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Abstract

Despite deep end-to-end learning methods have shown

their superiority in removing non-uniform motion blur,

there still exist major challenges with the current

multi-scale and scale-recurrent models: 1) Deconvolu-

tion/upsampling operations in the coarse-to-fine scheme re-

sult in expensive runtime; 2) Simply increasing the model

depth with finer-scale levels cannot improve the quality of

deblurring. To tackle the above problems, we present a

deep hierarchical multi-patch network inspired by Spatial

Pyramid Matching to deal with blurry images via a fine-to-

coarse hierarchical representation. To deal with the perfor-

mance saturation w.r.t. depth, we propose a stacked version

of our multi-patch model. Our proposed basic multi-patch

model achieves the state-of-the-art performance on the Go-

Pro dataset while enjoying a 40× faster runtime compared

to current multi-scale methods. With 30ms to process an

image at 1280×720 resolution, it is the first real-time deep

motion deblurring model for 720p images at 30fps. For

stacked networks, significant improvements (over 1.2dB)

are achieved on the GoPro dataset by increasing the net-

work depth. Moreover, by varying the depth of the stacked

model, one can adapt the performance and runtime of the

same network for different application scenarios.

1. Introduction

The goal of non-uniform blind image deblurring is to re-

move the undesired blur caused by the camera motion and

the scene dynamics [14, 23, 16]. Prior to the success of deep

learning, conventional deblurring methods used to employ a

variety of constraints or regularizations to approximate the

motion blur filters, involving an expensive non-convex non-

linear optimization. Moreover, the commonly used assump-

tion of spatially-uniform blur kernel is overly restrictive, re-

sulting in a poor deblurring of complex blur patterns.

Deblurring methods based on Deep Convolutional Neu-

ral Networks (CNNs) [9, 20] learn the regression between a

blurry input image and the corresponding sharp image in an
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Figure 1. The PSNR vs. runtime of state-of-the-art deep learning

motion deblurring methods and our method on the GoPro dataset

[14]. The blue region indicates real-time inference, while the red

region represents high performance motion deblurring (over 30

dB). Clearly, our method achieves the best performance at 30 fps

for 1280×720 images, which is 40× faster than the very recent

method [23]. A stacked version of our model further improves the

performance at a cost of somewhat increased runtime.

end-to-end manner [14, 23]. To exploit the deblurring cues

at different processing levels, the “coarse-to-fine” scheme

has been extended to deep CNN scenarios by a multi-scale

network architecture [14] and a scale-recurrent architecture

[23]. Under the “coarse-to-fine” scheme, a sharp image is

gradually restored at different resolutions in a pyramid. Nah

et al. [14] demonstrated the ability of CNN models to re-

move motion blur from multi-scale blurry images, where a

multi-scale loss function is devised to mimic conventional

coarse-to-fine approaches. Following a similar pipeline,

Tao et al. [23] share network weights across scales to im-

prove training and model stability, thus achieving highly ef-

fective deblurring compared with [14]. However, there still

exist major challenges in deep deblurring:

• Under the coarse-to-fine scheme, most networks use a

large number of training parameters due to large filter

sizes. Thus, the multi-scale and scale-recurrent meth-

ods result in an expensive runtime (see Fig. 1) and

struggle to improve deblurring quality.

• Increasing the network depth for very low-resolution

input in multi-scale approaches does not seem to im-

prove the deblurring performance [14].
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Figure 2. Our proposed Deep Multi-Patch Hierarchical Network (DMPHN). As the patches do not overlap with each other, they may cause

boundary artifacts which are removed by the consecutive upper levels of our model. Symbol + is a summation akin to residual networks.

In this paper, we address the above challenges with the

multi-scale and scale-recurrent architectures. We inves-

tigate a new scheme which exploits the deblurring cues

at different scales via a hierarchical multi-patch model.

Specifically, we propose a simple yet effective multi-level

CNN model called Deep Multi-Patch Hierarchical Network

(DMPHN) which uses multi-patch hierarchy as input. In

this way, the residual cues from deblurring local regions

are passed via residual-like links to the next level of net-

work dealing with coarser regions. Feature aggregation

over multiple patches has been used in image classification

[11, 3, 13, 8]. For example, [11] proposes Spatial Pyramid

Matching (SPM) which divides images into coarse-to-fine

grids in which histograms of features are computed. In [8],

a second-order fine-grained image classification model uses

overlapping patches for aggregation. Sun et al. [22] learned

a patch-wise motion blur kernel through a CNN for restora-

tion via an expensive energy optimization.

