapes. Furthermore, we include more portraits videos

using the Hollywood2 dataset [52]. We filter out the videos

that are either too dark or too faded in color, leaving 768

videos for training. For each video clip we provide refer-

ence candidates by inquiring the five most similar images

from the corresponding class in the ImageNet dataset. We

extract 25 frames from each video and use FlowNet2 [53] to

compute the optical flow required for the temporal consis-

tency loss and use the method [54] for the occlusion mask.

To further expand the data category, we include images in

the ImageNet and apply random geometric distortion and

luminance noises to generate augmented video frames as

shown in Figure 3. Thus, we get 70k augmented videos in

diverse categories. To suit the standard aspect ratio 16:9, we

crop all the training images to 384× 216. We occasionally

provide the reference which is the ground truth image itself

but insert Gaussian noise, or feature noise to the VGG19
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Input images Warped color image Colorized result

Figure 4. First row: nearest neighbor matching. Second row:

with learning parameters in the correspondence network. The first

columns are the grayscale image and reference image respectively.

features before feeding them into the correspondence net-

work. We deliberately cripple the color matching during

training, so the colorization network better learns the color

propagation even when the correspondence is inaccurate.

We set λperc = 0.001, λcontext = 0.2, λsmooth = 5.0,

λadv = 0.2, λflow = 0.02 and λL1 = 2.0. We use a

learning rate of 2 × 10−4 for both generator and discrim-

inator without any decay schedule and train the network

using the AMSGrad solver with parameters β1 = 0.5 and

β2 = 0.999. We train the network for 10 epochs with a

batch size of 40 pairs of video frames.

5. Experiments

In this section, we first study the effectiveness of indi-

vidual components in our method. Then, we compare our

method with state-of-the-art approaches.

5.1. Ablation Studies

Correspondence Learning. To demonstrate the impor-

tance of learning parameters in the correspondence subnet,

we compare our method with nearest neighbor (NN) match-

ing, in which each feature point of the input image will be

matched to the nearest neighbor of the reference feature.

Figure 4 shows that our learning-based method matches

mostly correct colors from the reference and eases color

propagation for the colorization subnet.

Analysis of Loss Functions. We ablate the loss functions

individually and evaluate their importance, as shown in Fig-

ure 5. When we remove Lperc, the colorization fully adopts

the color from the reference, but tends to produce more ar-

tifacts since there is no loss function to constrain the output

to be semantically similar to the input. When we remove

Lcontext, the output does not resemble the reference style.

When Lsmooth is ablated, colors may not be fully propa-

gated to the whole coherent region. Without Ladv , the color

Top-5

Acc(%)

Top-1

Acc(%)

FID Colorful Flicker

GT 90.27 71.19 0.00 19.1 5.22

[15] 85.03 62.94 7.04 11.17 7.19/5.69+

[16] 84.76 62.53 7.26 10.47 6.76/5.42+

[17] 83.88 60.34 8.38 20.16 7.93/5.89+

[30] 85.08 64.05 4.78 15.63 NA

Ours 85.82 64.64 4.02 17.90 5.84

Table 1. Comparison with image and per-frame video colorization

methods (image test dataset: ImageNet 10k and video test dataset:

Videvo.)

appears washed out and unrealistic. This is because color

warping is not accurate and the final output becomes the lo-

cal color average of the warping colors. In comparison, our

full model produces vivid colorization with fewer artifacts.

5.2. Comparisons

Comparison with Image Colorization. We compare our

method against recent learning based image colorization

methods both quantitatively and qualitatively. The base-

line methods include three automatic colorization methods

(Iizuka et al. [15], Larsson et al. [16] and Zhang et al. [17])

and one exemplar based method (He and Chen et al. [30])

since these methods are regarded as state-of-the-art.

For the quantitative comparison, we test these methods

on 10k subset of the ImageNet dataset, as shown in Table 1.

