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Abstract

While deep neural networks (DNN) based single image

super-resolution (SISR) methods are rapidly gaining popu-

larity, they are mainly designed for the widely-used bicubic

degradation, and there still remains the fundamental chal-

lenge for them to super-resolve low-resolution (LR) image

with arbitrary blur kernels. In the meanwhile, plug-and-

play image restoration has been recognized with high flex-

ibility due to its modular structure for easy plug-in of de-

noiser priors. In this paper, we propose a principled for-

mulation and framework by extending bicubic degradation

based deep SISR with the help of plug-and-play framework

to handle LR images with arbitrary blur kernels. Specifical-

ly, we design a new SISR degradation model so as to take

advantage of existing blind deblurring methods for blur k-

ernel estimation. To optimize the new degradation induced

energy function, we then derive a plug-and-play algorith-

m via variable splitting technique, which allows us to plug

any super-resolver prior rather than the denoiser prior as a

modular part. Quantitative and qualitative evaluations on

synthetic and real LR images demonstrate that the proposed

deep plug-and-play super-resolution framework is flexible

and effective to deal with blurry LR images.

1. Introduction

Single image super-resolution (SISR), with the goal of

estimating the clean high-resolution (HR) counterpart x of

a given low-resolution (LR) image y, is a classical problem

with highly academic and practical values [3]. Basically, the

relationship between LR and HR images is characterized by

the degradation model which defines how the LR image is

degraded from an HR image. Empirical and theoretical s-

tudies have proven that an accurate degradation model is

crucial for the success of SISR [20, 60]. Thus, it is impor-

tant to first review the degradation model for SISR.

∗Corresponding author.

In fact, most existing SISR methods are designed under

the assumption of certain degradation model. There are two

widely-used degradation models. The first one, which is

acknowledged as a general degradation model for SISR, is

given by

y = (x⊗ k) ↓s + n, (1)

where x⊗k represents the convolution between blur kernel

k and HR image x, ↓s is a subsequent downsampling oper-

ation with scale factor s, and n is additive white Gaussian

noise (AWGN) with noise level σ. Such degradation mod-

el has been extensively studied on developing model-based

optimization methods [13, 19]. However, these methods

mostly assume a priori known blur kernel which in prac-

tice is difficult to estimate. Although several works such

as [41, 53] focus on estimating blur kernel, their source

codes are unfortunately not publicly available.

The second and perhaps the most widely-used one which

we refer to as bicubic degradation is formalized as

y = x ↓s . (2)

Here, unless otherwise specified, ↓s instead represents the

bicubic downsampler (Matlab default function imresize)

with scale factor s. Due to its simplicity, bicubic degra-

dation model has become the benchmark setting to eval-

uate SISR methods [29, 36]. In particular, it greatly fa-

cilities the development of powerful deep neural networks

(DNN) for SISR [2]. However, such a simple degradation

inevitably gives rise to poor results in many practical sce-

narios [20, 65]. Nevertheless, little work has been done on

extending to more realistic degradation models.

Given the above considerations, it is very necessary to

address the following two issues: 1) designing an alterna-

tive degradation model, and 2) extending existing DNN-

based methods for bicubic degradation to the new degrada-

tion model so as to exploit the power of DNN. To this end,

we first propose a simple yet effective degradation model

which assumes the LR image is a bicubicly downsampled,

blurred and noisy version of an HR image. Compared to the
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general degradation model given by Eqn. (1), the proposed

one offers two favorable merits. First, it generalizes the

well-studied bicubic degradation model given by Eqn. (2).

Second, it enables us to adopt the available blind deblurring

methods to estimate the blur kernel from the given LR im-

age. In order to extend DNN-based SISR methods to the

new degradation model, we propose a well-principled deep

plug-and-play super-resolution (DPSR) framework which

integrates DNN-based super-resolver into a variable split-

ting based iterative optimization scheme. It turns out that

the distortion of blur can be effectively handled in Fourier

domain. For this reason, it is possible to deal with arbi-

trary blur kernels, which is one of the main goals in this pa-

per. Moreover, different from existing plug-and-play frame-

work [13] which generally plugs the off-the-shelf Gaussian

denoiser as a modular part, the proposed instead achieves

the plug-in step by applying any existing DNN-based super-

resolvers with only a small modification.