The advantages of our network are twofold: 1) As the in-

puts at different levels have the same spatial resolution, we

can apply residual-like learning which requires small filter

sizes and leads to a fast inference; 2) We use an SPM-like

model which is exposed to more training data at the finest

level due to relatively more patches available for that level.

In addition, we have observed a limitation to stacking
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Conv. Feature
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Direct Conn.

Figure 3. Comparison between different network architectures (a)

multi-scale [14], (b) scale-recurrent [23] and (c) our hierarchical

multi-patch architecture. We do not employ any skip or recurrent

connections which simplifies our model. Best viewed in color.

depth on multi-scale and multi-patch models, thus increas-

ing the model depth by introducing additional coarser or

finer grids cannot improve the overall deblurring perfor-

mance of known models. To address this issue, we present

two stacked versions of our DMPHN, whose performance is

higher compared to current state-of-the-art deblurring meth-

ods. Our contributions are summarized below:

I. We propose an end-to-end CNN hierarchical model

akin to Spatial Pyramid Matching (SPM) that performs

deblurring in the fine-to-coarse grids thus exploiting

multi-patch localized-to-coarse operations. Each finer

level acts in the residual manner by contributing its

residual image to the coarser level thus allowing each

level of network focus on different scales of blur.

II. We identify the limitation to stacking depth of current

deep deblurring models and introduce novel stacking

approaches which overcome this limitation.

III. We perform baseline comparisons in the common

testbed (where possible) for fair comparisons.

IV. We investigate the influence of weight sharing between

the encoder-decoder pairs across hierarchy levels, and

we propose a memory-friendly variant of DMPHN.

Our experiments will demonstrate clear benefits of our

SPM-like model in motion deblurring. To the best of our

knowledge, our CNN model is the first multi-patch take on

blind motion deblurring and DMPHN is the first model that

supports deblurring of 720p images real-time (at 30fps).

2. Related Work

Conventional image deblurring methods [1, 5, 24, 12, 17,

6, 4, 19] fail to remove non-uniform motion blur due to the

use of spatially-invariant deblurring kernel. Moreover, their

complex computational inference leads to long processing

times, which cannot satisfy the ever-growing needs for real-

time deblurring.
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Deep Deblurring. Recently, CNNs have been used in non-

uniform image deblurring to deal with the complex motion

blur in a time-efficient manner [25, 22, 14, 18, 15, 21]. Xu

et al. [25] proposed a deconvolutional CNN which removes

blur in non-blind setting by recovering a sharp image given

the estimated blur kernel. Their network uses separable ker-

nels which can be decomposed into a small set of filters.

Sun et al. [22] estimated and removed a non-uniform mo-

tion blur from an image by learning the regression between

30×30 image patches and their corresponding kernels. Sub-

sequently, the conventional energy-based optimization is

employed to estimate the latent sharp image.

Su et al. [21] presented a deep learning framework to

process blurry video sequences and accumulate informa-

tion across frames. This method does not require spatially-

aligned pairs of samples. Nah et al. [14] exploited a multi-

scale CNN to restore sharp images in an end-to-end fashion

from images whose blur is caused by various factors. A

multi-scale loss function is employed to mimic the coarse-

to-fine pipeline in conventional deblurring approaches.

Recurrent Neural Network (RNN) is a popular tool em-

ployed in deblurring due to its advantage in sequential in-

formation processing. A network consisting of three deep

CNNs and one RNN, proposed by [26], is a prominent ex-

ample. The RNN is applied as a deconvolutional decoder

on feature maps extracted by the first CNN module. An-

other CNN module learns weights for each layer of RNN.

The last CNN module reconstructs the sharp image from

deblurred feature maps. Scale-Recurrent Network (SRN-

DeblurNet) [23] uses ConvLSTM cells to aggregate feature

maps from coarse-to-fine scales. This shows the advantage

of RNN units in non-uniform image deblurring task.