For exemplar based methods, we take the Top-1 recommen-

dation from ImageNet as the reference. First, we measure

the classification accuracy using the VGG19 pre-trained on

color images. Our method gives the best Top-5 and Top-1

class accuracy, indicating that our method produces seman-

tically meaningful results. Second, we employ the Fréchet

Inception Distance (FID) [55] to measure the semantic dis-

tance between the colorized output and the realistic natural

images. Our method achieves the lowest FID, showing that

our method provides the most realistic results. In addition,

we measure the colorfulness using the psychophysics metric

from [56] due to the fact that the users usually prefer col-

orful images. Table 1 shows that Zhang et al.’s work [17]

produces the most vivid color since it encourages rare col-

ors in the loss function; however their method tends to pro-

duce visual artifacts, which are also reflected in FID score

and the user study. Overall, the results of our method,

though slightly less vibrant, exhibit similar colorfulness to

the ground truth. The qualitative comparison (in Figure 6)

also indicates that our method produces the most realistic,

vibrant colorization results.

Comparison with Automatic Video Colorization. In

this experiment, we test video colorization on 116 video

clips collected from Videvo. We apply the learning based

methods for video colorization. It is too costly to use the

method in [30] (90s/frame compared to 0.61s/frame in our
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Input image Reference w/o Lperc w/o Lcontext w/o Lsmooth w/o Ladv Full

Figure 5. Ablation study for different loss functions. Please refer to the supplementary material for the quantitative comparisons.

Input Reference Ours [30] [15] [16] [17]

Figure 6. Comparison with image colorization with state-of-the-art methods.

0 5 10 15 20 25

Frame number

22

26

30

34

38

P
S

N
R

Ours w/ L1
Ours w/o L1
Optical flow
STN
VPN

Figure 7. Quantitative comparison with video color propagation.

21.96

13.09

14.25

50.66

34.39

28.53

17.94

19.16

26.19

35.86

26.12

11.81

17.46

22.51

41.69

18.37

[16]

[15]

[17]

Ours

Video Colorization (%)

Top 1 Top 2 Top 3 Top 4

13.33

7

79.67

66

17.33

16.67

20.67

75.67

3.66

STN

VPN

Ours

Video Propagation (%)

Top 1 Top 2 Top 3

Figure 8. User study results.

method), so we exclude it in this comparison. The quan-

titative comparison is included in Table 1. We also ap-

ply the method proposed in [22] which post-processes per-

frame colorized videos and generates temporally consistent

results. We denote these post-processed outputs with ‘+’ in

Table 1. We measure the temporal stability using Eq. 13

averaged over all adjacent frame pairs in the results. A

smaller temporal error represents less flickering. The post-

processing method [22] significantly reduces the temporal

flickering while our method produces a comparably stable

result. However, their method [22] degrades the visual qual-

ity since the temporal filtering introduces blurriness. As

shown in the example in Figure 10, our method exhibits vi-

brant colors in each frame with significantly fewer artifacts

compared to other methods. Meanwhile, the successively

colorized frames demonstrate good temporal consistency.

Comparison with Color Propagation Methods. In or-

der to show that our method can degenerate to the case

where the reference is a colored frame for the video it-

self, we compare it with two recent color propagation meth-

ods: VPN [26] and STN [28]. We also include optical flow

based color propagation as a baseline. Figure 7 shows the

PSNR curve with frame propagation tested on the DAVIS
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Figure 10. Comparison with automatic video colorization.

dataset [57]. Optical flow based methods provides the high-

est PSNR in the initial frames but deteriorates significantly

thereafter. The methods STN and VPN also suffer from

PNSR degradation. Our method with L1 loss attains a most

stable curve, showing the capability for propagating to more

frames.