By far, it is worth emphasizing that we mainly focus

on non-blind SISR for arbitrary uniform blur kernels rather

than blind SISR for arbitrary non-uniform blur kernels. On

the one hand, non-blind SISR is important to blind SIS-

R which generally involves alternatively updating the blur

kernel and applying non-blind SISR to update the super-

resolved image. While some recent works attempt to train

DNN to directly estimate the clean image for blind deblur-

ring, their practicability needs further evaluations. On the

other hand, although the non-uniform blur kernel tends to

be a more realistic assumption, it is too complex and still

remains to be a difficult problem for image deblurring [31].

In fact, the arbitrary uniform blur kernel assumption is al-

ready a much better choice than the simple bicubic kernel

for practical applications. Briefly speaking, our work makes

a valuable intermediate step from existing bicubic degrada-

tion based SISR to ultimate blind SISR.

The contribution of this work is summarized as follows:

• A more realistic degradation model than bicubic degra-

dation model for SISR is proposed. It considers arbi-

trary blur kernels and enables to use existing deblur-

ring methods for blur kernel estimation.

• A deep plug-and-play super-resolution framework is

proposed to solve SISR with the new degradation mod-

el. DPSR is applicable beyond bicubic degradation and

can handle LR images with arbitrary blur kernels.

• The proposed DPSR is well-principled as the iterative

scheme aims to solve the new degradation induced en-

ergy function.

• The proposed DPSR extends existing plug-and-play

framework, showing that the plug-and-play prior for

SISR is not limited to Gaussian denoiser.

2. Related work

2.1. DNN­based SISR

1) Bicubic degradation. The first DNN-based SISR

method, termed as SRCNN [17], employs a relatively shal-

low network and follows the previous SISR methods such

as A+ [55] and ScSR [61] to synthesize LR images with

bicubic interpolation. Since then, by fixing the degradation

model to bicubic degradation, some researchers began to

improve SISR performance via DNN from different aspect-

s, including PSNR and SSIM values, efficiency, and percep-

tual visual quality at a large scale factor.

To improve the SISR performance in terms of PSNR and

SSIM, the very deep super-resolution (VDSR) network pro-

posed by Kim et al. [29] shows that the most direct way is

to increase the network depth. However, VDSR operates on

the bicubicly interpolated LR images which hinders the effi-

ciency. To that end, the FSRCNN [18] and ESPCN [50] are

proposed to directly manipulate the LR input and adopt an

upscaling operation at the end of the network. Considering

the fact that the visual results tend to be oversmoothed at

a large scale factor (e.g., 4), VGG [52] loss and generative

adversarial network (GAN) [24] loss are utilized to improve

the perceptual visual quality in [34, 49, 58].

While achieving great success on bicubic degrada-

tion [36, 44, 68], these methods perform poorly on most

of real images due to the mismatch of degradation models.

2) Beyond bicubic degradation. In [20], the authors

pointed out that an accurate estimate of the blur kernel is

more important than sophisticated image prior. Since then,

several attempts have been made to tackle with LR images

beyond bicubic degradation. Zhang et al. [63] proposed

a plug-and-play framework (IRCNN) to solve the energy

function induced by Eqn. (1). Although in theory IRCNN

can handle arbitrary blur kernel (please refer to [13]), the

blur kernel of such degradation model in practice is difficult

to estimate. Zhang et al. [65] proposed a general DNN-

based solution (SRMD) which takes two key degradation

parameters as input. However, SRMD only considers the

Gaussian blur kernels. In [51], the authors proposed a zero-

shot super-resolution (ZSSR) method which trains image-

specific DNN on the testing LR image and can also take the

degradation parameters, such as the estimated blur kernel,

to improve the performance. While showing impressive re-

sults for LR image with internal repetitive structures, ZSSR

is less effective for severely blurred LR image.

As discussed, the above methods have two main draw-

backs. First, they have difficulty in blur kernel estimation.

Second, they are generally designed for Gaussian-like blur

kernel and thus cannot effectively handle severely blurred

LR image. It should be noted that a deep blind SISR method

for motion blur is proposed in [66]. However, it has limited

ability to handle the distortion of arbitrary blur kernels.
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2.2. Plug­and­play image restoration

The plug-and-play image restoration which was first in-

troduced in [15, 57, 69] has attracted significant attention-

s due to its flexibility and effectiveness in handling vari-

ous inverse problems. Its main idea is to unroll the energy

function by variable splitting technique and replace the pri-

or associated subproblem by any off-the-shelf Gaussian de-

noiser. Different from traditional image restoration method-

s which employ hand-crafted image priors, it can implicitly

define the plug-and-play prior by the denoiser. Remarkably,

the denoiser can be learned by DNN with large capability

which would give rise to promising performance.