Generative Adversarial Nets (GANs) have also been em-

ployed in deblurring due to their advantage in preserving

texture details and generating photorealistic images. Kupyn

et al. [10] presented a conditional GAN which produces

high-quality delburred images via the Wasserstein loss.

3. Our Framework

In this paper, we propose to exploit the multi-patch hi-

erarchy for efficient and effective blind motion deblurring.

The overall architecture of our proposed DMPHN network

is shown in Fig. 2 fro which we use the (1-2-4-8) model (ex-

plained in Sec. 3.2) as an example. Our network is inspired

by coarse-to-fine Spatial Pyramid Matching [11], which has

been used for scene recognition [8] to aggregate multiple

image patches for better performance. In contrast to the

expensive inference in multi-scale and scale-recurrent net-

work models, our approach uses residual-like architecture,

thus requiring small-size filters which result in fast process-

ing. The differences between [14, 23] and our network ar-

chitecture are illustrated in Fig. 3. Despite our model uses

a very simple architecture (skip and recurrent connections

Figure 4. The architecture and layer configurations of our (a) de-

coder and (b) encoder.

have been removed), it is very effective. In contrast to [14]

which uses deconvolution/upsampling links, we use opera-

tions such as feature map concatenations, which are possi-

ble due to the multi-patch setup we propose.

3.1. Encoderdecoder Architecture

Each level of our DMPHN network consists of one en-

coder and one decoder whose architecture is illustrated in

Fig. 4. Our encoder consists of 15 convolutional layers, 6

residual links and 6 ReLU units. The layers of decoder and

encoder are identical except that two convolutional layers

are replaced by deconvolutional layers to generate images.

The parameters of our encoder and decoder amount to

3.6 MB due to residual nature of our model which con-

tributes significantly to the fast deblurring runtime. By con-

trast, the multi-scale deblurring network in [14] has 303.6

Mb parameters which results in the expensive inference.

3.2. Network Architecture

The overall architecture of our DMPHN network is de-

picted in Fig. 2, in which we use the (1-2-4-8) model for

illustration purposes. Notation (1-2-4-8) indicates the num-

bers of image patches from the coarsest to the finniest level

i.e., a vertical split at the second level, 2 × 2 = 4 splits at

the third level, and 2× 4 = 8 splits at the fourth level.

We denote the initial blurry image input as B1, while

Bij is the j-th patch at the i-th level. Moreover, Fi and Gi

are the encoder and decoder at level i, Cij is the output of

Gi for Bij , and Sij represents the output patches from Gi.

Each level of our network consists of an encoder-decoder

pair. The input for each level is generated by divid-

ing the original blurry image input B1 into multiple non-

overlapping patches. The output of both encoder and de-

coder from lower level (corresponds to finer grid) will be

added to the upper level (one level above) so that the top

level contains all information inferred in the finer levels.

Note that the numbers of input and output patches at each

level are different as the main idea of our work is to make

the lower level focus on local information (finer grid) to pro-

duce residual information for the coarser gird (obtained by

concatenating convolutional features).
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Figure 5. The architecture of stacking network. (a) Stack-DMPHN. (b) Stack-VMPHN. (c) The information flow for two different stacking

approaches. Note that the units in both stacking networks have (1-2-4) multi-patch hierarchical architecture. The model size of VMPHN

unit is 2× as large as DMPHN unit.

Consider the (1-2-4-8) variant as an example. The de-

blurring process of DMPHN starts at the bottom level 4. B1

is sliced into 8 non-overlapping patches B4,j , j=1, · · · , 8,

which are fed into the encoder F4 to produce the following

convolutional feature representation:

C4,j = F4(B4,j), j ∈ {1...8}. (1)

Then, we concatenate adjacent features (in the spatial

sense) to obtain a new feat. representation C∗

4,j , which is

of the same size as the conv. feat. representation at level 3:

C
∗

4,j = C4,2j−1 ⊕C4,2j , j ∈ {1...4}, (2)

where ⊕ denotes the concatenation operator. The concate-

nated feature representation C
∗

4,j is passed through the en-

coder G4 to produce S4,j = G4(C
∗

4,j).
Next, we move one level up to level 3. The input of F3

is formed by summing up S4,j with the sliced patches B3,j .

