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Abstract

In the stereo matching task, matching cost aggregation is

crucial in both traditional methods and deep neural network

models in order to accurately estimate disparities. We pro-

pose two novel neural net layers, aimed at capturing local

and the whole-image cost dependencies respectively. The

first is a semi-global aggregation layer which is a differen-

tiable approximation of the semi-global matching, the sec-

ond is the local guided aggregation layer which follows a

traditional cost filtering strategy to refine thin structures.

These two layers can be used to replace the widely

used 3D convolutional layer which is computationally

costly and memory-consuming as it has cubic computa-

tional/memory complexity. In the experiments, we show

that nets with a two-layer guided aggregation block eas-

ily outperform the state-of-the-art GC-Net which has nine-

teen 3D convolutional layers. We also train a deep

guided aggregation network (GA-Net) which gets better

accuracies than state-of-the-art methods on both Scene

Flow dataset and KITTI benchmarks. Code is available at

https://github.com/feihuzhang/GANet.

1. Introduction

Stereo reconstruction is a major research topic in com-

puter vision, robotics and autonomous driving. It aims to

estimate 3D geometry by computing disparities between

matching pixels in a stereo image pair. It is challenging

due to a variety of real-world problems, such as occlusions,

large textureless areas (e.g. sky, walls etc.), reflective sur-

faces (e.g. windows), thin structures and repetitive textures.

Traditionally, stereo reconstruction is decomposed into

three important steps: feature extraction (for matching cost

computation), matching cost aggregation and disparity pre-

diction [9,21]. Feature-based matching is often ambiguous,

with wrong matches having a lower cost than the correct

ones, due to occlusions, smoothness, reflections, noise etc.

Therefore, cost aggregation is a key step needed to obtain

accurate disparity estimations in challenging regions.

Deep neural networks have been used for matching cost

∗Part of the work was done when working in Baidu Research.

(a) Input image (b) GC-Net [13]

(c) Our GA-Net-2 (d) Ground truth

Figure 1: Performance illustrations. (a) a challenging input im-

age. (b) Result of the state-of-the-art method GC-Net [13] which

has nineteen 3D convolutional layers for matching cost aggrega-

tion. (c) Result of our GA-Net-2, which only uses two proposed

GA layers and two 3D convolutional layers. It aggregates the

matching information into the large textureless region and is an

order of magnitude faster than GC-Net. (d) Ground truth.

computation in, e.g, [30,33], with (i) cost aggregation based

on traditional approaches, such as cost filtering [10] and

semi-global matching (SGM) [9] and (ii) disparity com-

putation with a separate step. Such methods considerably

improve over traditional pixel matching, but still struggle

to produce accurate disparity results in textureless, reflec-

tive and occluded regions. End-to-end approaches that link

matching with disparity estimation were developed in e.g.

DispNet [15], but it was not until GC-Net [13] that cost ag-

gregation, through the use of 3D convolutions, was incorpo-

rated in the training pipeline. The more recent work of [3],

PSMNet, further improves accuracy by implementing the

stacked hourglass backbone [17] and considerably increas-

ing the number of 3D convolutional layers for cost aggrega-

tion. The large memory and computation cost incurred by

using 3D convolutions is reduced by down-sampling and

up-sampling frequently, but this leads to a loss of precision

in the disparity map.

Among these approaches, traditional semi-global match-

ing (SGM) [9] and cost filtering [10] are all robust and ef-

ficient cost aggregation methods which have been widely
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used in many industrial products. But, they are not differen-

tiable and cannot be easily trained in an end-to-end manner.

In this work, we propose two novel cost aggregation lay-

ers for end-to-end stereo reconstruction to replace the use of

3D convolutions. Our solution considerably increases accu-

racy, while decreasing both memory and computation costs.

First, we introduce a semi-global guided aggregation

layer (SGA) which implements a differentiable approxima-

tion of semi-global matching (SGM) [9] and aggregates the

matching cost in different directions over the whole image.

This enables accurate estimations in occluded regions or

large textureless/reflective regions.