During the past few years, a flurry of plug-and-play

works have been developed from the following aspect-

s: 1) different variable splitting algorithms, such as half-

quadratic splitting (HQS) algorithm [1], alternating di-

rection method of multipliers (ADMM) algorithm [8],

FISTA [4], and primal-dual algorithm [11, 42]; 2) different

applications, such as Poisson denoising [47], demosaick-

ing [26], deblurring [56], super-resolution [9, 13, 28, 63],

and inpainting [40]; 3) different types of denoiser priors,

such as BM3D [14, 21], DNN-based denoisers [6, 62] and

their combinations [25]; and 4) theoretical analysis on the

convergence from the aspect of fixed point [13, 37, 38] and

Nash equilibrium [10, 16, 45].

To the best of our knowledge, existing plug-and-play im-

age restoration methods mostly treat the Gaussian denoiser

as the prior. We will show that, for the application of plug-

and-play SISR, the prior is not limited to Gaussian denois-

er. Instead, a simple super-resolver prior can be employed

to solve a much more complex SISR problem.

3. Method

3.1. New degradation model

In order to ease the blur kernel estimation, we propose

the following degradation model

y = (x↓s)⊗ k+ n, (3)

where ↓s is the bicubic downsampler with scale factor s.

Simply speaking, Eqn. (3) conveys that the LR image y is

a bicubicly downsampled, blurred and noisy version of a

clean HR image x.

Since existing methods widely use bicubic downsampler

to synthesize or augment LR image, it is a reasonable as-

sumption that bicubicly downsampled HR image (i.e., x↓s)

is also a clean image. Following this assumption, Eqn. (3)

actually corresponds to a deblurring problem followed by a

SISR problem with bicubic degradation. Thus, we can ful-

ly employ existing well-studied deblurring methods to es-

timate k. Clearly, this is a distinctive advantage over the

degradation model given by Eqn. (1).

Once the degradation model is defined, the next step is

to formulate the energy function. According to Maximum

A Posteriori (MAP) probability, the energy function is for-

mally given by

min x

1

2σ2
‖y − (x↓s)⊗ k‖2 + λΦ(x), (4)

where 1

2σ2 ‖y− (x↓s)⊗k‖2 is the data fidelity (likelihood)

term1 determined by the degradation model of Eqn. (3),

Φ(x) is the regularization (prior) term, and λ is the regu-

larization parameter. For discriminative learning method-

s, their inference models actually correspond to an energy

function where the degradation model is implicitly defined

by the training LR and HR pairs. This explains why existing

DNN-based SISR methods trained on bicubic degradation

perform poorly for real images.

3.2. Deep plug­and­play SISR

To solve Eqn. (4), we first adopt the variable splitting

technique to introduce an auxiliary variable z, leading to the

following equivalent constrained optimization formulation:

x̂ = argmin x

1

2σ2
‖y − z⊗ k‖2 + λΦ(x),

subject to z = x↓s . (5)

We then address Eqn. (5) with half quadratic splitting

(HQS) algorithm. Note that other algorithms such as AD-

MM can also be exploited. We use HQS for its simplicity.

Typically, HQS tackles with Eqn. (5) by minimizing the

following problem which involves an additional quadratic

penalty term

Lµ(x, z) =
1

2σ2
‖y−z⊗k‖2+λΦ(x)+

µ

2
‖z−x↓s ‖2, (6)

where µ is the penalty parameter, and a very large µ will

enforce z approximately equals to x↓s. Usually, µ varies in

a non-descending order during the following iterative solu-

tion to Eqn. (6)

{

zk+1 = argmin z‖y − z⊗k‖2 + µσ2‖z− xk ↓s ‖2, (7)

xk+1 = argmin x

µ

2
‖zk+1 − x↓s ‖2 + λΦ(x). (8)

It can be seen that Eqn. (7) and Eqn. (8) are alternating min-

imization problems with respect to z and x, respectively. In

particular, by assuming the convolution is carried out with

circular boundary conditions, Eqn. (7) has a fast closed-

form solution

zk+1 = F−1

(

F(k)F(y) + µσ2F(xk ↓s)
F(k)F(k) + µσ2

)