Once the output of F3 is produced, we add to it C∗

4,j :

C3,j = F3(B3,j + S4,j) +C
∗

4,j , j ∈ {1...4}. (3)

At level 3, we concatenate the feature representation of

level 3 to obtain C
∗

3,j and pass it through G3 to obtain S3,j :

C
∗

3,j = C3,2j−1 ⊕C3,2j , j ∈ {1, 2}, (4)

S3,j = G3(C
∗

3,j), j ∈ {1, 2}. (5)

Note that features at all levels are concatenated along

spatial dimension: imagine neighboring patches being con-

catenated to form a larger “image”.

At level 2, our network takes two image patches B2,1 and

B2,2 as input. We update B2,j so that B2,j :=B2,j + S3,j

and pass it through F2:

C2,j = F2(B2,j + S3,j) +C
∗

3,j , j ∈ {1, 2}, (6)

C
∗

2
= C2,1 ⊕C2,2. (7)

The residual map at level 2 is given by:

S2 = G2(C
∗

2
). (8)

At level 1, the final deblurred output S1 is given by:

C1 = F1(B1 + S2) +C
∗

2
, S1 = G1(C1). (9)

Different from approaches [14, 23] that evaluate the

Mean Square Error (MSE) loss at each level, we evaluate

the MSE loss only at the output of level 1 (which resembles

res. network). The loss function of DMPHN is given as:

L =
1

2
‖S1 −G‖2F , (10)

where G denotes the ground-truth sharp image. Due to the

hierarchical multi-patch architecture, our network follows

the principle of residual learning: the intermediate outputs

at different levels Si capture image statistics at different

scales. Thus, we evaluate the loss function only at level 1.

We have investigated the use of multi-level MSE loss, which

forces the outputs at each level to be close to the ground

truth image. However, as expected, there is no visible per-

formance gain achieved by using the multi-scale loss.
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Figure 6. Deblurring results. Red block contains the blurred subject, blue and green are the results for [14] and [23], respectively, yellow

block indicates our result. As can be seen, our method produces the sharpest and most realistic facial details.

3.3. Stacked MultiPatch Network

As reported by Nah et al. [14] and Tao et al. [23], adding

finer network levels cannot improve the deblurring perfor-

mance of the multi-scale and scale-recurrent architectures.

For our multi-patch network, we have also observed that di-

viding the blurred image into ever smaller grids does not

further improve the deblurring performance. This is mainly

due to coarser levels attaining low empirical loss on the

training data fast thus excluding the finest levels from con-

tributing their residuals.

In this section, we propose a novel stacking paradigm for

deblurring. Instead of making the network deeper vertically

(adding finer levels into the network model, which increases

the difficulty for a single worker), we propose to increase

the depth horizontally (stacking multiple network models),

which employs multiple workers (DMPHN) horizontally to

perform deblurring.

Network models can be cascaded in numerous ways.

In Fig. 5, we provide two diagrams to demonstrate the

proposed models. The first model, called Stack-DMPHN,

stacks multiple “bottom-top” DMPHNs as shown in Fig. 5

(top). Note that the output of sub-model i− 1 and the input

of sub-model i are connected, which means that for the op-

timization of sub-model i, output from the sub-model i− 1
is required. All intermediate features of sub-model i − 1
are passed to sub-model i. The MSE loss is evaluated at the

output of every sub-model i.

Moreover, we investigate a reversed direction of infor-

mation flow, and propose a Stacked v-shape “top-bottom-

top” multi-patch hierarchical network (Stack-VMPHN). We

will show in our experiments that the Stack-VMPHN out-

performs DMPHN. The architecture of Stack-VMPHN is

shown in Fig. 5 (bottom). We evaluate the MSE loss at the

output of each sub-model of Stack-VMPHN.

The Stack-VMPHN is built from our basic DMPHN

units and it can be regarded as a reversed version of

Stack(2)-DMPHN (2 stands for stacking of two sub-

models). In Stack-DMPHN, processing starts from the bot-

tom level and ends at the top-level, then the output of the

top-level is forwarded to the bottom level of next model.

However, VMPHN begins from the top level, reaches the

bottom level, and then it proceeds back to the top level.

The objective to minimize for both Stack-DMPHN and

Stack-VMPHN is simply given as:

L =
1

2

N∑

i=1

‖Si −G‖2F , (11)

where N is the number of sub-models used, Si is the output

of sub-model i, and G is the ground-truth sharp image.