Second, we introduce a local guided aggregation layer

(LGA) to cope with thin structures and object edges in order

to recover the loss of details caused by down-sampling and

up-sampling layers.

As illustrated in Fig. 1, a cost aggregation block with

only two GA layers and two 3D convolutional layers eas-

ily outperforms the state-of-the-art GC-Net [13], which has

nineteen 3D convolutional layers. More importantly, one

GA layer has only 1/100 computational complexity in terms

of FLOPs (floating-point operations) as that of a 3D convo-

lution. This allows us to build a real-time GA-Net model,

which achieves better accuracy compared with other exist-

ing real-time algorithms and runs at a speed of 15∼20 fps.

We further increase the accuracy by improving the net-

work architectures used for feature extraction and matching

cost aggregation. The full model, which we call “GA-Net”,

achieves the state-of-the-art accuracy on both the Scene

Flow dataset [15] and the KITTI benchmarks [7, 16].

2. Related Work

Feature based matching cost is often ambiguous, as

wrong matches can easily have a lower cost than correct

ones, due to occlusions, smoothness, reflections, noise etc.

To deal with this, many cost aggregation approaches have

been developed to refine the cost volume and achieve bet-

ter estimations. This section briefly introduces related work

in the application of deep neural networks in stereo recon-

struction with a focus on the existing matching cost aggre-

gation strategies, and briefly reviews approaches for tradi-

tional local and semi-global cost aggregations.

2.1. Deep Neural Networks for Stereo Matching

Deep neural networks were used to compute patch-wise

similarity scores in [4, 6, 29, 33], with traditional cost ag-

gregation and disparity computation/refinement methods

[9, 10] used to get the final disparity maps. These ap-

proaches achieved state-of-the-art accuracy, but, limited by

the traditional matching cost aggregation step, often pro-

duced wrong predictions in occluded regions, large texture-

less/reflective regions and around object edges. Some other

methods looked to improve the performance of traditional

cost aggregation, with, e.g. SGM-Nets [23] predicting the

penalty-parameters for SGM [9] using a neural net, whereas

Schönberger et al. [22] learned to fuse proposals by opti-

mization in stereo matching and Yang et al. proposed to ag-

gregate costs using a minimum spanning tree [28].

Recently, end-to-end deep neural network models have

become popular. Mayer et al. created a large synthetic

dataset to train end-to-end deep neural network for disparity

estimation (e.g. DispNet) [15]. Pang et al. [19] built a two-

stage convolutional neural network to first estimate and then

refine the disparity maps. Tulyakov et al. proposed end-to-

end deep stereo models for practical applications [26]. GC-

Net [13] incorporated the feature extraction, matching cost

aggregation and disparity estimation into a single end-to-

end deep neural model to get state-of-the-art accuracy on

several benchmarks. PSMNet [3] used pyramid feature ex-

traction and a stacked hourglass block [18] with twenty-five

3D convolutional layers to further improve the accuracy.

2.2. Cost Aggregation

Traditional stereo matching algorithms [1,9,27] added an

additional constraint to enforce smoothness by penalizing

changes of neighboring disparities. This can be both local

and (semi-)global, as described below.

2.2.1 Local Cost Aggregation

The cost volume C is formed of matching costs at each

pixel’s location for each candidate disparity value d. It has

a size of H ×W ×Dmax (with H: image height, W : image

width, Dmax: maximum of the disparities) and can be sliced

into Dmax slices for each candidate disparity d. An effi-

cient cost aggregation method is the local cost filter frame-

work [10, 31], where each slice of the cost volume C(d) is

filtered independently by a guided image filter [8, 25, 31].

The filtering for pixel’s location p = (x,y) at disparity d is a

weighted average of all neighborhoods q ∈ Np in the same

slice C(d):

CA(p,d) = ∑
q∈Np

ω(p,q) ·C(q,d) (1)

Where C(q,d) means the matching cost at location p for

candidate disparity d. CA(p,d) represents the aggregated

matching cost. Different image filters [8,25,31] can be used

to produce the guided filter weights ω . Since these methods

only aggregate the cost in a local region Np, they can run at

fast speeds and reach real-time performance.