, (9)

1In order to facilitate and clarify the parameter setting, we empha-

size that, from the Bayesian viewpoint, the data fidelity term should be
1

2σ2
‖y − (x↓s)⊗ k‖2 rather than 1

2
‖y − (x↓s)⊗ k‖2.
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where F(·) and F−1(·) denote the Fast Fourier Transform

(FFT) and inverse FFT, F(·) denotes complex conjugate of

F(·).
To analyze Eqn. (8) from a Bayesian perspective, we

rewrite it as follows

xk+1 = argmin x

1

2(
√

1/µ)2
‖zk+1 − x↓s ‖2 + λΦ(x).

(10)

Clearly, Eqn. (10) corresponds to super-resolving zk+1 with

a scale factor s by assuming zk+1 is bicubicly downsam-

pled from an HR image x, and then corrupted by AWGN

with noise level
√

1/µ. From another viewpoint, Eqn. (10)

solves a super-resolution problem with the following simple

bicubic degradation model

y = x↓s + n. (11)

As a result, one can plug DNN-based super-resolver trained

on the widely-used bicubic degradation with certain noise

levels to replace Eqn. (10). For brevity, Eqn. (8) and E-

qn. (10) can be further rewritten as

xk+1 = SR(zk+1, s,
√

1/µ). (12)

Since the prior term Φ(x) is implicitly defined in SR(·),
we refer to it as super-resolver prior.

So far, we have seen that the two sub-problems given

by Eqn. (7) and Eqn. (8) are relatively easy to solve. In

fact, they also have clear interpretation. On the one hand,

since the blur kernel k is only involved in the closed-form

solution, Eqn. (7) addresses the distortion of blur. In other

words, it pulls the current estimation to a less blurry one.

On the other hand, Eqn. (8) maps the less blurry image to a

more clean HR image. After several alternating iterations,

it is expected that the final reconstructed HR image contains

no blur and noise.

3.3. Deep super­resolver prior

In order to take advantage of the merits of DNN, we

need to specify the super-resolver network which should

take the noise level as input according to Eqn. (12). Inspired

by [23, 64], we only need to modify most of the existing

DNN-based super-resolvers by taking an additional noise

level map as input. Alternatively, one can directly adopt S-

RMD as the super-resolver prior because its input already

contains the noise level map.

Since SRResNet [34] is a well-known DNN-based super-

resolver, in this paper we propose a modified SRResNet,

namely SRResNet+, to plug in the proposed DPSR frame-

work. SRResNet+ differs from SRResNet in several aspect-

s. First, SRResNet+ additionally takes a noise level map M

as input. Second, SRResNet+ increases the number of fea-

ture maps from 64 to 96. Third, SRResNet+ removes the

batch normalization layer [27] as suggested in [58].

Before training a separate SRResNet+ model for each

scale factor, we need to synthesize the LR image and it-

s noise level map from a given HR image. According to

the degradation model given by Eqn. (11), the LR image

is bicubicly downsampled from an HR image, and then cor-

rupted by AWGN with a noise level σ from predefined noise

level range. For the corresponding noise level map, it has

the same spatial size of LR image and all the elements are σ.

Following [65], we set the noise level range to [0, 50]. For

the HR images, we choose the 800 training images from

DIV2K dataset [2].

We adopt Adam algorithm [30] to optimize SRResNet+

by minimizing the ℓ1 loss function. The leaning rate starts

from 10−4, then decreases by half every 5 × 105 iterations

and finally ends once it is smaller than 10−7. The mini-

batch size is set to 16. The patch size of LR input is set

to 48×48. The rotation and flip based data augmentation

is performed during training. We train the models with Py-

Torch on a single GTX 1080 Ti GPU.

Since this work mainly focuses on SISR with arbitrary

blur kernels. We omit the comparison between SRResNet+

and other methods on bicubic degradation. As a simple

comparison, SRResNet+ can outperform SRResNet [34] by

an average PSNR gain of 0.15dB on Set5 [5].

3.4. Comparison with related methods

In this section, we emphasize the fundamental differ-

ences between the proposed DPSR and several closely re-

lated DNN-based methods.

1) Cascaded deblurring and SISR. To super-resolve L-

R image with arbitrary blur kernels, a heuristic method is

to perform deblurring first and then super-resolve the de-

blurred LR image. However, such a cascaded two-step

method suffers from the drawback that the perturbation er-

ror of the first step would be amplified at the second step.