User Studies. We first compare our video colorization

with three methods of per-frame automatic video coloriza-

tion: Larsson et al. [16], Zhang et al. [17] and Iizuka et

al. [15]. We used 19 videos randomly selected from the

Videvo test dataset. For each video, we ask the user to rank

the results generated by the four methods in terms of tem-

poral consistency and visual photorealism. Figure 8 (left)

shows the results based on the feedback from 20 users. Our

approach is 50.66% more likely to be chosen as the 1st-

rank result. We also compare against two video propagation

methods: VPN [26] and STN [28] on 15 randomly selected

videos from the DAVIS test dataset. For a fair compari-

son, we initialize all three methods with the same coloriza-

tion result of the first frame (using the ground truth). Fig-

ure 8 (right) shows the survey results. Again, our method

achieves the highest 1st-rank percentage at 79.67%.

6. Conclusion

In this work, we propose the first exemplar-based video

colorization algorithm. We unify the semantic correspon-

dence and colorization into a single network, training it end-

to-end. Our method produces temporal consistent video

colorization with realistic effects. Readers could refer to

our supplementary material for more quantitative results.
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[24] P. Doğan, T. O. Aydın, N. Stefanoski, and A. Smolic, “Key-

frame based spatiotemporal scribble propagation,” in Pro-

ceedings of the Eurographics Workshop on Intelligent Cin-

ematography and Editing, pp. 13–20, Eurographics Associ-

ation, 2015. 1, 2

[25] S. Paul, S. Bhattacharya, and S. Gupta, “Spatiotemporal

colorization of video using 3d steerable pyramids,” IEEE

Transactions on Circuits and Systems for Video Technology,

vol. 27, no. 8, pp. 1605–1619, 2017. 1, 2

[26] V. Jampani, R. Gadde, and P. V. Gehler, “Video propagation

networks,” in Proc. CVPR, vol. 6, p. 7, 2017. 1, 2, 7, 8

[27] C. Vondrick, A. Shrivastava, A. Fathi, S. Guadarrama, and

K. Murphy, “Tracking emerges by colorizing videos,” in

Proc. ECCV, 2018. 1, 2

[28] S. Liu, G. Zhong, S. De Mello, J. Gu, V. Jampani, M.-H.

Yang, and J. Kautz, “Switchable temporal propagation net-

work,” arXiv preprint arXiv:1804.08758, 2018. 1, 2, 7, 8

[29] S. Meyer, V. Cornillère, A. Djelouah, C. Schroers, and

M. Gross, “Deep video color propagation,” arXiv preprint

arXiv:1808.03232, 2018. 1, 2

[30] M. He, D. Chen, J. Liao, P. V. Sander, and L. Yuan, “Deep

exemplar-based colorization,” ACM Transactions on Graph-

ics (TOG), vol. 37, no. 4, p. 47, 2018. 1, 2, 6, 7

[31] J. Liao, Y. Yao, L. Yuan, G. Hua, and S. B. Kang, “Visual at-

tribute transfer through deep image analogy,” arXiv preprint

arXiv:1705.01088, 2017. 1, 2, 4

8060



[32] R. Zhang, J.-Y. Zhu, P. Isola, X. Geng, A. S. Lin, T. Yu,

and A. A. Efros, “Real-time user-guided image colorization

with learned deep priors,” arXiv preprint arXiv:1705.02999,

2017. 2

[33] M. He, J. Liao, L. Yuan, and P. V. Sander, “Neural color

transfer between images,” arXiv preprint arXiv:1710.00756,

2017. 2

[34] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-

to-image translation with conditional adversarial networks,”

arXiv preprint, 2017. 2

[35] A. Deshpande, J. Lu, M.-C. Yeh, M. J. Chong, and D. A.

Forsyth, “Learning diverse image colorization.,” in CVPR,

pp. 2877–2885, 2017. 2

[36] S. Messaoud, D. Forsyth, and A. G. Schwing, “Struc-

tural consistency and controllability for diverse coloriza-

tion,” arXiv preprint arXiv:1809.02129, 2018. 2

[37] S. Guadarrama, R. Dahl, D. Bieber, M. Norouzi, J. Shlens,

and K. Murphy, “Pixcolor: Pixel recursive colorization,”

arXiv preprint arXiv:1705.07208, 2017. 2

[38] A. Royer, A. Kolesnikov, and C. H. Lampert, “Probabilistic

image colorization,” arXiv preprint arXiv:1705.04258, 2017.