2.2.2 Semi-Global Matching

When enforcing (semi-)global aggregation, the matching

cost and the smoothness constraints are formulated into one

energy function E(D) [9] with the disparity map of the in-

put image as D. The problem of stereo matching can now

be formulated as finding the best disparity map D∗ that min-
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imizes the energy E(D):

E(D) = ∑p{Cp(Dp)+ ∑q∈Np
P1 ·δ (|Dp −Dq|= 1)

+ ∑q∈Np
P2 ·δ (|Dp −Dq|> 1)}.

(2)

The first term ∑p Cp(Dp) is the sum of matching costs at all

pixel locations p for disparity map D. The second term is

a constant penalty P1 for locations q in the neighborhood

of p if they have small disparity discontinuities in disparity

map D (|Dp−Dq|= 1). The last term adds a larger constant

penalty P2, for all larger disparity changes (|Dp −Dq|> 1).

Hirschmuller proposed to aggregate matching costs in

1D from sixteen directions to get a approximate solution

with O(KN) time complexity, which is well known as semi-

global matching (SGM) [9]. The cost CA
r (p,d) of a location

p at disparity d aggregates along a path over the whole im-

age in the direction r, and is defined recursively as:

CA
r (p,d) =C(p,d)+min















CA
r (p− r,d),

CA
r (p− r,d −1)+P1,

CA
r (p− r,d +1)+P1,

min
i

CA
r (p− r, i)+P2.

(3)

Where r is a unit direction vector. The same aggregation

steps were used in MC-CNN [23, 30], and similar iterative

steps were employed in [1, 2, 14].

In the following section, we detail our much more effi-

cient guided aggregation (GA) strategies, which include a

semi-global aggregation (SGA) layer and a local guided ag-

gregation (LGA) layer. Both GA layers can be implemented

with back propagation in end-to-end models to replace the

low-efficient 3D convolutions and obtain higher accuracy.

3. Guided Aggregation Net

In this section, we describe our proposed guided aggre-

gation network (GA-Net), including the guided aggregation

(GA) layers and the improved network architecture.

3.1. Guided Aggregation Layers

State-of-the-art end-to-end stereo matching neural nets

such as [3, 13] build a 4D matching cost volume (with size

of H ×W ×Dmax × F , H: height, W : width, Dmax: max

disparity, F : feature size) by concatenating features be-

tween the stereo views, computed at different disparity val-

ues. This is next refined by a cost aggregation stage, and

finally used for disparity estimation. Different from these

approaches, and inspired by semi-global and local match-

ing cost aggregation methods [9, 10], we propose our semi-

global guided aggregation (SGA) and local guided aggrega-

tion (LGA) layers, as outlined below.

3.1.1 Semi-Global Aggregation

Traditional SGM [9] aggregates the matching cost itera-

tively in different directions (Eq. (3)). There are several

difficulties in using such a method in end-to-end trainable

deep neural network models.

First, SGM has many user-defined parameters (P1,P2),

which are not straightforward to tune. All of these param-

eters become unstable factors during neural network train-

ing. Second, the cost aggregations and penalties in SGM are

fixed for all pixels, regions and images without adaptation

to different conditions. Third, the hard-minimum selection

leads to a lot of fronto parallel surfaces in depth estimations.

We design a new semi-global cost aggregation step

which supports backpropagation. This is more effective

than the traditional SGM and can be used repetitively in

a deep neural network model to boost the cost aggregation

effects. The proposed aggregation step is:

CA
r (p,d) = C(p,d)

+ sum















w1(p,r) ·CA
r (p− r,d),

w2(p,r) ·CA
r (p− r,d −1),

w3(p,r) ·CA
r (p− r,d +1),

w4(p,r) ·max
i

CA
r (p− r, i).

(4)

This is different from the SGM in three ways. First, we

make the user-defined parameters learnable and add them

as penalty coefficients/weights of the matching cost terms.