On the contrary, DPSR optimizes the energy function given

by Eqn. (4) in an iterative manner. Thus, DPSR tends to

deliver better performance.

2) Fine-tuned SISR model with more training data. Per-

haps the most straightforward way is to fine-tune existing

bicubic degradation based SISR models with more train-

ing data generated by the new degradation model (i.e., E-

qn. (3)), resulting in the so-called blind SISR. However, the

performance of such methods deteriorates seriously espe-

cially when large complex blur kernels are considered, pos-

sibly because the distortion of blur would further aggravate

the pixel-wise average problem [34]. As for DPSR, it takes

the blur kernel as input and can effectively handle the dis-

tortion of blur via Eqn. (9).

3) Extended SRMD or DPSR with end-to-end training.

Inspired by SRMD [65], one may attempt to extend it by

considering arbitrary blur kernels. However, it is difficult

1674



to sample enough blur kernels to cover the large kernel s-

pace. In addition, it would require a large amount of time

to train a reliable model. By contrast, DPSR only needs to

train the models on the bicubic degradation, thus it involves

much less training time. Furthermore, while SRMD can ef-

fectively handle the simple Gaussian kernels of size 15×15
with many successive convolutional layers, it loses effec-

tiveness to deal with large complex blur kernels. Instead,

DPSR adopts a more concise and specialized modular by

FFT via Eqn. (9) to eliminate the distortion of blur. Alter-

natively, one may take advantage of the structure benefits of

DPSR and resort to jointly training DPSR in an end-to-end

manner. However, we leave this to our future work.

From the above discussions, we can conclude that our

DPSR is well-principled, structurally simple, highly inter-

pretable and involves less training.

4. Experiments

4.1. Synthetic LR images

Following the common setting in most of image restora-

tion literature, we use synthetic data with ground-truth to

quantitatively analyze the proposed DPSR, as well as mak-

ing a relatively fair comparison with other competing meth-

ods.

Blur kernel. For the sake of thoroughly evaluating the ef-

fectiveness of the proposed DPSR for arbitrary blur kernels,

we consider three types of widely-used blur kernels, includ-

ing Gaussian blur kernels, motion blur kernels, and disk

(out-of-focus) blur kernels [12, 59]. The specifications of

the blur kernels are given in Table 1. Some kernel examples

are shown in Fig. 1. Note that the kernel sizes range from

5×5 to 35×35. As shown in Table 2, we further consid-

er Gaussian noise with two different noise levels, i.e., 2.55

(1%) and 7.65 (3%), for scale factor 3.

Table 1. Three different types of blur kernels.

Type # Specification

Gaussian 16

8 isotropic Gaussian kernels with standard devi-

ations uniformly sampled from the interval [0.6,

2], and 8 selected anisotropic Gaussian blur ker-

nels from [65].

Motion 32

8 blur kernels from [35] and their augmented

8 kernels by random rotation and flip; and 16

realistic-looking motion blur kernels generated

by the released code of [7].

Disk 8

8 disk kernels with radius uniformly sampled

from the interval [1.8, 6]. They are generated

by matlab function fspecial(’disk’,r),

where r is the radius.

(a) Gaussian (b) Motion (c) Disk

Fig. 1. Examples of (a) Gaussian blur kernels, (b) motion blur k-

ernels and (c) disk blur kernels.

Parameter setting. In the alternating iterations between

Eqn. (7) and Eqn. (8), we need to set λ and tune µ to ob-

tain a satisfying performance. Setting such parameters has

been considered as a non-trivial task [46]. However, the

parameter setting of DPSR is generally easy with the fol-

lowing two principles. First, since λ is fixed and can be

absorbed into σ, we can instead multiply σ by a scalar
√
λ

and therefore ignore the λ in Eqn. (8). Second, since µ has

a non-descending order during iterations, we can instead

set the
√

1/µ from Eqn. (12) with a non-ascending order

to indirectly determine µ in each iteration. Empirically, a

good rule of thumb is to set λ to 1/3 and exponentially de-

crease
√

1/µ from 49 to a small σ-dependent value (e.g.,

max(2.55, σ)) for a total of 15 iterations.