Our experiments will illustrate that these two stacked

networks improve the deblurring performance. Although

our stacked architectures use DMPHN units, we believe

they are generic frameworks–other deep deblurring meth-

ods can be stacked in the similar manner to improve their

performance. However, the total processing time may be

unacceptable if a costly deblurring model is employed for

the basic unit. Thanks to fast and efficient DMPHN units,

we can control the runtime and size of stacking networks

within a reasonable range to address various applications.

3.4. Network Visualization

We visualize the outputs of our DMPHN unit in Fig. 7

to analyze its intermediate contributions. As previously

explained, DMPHN uses the residual design. Thus, finer

levels contain finer but visually less important information

compared to the coarser levels. In Fig. 7, we illustrate out-

puts Si of each level of DMPHN (1-2-4-8). The information

contained in S4 is the finest and most sparse. The outputs

become less sparse, sharper and richer in color as we move

up level-by-level.

Figure 7. Outputs Si for different levels of DMHPN(1-2-4-8). Im-

ages from right to left visualize bottom level S4 to top level S1.
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For the stacked model, the output of every sub-model is

optimized level-by-level, which means the first output has

the poorest quality and the last output achieves the best per-

formance. Fig. 8 presents the outputs of Stack(3)-DMPHN

(3 sub-models stacked together) to demonstrate that each

sub-model gradually improves the quality of deblurring.

Figure 8. Outputs of different sub-models of Stack(3)-DMHPN.

From left to right are the outputs of M1 to M3. The clarity of

results improves level-by-level. We observed the similar behavior

for Stack-VMPHN (not shown for brevity).

3.5. Implementation Details

All our experiments are implemented in PyTorch and

evaluated on a single NVIDIA Tesla P100 GPU. To train

DMPHN, we randomly crop images to 256×256 pixel size.

Subsequently, we extract patches from the cropped images

and forward them to the inputs of each level. The batch size

is set to 6 during training. The Adam solver [7] is used to

train our models for 3000 epochs. The initial learning rate is

set to 0.0001 and the decay rate to 0.1. We normalize image

to range [0, 1] and subtract 0.5.

Table 1. Quantitative analysis of our model on the GoPro dataset

[14]. Size and Runtime are expressed in MB and seconds. The re-

ported time is the CNN runtime (writing generated images to disk

is not considered). Note that we employ (1-2-4) hierarchical unit

for both Stack-DMPHN and Stack-VMPHN. We did not investi-

gate deeper stacking networks due to the GPU memory limits and

long training times.

Models PSNR SSIM Size Runtime

Sun et al. [22] 24.64 0.8429 54.1 12000

Nah et al. [14] 29.23 0.9162 303.6 4300

Zhang et al. [26] 29.19 0.9306 37.1 1400

Tao et al. [23] 30.10 0.9323 33.6 1600

DMPHN(1) 28.70 0.9131 7.2 5

DMPHN(1-2) 29.77 0.9286 14.5 9

DMPHN(1-1-1) 28.11 0.9041 21.7 12

DMPHN(1-2-4) 30.21 0.9345 21.7 17

DMPHN(1-4-16) 29.15 0.9217 21.7 92

DMPHN(1-2-4-8) 30.25 0.9351 29.0 30

DMPHN(1-2-4-8-16) 29.87 0.9305 36.2 101

DMPHN 30.21 0.9345 21.7 17

Stack(2)-DMPHN 30.71 0.9403 43.4 37

Stack(3)-DMPHN 31.16 0,9451 65.1 233

Stack(4)-DMPHN 31.20 0.9453 86.8 424

VMPHN 30.90 0.9419 43.4 161

Stack(2)-VMPHN 31.50 0.9483 86.8 552

Table 2. The baseline performance of multi-scale and multi-patch

methods on the GoPro dataset [14]. Note that DMSN(1) and DM-

PHN(1) are in fact the same model.

Models PSNR SSIM Runtime

Nah et al. [14] 29.23 0.9162 4300

DMSN(1)
28.70 0.9131 4

DMPHN(1)

DMSN(2) 28.82 0.9156 21

DMPHN(1-2) 29.77 0.9286 9

DMSN(3) 28.97 0.9178 27

DMPHN(1-2-4) 30.21 0.9345 17

4. Experiments

4.1. Dataset

We train/evaluate our methods on several versions of the

GoPro dataset [14] and the VideoDeblurring dataset [21].