These weights would therefore be adaptive and more flex-

ible at different locations for different situations. Second,

we replace the first/external minimum selection in Eq. (3)

with a weighted sum, without any loss in accuracy. This

change was proven effective in [24], where convolutions

with strides were used to replace the max-pooling layers to

get an all convolutional network without loss of accuracy.

Third, the internal/second minimum selection is changed

to a maximum. This is because the learning target in our

models is to maximize the probabilities at the ground truth

depths instead of minimizing the matching costs. Since

max
i

CA
r (p− r, i) in Eq. (4) can be shared by CA

r (p,d) for

d different locations, here, we do not use another weighted

summation to replace it in order to reduce the computational

complexity.

For both Eq. (3) and Eq. (4), the values of CA
r (p,d) in-

crease along the path, which may lead to very large values.

We normalize the weights of the terms to avoid such a prob-

lem. This leads to our new semi-global aggregation:

CA
r (p,d) = sum























w0(p,r) ·C(p,d)
w1(p,r) ·CA

r (p− r,d),
w2(p,r) ·CA

r (p− r,d −1),
w3(p,r) ·CA

r (p− r,d +1).
w4(p,r) ·max

i
CA

r (p− r, i).

s.t. ∑
i=0,1,2,3,4

wi(p,r) = 1

(5)

C(p,d) is known as the cost volume (with a size of H×W ×
Dmax ×F). Same as the traditional SGM [9], the cost vol-

ume can be sliced into Dmax slices at the third dimension for
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Figure 2: (a) Architecture overview. The left and right images are fed to a weight-sharing feature extraction pipeline. It consists of a

stacked hourglass CNN and is connected by concatenations. The extracted left and right image features are then used to form a 4D cost

volume, which is fed into a cost aggregation block for regularization, refinement and disparity regression. The guidance subnet (green)

generates the weight matrices for the guided cost aggregations (SGA and LGA). (b) SGA layers semi-globally aggregate the cost volume

in four directions. (c) The LGA layer is used before the disparity regression and locally refines the 4D cost volume for several times.

each candidate disparity d and each of these slices repeats

the aggregation operation of Eq. (5) with the shared weight

matrices (w0...4). All the weights w0...4 can be achieved by

a guidance subnet (as shown in Fig. 2). Different to the

original SGM which aggregates in sixteen directions, in or-

der to improve the efficiency, the proposed aggregations are

done in totally four directions (left, right, up and down)

along each row or column over the whole image, namely

r ∈ {(0,1),(0,−1),(1,0),(−1,0)}.

The final aggregated output CA(p) is obtained by select-

ing the maximum between the four directions:

CA(p,d) = max
r

CA
r (p,d) (6)

The last maximum selection keeps the best message from

only one direction. This guarantees that the aggregation ef-

fects are not blurred by the other directions. The backprop-

agation for w and C(p,d) in the SGA layer can be done in-

versely as Eq. (5) (details are available in the supplementary

materials). Our SGA layer can be repeated several times in

the neural network model to obtain better cost aggregation

effects (as illustrated in Fig. 2).

3.1.2 Local Aggregation

We now introduce the local guided aggregation (LGA) layer

which aims to refine the thin structures and object edges.

Down-sampling and up-sampling are widely used in stereo

matching models which blurs thin structures and object

edges. The LGA layer learns several guided filters to refine

the matching cost and aid in the recovery of thin structure

information. The local aggregation follows the cost filter

definition [10] (Eq. (1)) and can be written as:

CA(p,d) = sum







∑q∈Np
ω0(p,q) ·C(q,d),

∑q∈Np
ω1(p,q) ·C(q,d −1),

∑q∈Np
ω2(p,q) ·C(q,d +1).

s.t. ∑
q∈Np

ω0(p,q)+ω1(p,q)+ω2(p,q) = 1

(7)

Different slices (totally Dmax slices) of cost volume share

the same filtering/aggregation weights in LGA. This is the

same as the original cost filter framework [10] and the SGA

(Eq.(5)) in this paper. While, different with the traditional

cost filter [10] which uses a K ×K filter kernel to filter the

cost volume in a K ×K local/neighboor region Np, the pro-

posed LGA layer has three K ×K filters (ω0, ω1 and ω2)

at each pixel location p for disparities d, d − 1 and d + 1

respectively. Namely, it aggregates with a K×K×3 weight

matrix in a K ×K local region for each pixel location p.