Compared methods. We compare the proposed DPSR

with six methods, including two representative DNN-based

methods for bicubic degradation (i.e., VDSR [29] and R-

CAN [67]), two cascaded deblurring and SISR method-

s (i.e., IRCNN+RCAN and DeblurGAN+RCAN), and t-

wo specially designed methods for blurry LR images (i.e.,

GFN [66] and ZSSR [51]). To be specific, VDSR is

the first very deep network for SISR; RCAN consists of

more than 400 layers and achieves state-of-the-art perfor-

mance for bicubic degradation; IRCNN is a plug-and-play

method with deep denoiser prior that can handle non-blind

image deblurring; DeblurGAN [32] is a deep blind de-

blurring method based on generative adversarial network

(GAN) [24]; GFN is a DNN-based method for joint blind

motion deblurring and super-resolution; ZSSR is an unsu-

pervised DNN-based method that can super-resolve blurry

and noisy LR images. Note that IRCNN, ZSSR and DP-

SR can take the blur kernel and noise level as input. For a

fair comparison, we modify ZSSR to our new degradation

model.

Quantitative results. The PSNR and SSIM results of dif-

ferent methods for different degradation settings on the col-

or BSD68 dataset [39, 48, 62] are shown in Table 2, from

which we have several observations. First, while RCAN

outperforms VDSR by a large margin for bicubic degra-

dation (see [67]), it has comparable performance to VD-

SR and even bicubic interpolation for the complex degra-

dations settings. Such phenomenon has also been reported

in [51, 65]. Second, after a deblurring step by IRCNN, IRC-

NN+RCAN can significantly improve the PSNR and SSIM

values. Third, DeblurGAN+RCAN and GFN give rise to

poor performance which may be attributed to the limited ca-

pability of successive convolutional layers in handling dis-

tortion of large complex blur. Fourth, ZSSR is less effective

for large complex blur kernels due to the lack of recurrence

property of the blurry LR image. Last, our DPSR achieves

the best performance since it directly optimizes the energy

function for the given degradation and can effectively han-

dle the distortion of blur via Eqn. (9).
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Table 2. Average PSNR and SSIM results of different methods for different degradation settings on the color BSD68 dataset [39, 48, 62].

The best two results are highlighted in red and blue colors, respectively.

Degradation Setting Methods

Scale Kernel Noise
Bicubic VDSR RCAN

IRCNN DeblurGAN
GFN ZSSR DPSR

Factor Type Level +RCAN +RCAN

Gaussian 23.47/0.596 23.36/0.589 23.59/0.603 24.79/0.629 19.36/0.400 – 21.44/0.542 27.28/0.763

×2 Motion 0 19.84/0.449 19.86/.451 19.82/0.448 28.54/0.806 17.46/0.268 – 17.99/0.367 30.05/0.869

Disk 21.85/0.507 21.86/0.508 21.85/0.507 25.48/0.671 19.33/0.370 – 21.25/0.490 28.61/0.816

Gaussian 22.11/0.526 22.03/0.520 22.20/0.532 23.52/0.566 18.18/0.347 – 18.97/0.442 25.22/0.665

Motion 0 18.83/0.424 18.84/0.424 18.81/0.422 25.88/0.699 16.25/0.228 – 16.80/0.348 27.22/0.769

Disk 20.70/0.464 20.70/0.465 20.69/0.464 23.82/0.594 18.28/0.336 – 19.05/0.430 26.19/0.716

Gaussian
2.55

22.05/0.513 21.95/0.507 22.05/0.495 22.95/0.540 17.64/0.195 – 20.52/0.477 23.92/0.595

×3 Motion
(1%)

18.80/0.412 18.81/0.413 18.74/0.390 24.18/0.604 15.55/0.122 – 18.19/0.402 24.94/0.648

Disk 20.65/0.452 20.66/0.453 20.59/0.429 22.33/0.517 16.74/0.142 – 19.88/0.441 23.44/0.567

Gaussian
7.65

21.60/0.436 21.54/0.433 21.01/0.342 22.07/0.463 14.93/0.094 – 20.22/0.407 23.17/0.557

Motion
(3%)

18.58/0.346 18.60/0.350 18.21/0.259 22.47/0.514 13.91/0.065 – 18.07/0.340 23.28/0.564

Disk 20.32/0.380 20.34/0.384 19.81/0.288 21.19/0.483 14.43/0.071 – 19.64/0.373 22.25/0.515