GoPro dataset [14] consists of 3214 pairs of blurred and

clean images extracted from 33 sequences captured at

720×1280 resolution. The blurred images are generated

by averaging varying number (7–13) of successive latent

frames to produce varied blur. For a fair comparison, we

follow the protocol in [14], which uses 2103 image pairs

for training and the remaining 1111 pairs for testing.

VideoDeblurring dataset [21] contains videos captured by

various devices, such as iPhone, GoPro and Nexus. The

quantitative part has 71 videos. Every video consists of 100

frames at 720×1280 resolution. Following the setup in [21],

we use 61 videos for training and the remaining 10 videos

for testing. In addition, we evaluate the model trained on the

GoPro dataset[14] on the VideoDeblurring dataset to evalu-

ate the generalization ability of our methods.

4.2. Evaluation Setup and Results

We feed the original high-resolution 720×1280 pixel im-

ages into DMPHN for performance analysis. The PSNR,

SSIM, model size and runtime are reported in Table 1 for

an in-depth comparison with competing state-of-the-art mo-

tion deblurring models. For stacking networks, we employ

(1-2-4) multi-patch hierarchy in every model unit consider-

ing the runtime and difficulty of training.

Performance. As illustrated in Table 1, our proposed DM-

PHN outperforms other competing methods according to

PSNR and SSIM, which demonstrates the superiority of

non-uniform blur removal via the localized information our

model uses. The deepest DMPHN we trained and evaluated

is (1-2-4-8-16) due to the GPU memory limitation. The best

performance is obtained with (1-2-4-8) model, for which

PSNR and SSIM are higher compared to all current state-

of-the-art models. Note that our model is simpler than other

competing approaches e.g., we do not use recurrent units.

We note that patches that are overly small (below 1/16 size)

are not helpful in removing the motion blur.
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Table 3. Quantitative analysis (PSNR) on the VideoDeblurring dataset [21] for models trained on GoPro dataset. PSDeblur means using

Photoshop CC 2015. We select the “single frame” version of approach [21] for fair comparisons.

Methods #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 Average

Input 24.14 30.52 28.38 27.31 22.60 29.31 27.74 23.86 30.59 26.98 27.14

PSDeblur 24.42 28.77 25.15 27.77 22.02 25.74 26.11 19.75 26.48 24.62 25.08

WFA [2] 25.89 32.33 28.97 28.36 23.99 31.09 28.58 24.78 31.30 28.20 28.35

Su et al. [21] 25.75 31.15 29.30 28.38 23.63 30.70 29.23 25.62 31.92 28.06 28.37

DMPHN 29.89 33.35 31.82 31.32 26.35 32.49 30.51 27.11 34.77 30.02 30.76

Stack(2)-DMPHN 30.19 33.98 32.16 31.82 26.57 32.94 30.73 27.45 35.11 30.41 31.22

Stack(3)-DMPHN 30.48 34.31 32.24 32.09 26.77 33.08 30.84 27.51 35.24 30.57 31.39

Stack(4)-DMPHN 30.48 34.41 32.25 32.10 26.87 33.12 30.86 27.55 35.25 30.60 31.43

Table 4. Quantitative results for the weight sharing on GoPro [14].

Models PSNR SSIM Size (MB)

DMPHN(1-2) 29.77 0.9286 14.5

DMPHN(1-2)-WS 29.22 0.9210 7.2

DMPHN(1-2-4) 30.21 0.9343 21.7

DMPHN(1-2-4)-WS 29.56 0.9257 7.2

DMPHN(1-2-4-8) 30.25 0.9351 29.0

DMPHN(1-2-4-8)-WS 30.04 0.9318 7.2

Moreover, stacked variant Stack(4)-DMPHN outper-

formed shallower model DMPHN by 1% PSNR, VMPHN

outperformed DMPHN by 0.7% PSNR while stacked vari-

ant Stack(2)-VMPHN outperformed shallower DMPHN by

∼1.3% PSNR. SSIM scores indicate the same trend.