The setting of the weight matrix is also similar to [11], but,

weights and filters are shared during the aggregation as de-

signed in [10].

3.1.3 Efficient Implementation

We use several 2D convolutional layers to build a fast guid-

ance subnet (as illustrated in Fig. 2). The implementation is

similar to [32]. It uses the reference image as input and

outputs the aggregation weights w (Eq. (5)). For a 4D

cost volume C with size of H ×W ×D×F (H: height, W :

width, D: max disparity, F : feature size), the output of the

guidance subnet is split, reshaped and normalized as four

H×W ×K×F (K = 5) weight matrices for four directions’

aggregation using Eq. (5). Note that aggregations for dif-
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ferent disparities corresponding to a slice d share the same

aggregation weights. Similarly, the LGA layer need to learn

a H ×W × 3K2 ×F (K = 5) weight matrix and aggregates

using Eq. (7).

Even though the SGA layer involves an iterative ag-

gregation across the width or the height, the forward and

backward can be computed in parallel due to the indepen-

dence between elements in different feature channels or

rows/columns. For example, when aggregating in the left

direction, the elements in different channels or rows are in-

dependent and can be computed simultaneously. The ele-

ments of the LGA layer can also be computed in parallel by

simply decomposing it into element-wise matrix multipli-

cations and summations. In order to increase the receptive

field of the LGA layer, we repeat the computation of EQ. (7)

twice with the same weight matrix, which is similar to [5].

3.2. Network Architecture

As illustrated in Fig.2, the GA-Net consists of four parts:

the feature extraction block, the cost aggregation for the 4D

cost volume, the guidance subnet to produce the cost ag-

gregation weights and the disparity regression. For the fea-

ture extraction, we use a stacked hourglass network which is

densely connected by concatenations between different lay-

ers. The feature extraction block is shared by both left and

right views. The extracted features for left and right images

are then used to form a 4D cost volume. Several SGA layers

are used for the cost aggregation and LGA layers can be im-

plemented before and after the softmax layer of the disparity

regression. It refines the thin-structures and compensate for

the accuracy loss caused by the down-sampling done for the

cost volume. The weight matrices (in Eq.(5) and Eq.(7)) are

generated by an extra guidance subnet which uses the refer-

ence view (e.g. the left image) as input. The guidance sub-

net consists of several fast 2D convolutional layers and the

outputs are reshaped and normalized into required weight

matrices for these GA layers.1

3.3. Loss Function

We adopt the smooth L1 loss function to train our mod-

els. Smooth L1 is robust at disparity discontinuities and has

low sensitivity to outliers or noises, as compared to L2 loss.

The loss function for training our models is defined as:

L(d̂,d) = 1
N

N

∑
n=1

l(|d̂ −d|)

l(x) =

{

x−0.5, x ≥ 1

x2/2, x < 1

(8)

where, |d̂ − d| measures the absolute error of the disparity

predictions, N is the number of valid pixels with ground

truths for training.

1The parameter settings of “GA-Net-15” used in our experiments are

detailed in the supplementary material (available at www.feihuzhang.com).

For the disparity estimation, we employ the disparity re-

gression proposed in [13]:

d̂ =
Dmax

∑
d=0

d ×σ(−CA(d)) (9)

The disparity prediction d̂ is the sum of each disparity

candidate weighted by its probability. The probability of

each disparity d is calculated after cost aggregation via the

softmax operation σ(·). The disparity regression is shown

more robust than classification based methods and can gen-

erate sub-pixel accuracy.

4. Experiments

In this section, we evaluate our GA-Nets with different

settings using Scene Flow [15] and KITTI [7, 16] datasets.