Gaussian 21.18/0.486 21.11/0.482 21.27/0.491 22.61/0.526 17.52/0.329 21.66/0.507 16.83/0.380 24.04/0.604

×4 Motion 0 18.10/0.407 18.11/0.408 18.08/0.406 24.42/0.625 15.68/0.225 17.79/0.398 15.58/0.329 25.69/0.695

Disk 19.86/0.439 19.86/0.440 19.85/0.439 22.72/0.540 17.59/0.321 20.38/0.460 16.91/0.392 24.84/0.649

PSNR/SSIM ×4 (17.25/0.406) (17.12/0.397) (17.37/0.416)

(a) Ground-truth (b) LR (c) Bicubic (d) VDSR (e) RCAN

(18.28/0.472) (15.29/0.227) (17.58/0.437) (16.61/0.374) (19.44/0.577)

(f) IRCNN+RCAN (g) DeblurGAN+RCAN (h) GFN (i) ZSSR (j) DPSR(ours)

Fig. 2. The performance comparison of different methods for scale factor 4 on image “253027” with Gaussian kernel. The blur kernel is

shown on the upper-left corner of the LR image.

17.87/0.510 23.13/0.693 15.44/0.280 17.43/0.493 17.27/0.474 23.75/0.739

22.66/0.640 28.53/0.704 22.58/0.571 23.93/0.677 15.41/0.549 31.35/0.798

(a) RCAN (b) IRCNN+RCAN (c) DeblurGAN+RCAN (d) GFN (e) ZSSR (f) DPSR(ours)

Fig. 3. The performance comparison of different methods for scale factor 4 on image “102061” with motion kernel (first row) and image

“189080” with disk kernel (second row). The blur kernel is shown on the upper-left corner of the super-resolved image by RCAN.
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(a) LR (×4) (b) IRCNN+RCAN (c) ESRGAN (d) IRCNN+ESRGAN (e) RCAN+DeblurGAN (f) DPSRGAN(ours)

Fig. 4. The performance comparison of different methods for scale factor 4 on image “101087” (first row) and image “102061” (second

row). The blur kernel is shown on the upper-left corner of the LR image.

Visual results. Fig. 2 shows the visual comparison of d-

ifferent methods for super-resolving LR image with Gaus-

sian blur by a scale factor of 4. As one can see, VDSR

and RCAN undoubtedly produce unpleasant results due to

the degradation mismatch. DeblurGAN+RCAN generates

very unpleasant artifacts and does not alleviate the blurri-

ness compared to the LR image. GFN does not perform

well and ZSSR is less effective for super-resolving the very

blurry LR image. While IRCNN+RCAN produces better

results than DeblurGAN+RCAN, GFN and ZSSR, it gener-

ates some noise-like artifacts which is possibly introduced

by IRCNN and then amplified by RCAN. In comparison,

our DPSR produces the most visually pleasant results.

Fig. 3 further shows the visual comparison on other t-

wo types of blur kernels. It can be observed that DPSR

consistently gives rise to the best visual results. Particular-

ly, although GFN can deal with the motion blur to some

degree, its visual result is significantly inferior to those of

IRCNN+RCAN and DPSR. The underlying reason is that it

has limited ability to blindly handle the distortion of blur via

successive convolutional layers. We note that other learning

based methods (e.g., [54]) also suffer from such problem.

Convergence. Since our DPSR is a special case of plug-

and-play framework for SISR, one may refer to [10, 45] to

analyze the theoretical convergence. In this paper, we on-

ly provide an empirical evidence to show the convergence

of DPSR. Fig. 5 shows the convergence curves of the pro-

posed DPSR on image “102061” with respect to different

types of blur kernels and different noise levels. In Fig. 5(a),

we fix the noise level to 0 and choose the third kernel for

each kernel type. In Fig. 5(b), we fix the blur kernel to the

third Gaussian kernel and choose three different noise level-

s, including 0, 2.55 and 7.65. It can be observed that DPSR

converges very fast.
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(a) Different types of kernels (b) Different noise levels

Fig. 5. Convergence curves of DPSR on image “102061” with re-

spect to different types of blur kernels and different noise levels.