The deblurred images from the GoPro dataset are shown

in Fig. 6 and 9. In Fig. 6, we show the deblurring perfor-

mance of different models for an image containing heavy

motion blur. We zoom in the main object for clarity. In

Fig. 9, we select the images of different scenes to demon-

strate the advantages of our model. As can be seen, our

DMPHN produces the sharpest details in all cases.

Runtime. In addition to the superior PSNR and SSIM of

our model, to the best of our knowledge, DMPHN is also

the first deep deblurring model that can work in real-time.

For example, DMPHN (1-2-4-8) takes 30ms to process a

720×1280 image, which means it supports real-time 720p

image deblurring at 30fps. However, there are runtime over-

heads related to I/O operations, so the real-time deblurring

application requires fast transfers from a video grabber to

GPU, larger GPU memory and/or an SSD drive, etc.

The following factors contribute to our fast runtime:

i) shallower encoder-decoder with smal-size convolutional

filters; ii) removal of unnecessary links e.g., skip or

recurrent connections; iii) reduced number of upsam-

pling/deconvolution between convolutional features of dif-

ferent levels.

Baseline Comparisons. Although our model has a much

better performance than the multi-scale model [14], it is

an unfair comparison as network architectures of our pro-

posed model and [14] differ significantly. Compared with

[14], which uses over 303.6MB parameters, we apply much

shallower CNN encoders and decoders with the model size

10× smaller. Thus, we create a Deep Multi-Scale Network

(DMSN) that uses our encoder-decoder following the setup

in [14] for the baseline comparison (sanity check) between

multi-patch and multi-scale methods. As shown in Table 2,

the PSNR of DMSN is worse than [14], which is expected

due to our simplified CNN architecture. Compared with our

DMPHN, the best result obtained with DMSN is worse than

the DMPHN(1-2) model. Due to the common testbed, we

argue that the performance of DMSN and DMHPN reported

by us is the fair comparison of the multi-patch hierarchical

and multi-scale models [14].

Weight Sharing. Below, we investigate weight sharing be-

tween the encoder-decoder pairs of all levels of our network

to reduce the number of parameters in our model. Table 4

shows that weight sharing results in a slight loss of perfor-

mance but reduces the number of parameters significantly.

5. Conclusions

In this paper, we address the challenging problem of non-

uniform motion deblurring by exploiting the multi-patch

SPM- and residual-like model as opposed to the widely used

multi-scale and scale-recurrent architectures. Based on oru

proposition, we devised an end-to-end deep multi-patch hi-

erarchical deblurring network. Compared against existing

deep deblurring frameworks, our model achieves the state-

of-the-art performance (according to PSNR and SSIM) and

is able to run at 30fps for 720p images. Our work pro-

vides an insight for subsequent deep deblurring works re-

garding efficient deblurring. Our stacked variants Stack(4)-

DMPHN and Stack(2)-VMPHN further improved results

over both shallower DMPHN and competing approaches

while being ∼4× faster than the latter methods. Our stack-

ing architecture appears to have overcome the limitation to

stacking depth which other competing approaches exhibit.
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Figure 9. Deblurring performance on the blurry images from the GoPro and the VideoDeblurring datasets. The first column contains the

original blurry images, the second column is the result of [14], the third column is the result of [23]. Our results are presented in the last

column. As can be seen, our model achieves the best performance across different scenes.

5985



References

[1] Sunghyun Cho and Seungyong Lee. Fast motion deblurring.

ACM Transactions on graphics, 28(5):145:1–145:8, 2009. 2

[2] M. Delbracio and G. Sapiro. Hand-held video deblurring via

efficient fourier aggregation. IEEE Transactions on Compu-

tational Imaging, 1(4):270–283, Dec 2015. 7

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Spatial pyramid pooling in deep convolutional networks for

visual recognition. In Proc. Eur. Conf. Comp. Vis., pages

346–361. Springer, 2014. 2

[4] Tae Hyun Kim and Kyoung Mu Lee. Generalized video de-

blurring for dynamic scenes. In Proc. IEEE Conf. Comp. Vis.

Patt. Recogn., pages 5426–5434, 2015. 2

[5] Jiaya Jia. Single image motion deblurring using trans-

parency. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., pages

1–8. IEEE, 2007. 2

[6] Jiaya Jia. Mathematical models and practical solvers for uni-

form motion deblurring., 2014. 2

[7] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 6

[8] Piotr Koniusz, Hongguang Zhang, and Fatih Porikli. A

deeper look at power normalizations. In Proc. IEEE Conf.