We implement our architectures using pytorch or caffe [12]

(only for real-time models’ implementation). All models

are optimized with Adam (β1 = 0.9, β2 = 0.999). We train

with a batch size of 16 on eight GPUs using 240×576 ran-

dom crops from the input images. The maximum of the

disparity is set as 192. Before training, we normalize each

channel of the image by subtracting their means and divid-

ing their standard deviations. We train the model on Scene

Flow dataset for 10 epochs with a constant learning rate of

0.001. For the KITTI datasets, we fine-tune the models pre-

trained on Scene Flow dataset for a further 640 epochs. The

learning rate for fine-tuning begins at 0.001 for the first 300

epochs and decreases to 0.0001 for the remaining epochs.

4.1. Ablation Study

We evaluate the performance of GA-Nets with differ-

ent settings, including different architectures and different

number (0-4) of GA layers. As listed in Table 1, The guided

aggregation models significantly outperform the baseline

setting which only has 3D convolutional layers for cost ag-

gregation. The new architectures for feature extraction and

cost aggregation improve the accuracy by 0.14% on KITTI

dataset and 0.9% on Scene Flow dataset. Finally, the best

setting of GA-Net with three SGA layers and one LGA

layer gets the best 3-pixel threshold error rate of 2.71% on

KITTI 2015 validation set. It also achieves the best average

EPE of 0.84 pixel and the best 1-pixel threshold error rate

of 9.9% on the Scene Flow test set.

4.2. Effects of Guided Aggregations

In this section, we compare the guided aggregation

strategies with other matching cost aggregation methods.

We also analyze the effects of the GA layers by observing

the post-softmax probabilities output by different models.

Firstly, our proposed GA-Nets are compared with the

cost aggregation architectures in GC-Net (with nineteen 3D

convolutions) and PSMNet (with twenty-five 3D convolu-

tions). We fixed the feature extraction architecture as pro-
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Table 1: Evaluations of GA-Nets with different settings. Average end point error (EPE) and threshold error rate are used for evaluations.

Feature Extraction Cost Aggregation Scene Flow KITTI 2015

Stacked Block Densely Concatenate SGA Layer LGA Layer EPE Error Error Rates (%) Error Rates (%)

1.26 13.4 3.39√
1.19 13.0 3.31√ √
1.14 12.5 3.25√ √

+1 1.05 11.7 3.09√ √
+2 0.97 11.0 2.96√ √
+3 0.90 10.5 2.85√ √
+4 0.89 10.4 2.83√ √
+3

√
0.84 9.9 2.71
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Figure 3: Illustration of the effects of guided aggregations. GA-

Nets are compared with the same architectures without GA Layers.

Evaluations are on Scene Flow dataset using average EPE.

posed above. As shown in Table 2, GA-Nets have fewer pa-

rameters, run at a faster speed and achieve better accuracy.

E.g., with only two GA layers and two 3D convolutions, our

GA-Net-2 outperforms the GC-Net by 0.29 pixel in average

EPE. Also, the GA-Net-7 with three GA layers and seven

3D convolutions outperforms the current best PSMNet [3]

which has twenty-five 3D convolutional layers.

We also study the effects of the GA layers by comparing

with the same architectures without GA steps. These base-

line models “GA-Nets∗” have the same network architec-

tures and all other settings except that there is no GA layer

implemented. As shown in Fig. 3, for all these models, GA

layers have significantly improved the models’ accuracy (by

0.5-1.0 pixels in average EPE). For example, the GA-Net-

2 with two 3D convolutions and two GA layers produces

lower EPE (1.51) compared with GA-Net∗-11 (1.54) which

utilizes eleven 3D convolutions. This implies that two GA

layers are more effective than nine 3D convolutional layers.

Finally, in order to observe and analyze the effects of

GA layers, in Fig. 4, we plot the post-softmax probabili-

ties with respect to a range of candidate disparities. These

probabilities are directly used for disparity estimation using

Eq. (9) and can reflect the effectiveness of the cost aggrega-

tion strategies. The data samples are all selected from some

challenging regions, such as a large textureless region (sky),

the reflective region (window of a car) and pixels around the

object edges. Three different models are compared. The

Table 2: Comparisons of different cost aggregation methods. Av-

erage end point error (EPE) and 1-pixel threshold error rate are

used for evaluations on Scene Flow dataset.