It is worth pointing out, in order to reduce the compu-

tational cost, our DPSR does not necessarily need iterative

solution for bicubic degradation since our adopted super-

resolver prior is already trained end-to-end on such degra-

dation. Obviously, this is also an advantage over existing

plug-and-play SISR. For the case of other degradations, the

run time of our DPSR mainly depends on the total number

of iterations. On a single GPU, it takes about 1.8 seconds

for DPSR to super-resolve an LR image of size 256×256 by

different scale factors. As a comparison, ZSSR spends 12,

14 and 18 seconds for scale factor 2, 3 and 4, respectively.

In practice, one can tune the total number of iterations to

balance the performance and speed.

Super-resolver prior with GAN. In the above experi-

ments, SRResNet+ is trained by ℓ1 loss. It is natural to

rise the question: does the proposed method perform well

if the super-resolver prior is trained with GAN loss? Fol-

lowing the training strategy of [58], we trained a SRGAN+

model for scale factor 4 by a weighted combination of L1

loss, VGG loss and GAN loss. For convenience, we refer to

the proposed method with SRGAN+ as DPSRGAN. In this

special case, we compare DPSRGAN with IRCNN+RCAN

and four GAN-related methods, including ESRGAN [58],

IRCNN+ESRGAN and RCAN+DeblurGAN.
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(a) LR (b) RCAN (c) SRMD (d) ZSSR (e) DPSR(ours)

Fig. 6. The visual comparison of different methods on “chip” with scale factor 4 (first row), “frog” with scale factor 3 (second row) and

“colour” with scale factor 2 (third row). The estimated blur kernel is shown on the upper-left corner of the LR image. Note that we assume

the noisy image “frog” has no blur.

Fig. 4 shows the visual comparison of different method-

s. It can be seen that directly super-resolving the blurry LR

image by ESRGAN does not improve the visual quality. By

contrast, IRCNN+ESRGAN can deliver much better visual

results as the distortion of blur is handled by IRCNN. Mean-

while, it amplifies the perturbation error of IRCNN, result-

ing in unpleasant visual artifacts. Although DeblurGAN is

designed to handle motion blur, RCAN+DeblurGAN does

not perform as well as expected. In comparison, our DPSR-

GAN produces the most visually pleasant HR images with

sharpness and naturalness.

4.2. LR images with estimated kernel

In this section, we focus on experiments on blurry LR

images with estimated blur kernel. Such experiments can

help to evaluate the feasibility of the new degradation mod-

el, the practicability and kernel sensitivity of the proposed

DPSR. It is especially noteworthy that we do not know the

HR ground-truth of the LR images.

Fig. 6 shows the visual comparison with state-of-the-

art SISR methods (i.e., RCAN [67], SRMD [63] and

ZSSR [51]) on classical image “chip” [22], noisy image

“frog” [33] and blurry image “colour” [43]. For the “chip”

and “colour”, the blur kernel is estimated by [43]. For the

noisy “frog”, we assume it has no blur and directly adopt

our super-resolver prior to obtain the HR image. Note that

once the blur kernel is estimated, our DPSR can reconstruct

HR images with different scale factors, whereas SRMD and

ZSSR with Eqn. (1) need to estimate a separate blur kernel

for each scale factor.

From Fig. 6, we can observe that RCAN has very limited

ability to deal with blur and noise because of its oversimpli-

fied bicubic degradation model. With a more general degra-

dation model, SRMD and ZSSR yield better results than

RCAN on “chip” and “frog”. However, they cannot recover

the latent HR image for the blurry image “colour” which

is blurred by a large complex kernel. In comparison, our

DPSR gives rise to the most visually pleasant results. As a

result, our new degradation model is a feasible assumption

and DPSR is an attractive SISR method as it can handle a

wide variety of degradations.

5. Conclusion

In this paper, we proposed a well-principled deep plug-

and-play super-resolution method for LR image with arbi-

trary blur kernels. We first design an alternative degradation

model which can benefit existing blind deblurring methods

for kernel estimation. We then solve the corresponding en-

ergy function via half quadratic splitting algorithm so as to

exploit the merits of plug-and-play framework. It turns out

we can explicitly handled the distortion of blur by a special-

ized modular. Such a distinctive merit actually enables the

proposed method to deal with arbitrary blur kernels. It also

turns out that we can plug super-resolver prior rather than

denoiser prior into the plug-and-play framework. As such,

we can fully exploit the advances of existing DNN-based

SISR methods to design and train the super-resolver prior.

Extensive experimental results demonstrated the feasibility

of the new degradation model and effectiveness of the pro-

posed method for super-resolving LR images with arbitrary

blur kernels.
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