2

[39] V. G. Jacob and S. Gupta, “Colorization of grayscale images

and videos using a semiautomatic approach,” in Image Pro-

cessing (ICIP), 2009 16th IEEE International Conference

on, pp. 1653–1656, IEEE, 2009. 2

[40] N. Ben-Zrihem and L. Zelnik-Manor, “Approximate nearest

neighbor fields in video,” in Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition, pp. 5233–

5242, 2015. 2

[41] S. Xia, J. Liu, Y. Fang, W. Yang, and Z. Guo, “Robust and au-

tomatic video colorization via multiframe reordering refine-

ment,” in Image Processing (ICIP), 2016 IEEE International

Conference on, pp. 4017–4021, IEEE, 2016. 2

[42] K. Simonyan and A. Zisserman, “Very deep convolutional

networks for large-scale image recognition,” arXiv preprint

arXiv:1409.1556, 2014. 3

[43] X. Wang, R. Girshick, A. Gupta, and K. He, “Non-local

neural networks,” arXiv preprint arXiv:1711.07971, vol. 10,

2017. 3

[44] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for

real-time style transfer and super-resolution,” in European

Conference on Computer Vision, pp. 694–711, Springer,

2016. 4

[45] R. Mechrez, I. Talmi, and L. Zelnik-Manor, “The contextual

loss for image transformation with non-aligned data,” arXiv

preprint arXiv:1803.02077, 2018. 4

[46] Z. Farbman, R. Fattal, D. Lischinski, and R. Szeliski, “Edge-

preserving decompositions for multi-scale tone and detail

manipulation,” in ACM Transactions on Graphics (TOG),

vol. 27, p. 67, ACM, 2008. 4

[47] A. Jolicoeur-Martineau, “The relativistic discriminator: a

key element missing from standard gan,” arXiv preprint

arXiv:1807.00734, 2018. 5

[48] D. Chen, J. Liao, L. Yuan, N. Yu, and G. Hua, “Coherent

online video style transfer,” in Proceedings of the IEEE In-

ternational Conference on Computer Vision, pp. 1105–1114,

2017. 5

[49] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena, “Self-

attention generative adversarial networks,” arXiv preprint

arXiv:1805.08318, 2018. 5

[50] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, “Spec-

tral normalization for generative adversarial networks,”

arXiv preprint arXiv:1802.05957, 2018. 5

[51] “Videvo.” https://www.videvo.net/. 5

[52] M. Marszałek, I. Laptev, and C. Schmid, “Actions in con-

text,” in IEEE Conference on Computer Vision & Pattern

Recognition, 2009. 5

[53] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and

T. Brox, “Flownet 2.0: Evolution of optical flow estimation

with deep networks,” in IEEE conference on computer vision

and pattern recognition (CVPR), vol. 2, p. 6, 2017. 5

[54] M. Ruder, A. Dosovitskiy, and T. Brox, “Artistic style trans-

fer for videos,” in German Conference on Pattern Recogni-

tion, pp. 26–36, Springer, 2016. 5

[55] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and

S. Hochreiter, “Gans trained by a two time-scale update rule

converge to a local nash equilibrium,” in Advances in Neural

Information Processing Systems, pp. 6626–6637, 2017. 6

[56] D. Hasler and S. E. Suesstrunk, “Measuring colorfulness in

natural images,” in Human vision and electronic imaging

VIII, vol. 5007, pp. 87–96, International Society for Optics

and Photonics, 2003. 6

[57] F. Perazzi, J. Pont-Tuset, B. McWilliams, L. Van Gool,

M. Gross, and A. Sorkine-Hornung, “A benchmark dataset

and evaluation methodology for video object segmentation,”

in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pp. 724–732, 2016. 8

8061