Comp. Vis. Patt. Recogn., pages 5774–5783, 2018. 2, 3

[9] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In Proc. Adv. Neural Inf. Process. Syst., pages 1097–

1105, 2012. 1

[10] Orest Kupyn, Volodymyr Budzan, Mykola Mykhailych,

Dmytro Mishkin, and Jiri Matas. Deblurgan: Blind mo-

tion deblurring using conditional adversarial networks. arXiv

preprint arXiv:1711.07064, 2017. 3

[11] Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. Be-

yond bags of features: Spatial pyramid matching for recog-

nizing natural scene categories. In Proc. IEEE Conf. Comp.

Vis. Patt. Recogn., pages 2169–2178. IEEE, 2006. 2, 3

[12] Anat Levin. Blind motion deblurring using image statis-

tics. In Proc. Adv. Neural Inf. Process. Syst., pages 841–848,

2007. 2

[13] Xin Lu, Zhe Lin, Xiaohui Shen, Radomir Mech, and James Z

Wang. Deep multi-patch aggregation network for image

style, aesthetics, and quality estimation. In Proc. IEEE Conf.

Comp. Vis. Patt. Recogn., pages 990–998, 2015. 2

[14] Seungjun Nah, Tae Hyun Kim, and Kyoung Mu Lee. Deep

multi-scale convolutional neural network for dynamic scene

deblurring. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn.,

pages 257 – 265, 2017. 1, 2, 3, 4, 5, 6, 7, 8

[15] Thekke Madam Nimisha, Akash Kumar Singh, and A. N.

Rajagopalan. Blur-invariant deep learning for blind-

deblurring. In Proc. IEEE Int. Conf. Comp. Vis., pages 4762–

4770, 2017. 3

[16] Liyuan Pan, Yuchao Dai, Miaomiao Liu, and Fatih Porikli.

Simultaneous stereo video deblurring and scene flow estima-

tion. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., pages

6987–6996. IEEE, 2017. 1

[17] A. N. Rajagopalan and Rama Chellappa. Motion Deblurring:

Algorithms and Systems. Cambridge University Press, 2014.

2

[18] Christian Schuler, Michael Hirsch, Stefan Harmeling, and

Bernhard Scholkopf. Learning to deblur. IEEE Trans. Pat-

tern Anal. Mach. Intell., (7):1439–1451, 2016. 3

[19] Anita Sellent, Carsten Rother, and Stefan Roth. Stereo video

deblurring. In Proc. Eur. Conf. Comp. Vis., pages 558–575.

Springer, 2016. 2

[20] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014. 1

[21] Shuochen Su, Mauricio Delbracio, Jue Wang, Guillermo

Sapiro, Wolfgang Heidrich, and Oliver Wang. Deep video

deblurring for hand-held cameras. In Proc. IEEE Conf.

Comp. Vis. Patt. Recogn., volume 2, pages 237 – 246, 2017.

3, 6, 7

[22] Jian Sun, Wenfei Cao, Zongben Xu, and Jean Ponce. Learn-

ing a convolutional neural network for non-uniform motion

blur removal. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn.,

pages 769–777, 2015. 2, 3, 6

[23] Xin Tao, Hongyun Gao, Xiaoyong Shen, Jue Wang, and Ji-

aya Jia. Scale-recurrent network for deep image deblurring.

In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., pages 8174–

8182, 2018. 1, 2, 3, 4, 5, 6, 8

[24] Li Xu and Jiaya Jia. Two-phase kernel estimation for robust

motion deblurring. In Proc. Eur. Conf. Comp. Vis., pages

157–170. Springer, 2010. 2

[25] Li Xu, Jimmy SJ Ren, Ce Liu, and Jiaya Jia. Deep convolu-

tional neural network for image deconvolution. In Proc. Adv.

Neural Inf. Process. Syst., pages 1790–1798, 2014. 3

[26] Jiawei Zhang, Jinshan Pan, Jimmy Ren, Yibing Song, Lin-

chao Bao, Rynson WH Lau, and Ming-Hsuan Yang. Dy-

namic scene deblurring using spatially variant recurrent neu-

ral networks. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn.,

pages 2521–2529, 2018. 3, 6

5986