Models
3D Conv

Number
Param Time(s)

EPE

Error

Error

Rates

GC-Net 19 2.9M 4.4 1.80 15.6

PSMNet 25 3.5M 2.1 1.09 12.1

GA-Net-1 1 0.5M 0.17 1.82 16.5

GA-Net-2 2 0.7M 0.35 1.51 15.0

GA-Net-3 3 0.8M 0.42 1.36 13.9

GA-Net-7 7 1.3M 0.62 1.07 11.9

GA-Net-11 11 1.8M 0.95 0.95 10.8

GA-Net-15 15 2.3M 1.5 0.84 9.9

first model (first row of Fig. 4) only has 3D convolutions

(without any GA layers), the second model (second row of

Fig. 4) has SGA layers and the last model (last row of Fig.

4) has both SGA layers and LGA layer.

As illustrated in Fig. 4(a), for large textureless regions,

there would be a lot of noise since there is no any distinc-

tive features in these regions for correct matching. The

SGA layers successfully suppress these noise in the prob-

abilities by aggregating surrounding matching information.

The LGA layer further concentrates the probability peak on

the ground truth value. It could refine the matching results.

Similarly, in the sample of reflective region (Fig. 4(b)), the

SGA and LGA layers correct the wrong matches and con-

centrate the peak on the correct disparity value. For the sam-

ples around the objects edges (Fig. 4(c)), there are usually

two peaks in the probability distribution which are influ-

enced by the background and the foreground respectively.

The SGA and LGA use spatial aggregation along with ap-

propriate maximum selection to cut down the aggregation of

the wrong matching information from the background and

therefore suppress the false probability peak appeared at the

background’s disparity value.

4.3. Comparisons with SGMs and 3D Convolutions

The SGA layer is a differentiable approximation of the

SGM [9]. But, it produces far better results compared with

both the original SGM with handcrafted features and the

MC-CNN [30] with CNN based features (as shown in Table

5). This is because 1) SGA does not have any user-defined

parameters that are all learned in an end-to-end fashion. 2)

The aggregation of SGA is fully guided and controlled by
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Figure 4: Post-softmax probability distributions with respect to disparity values. Red lines illustrate the ground truth disparities. Samples

are selected from three challenging regions: (a) the large smooth region (sky), (b) the reflective region from one car window and (c) one

region around the object edges. The first row shows the probability distributions without GA layers. The second row shows the effects of

semi-global aggregation (SGA) layers and the last row is the refined probabilities with one extra local guided aggregation (LGA) layer.

(a) Input view (b) large textureless region

(c) result of traditional SGM (d) result of our GA-Net-15

Figure 5: Comparisons with traditional SGM. More results and

comparisons are avaiable at GA-Net-15 and SGM.

the weight matrices. The guidance subnet learns effective

geometrical and contextual knowledge to control the direc-

tions, scopes and strengths of the cost aggregations.

Moreover, compared with original SGM, most of the

fronto-parallel approximations in large textureless regions

have been avoided. (Example is in Fig. 5.) This might be

benefited from: 1) the use of the soft weighted sum in Eq.

(5) (instead of the hard min/max selection in Eq. (3)); and

2) the regression loss of Eq. (9) which helps achieve the

subpixel accuracy.

Our SGA layer is also more efficient and effective than

the 3D convolutional layer. This is because the 3D convolu-

tional layer could only aggregate in a local region restricted

by the kernel size. As a result, a series of 3D convolutions

along with encoder and decoder architectures are indispens-

able in order to achieve good results. As a comparison,

our SGA layer aggregates semi-globally in a single layer

which is more efficient. Another advantage of the SGA is

that the aggregation’s direction, scope and strength are fully

guided by variable weights according to different geometri-

cal and contextual information in different locations. E.g.,

the SGA behaves totally different in the occlusions and the

large smoothness regions. But, the 3D convolutional layer

has fixed weights and always perform the same for all loca-

tions in the whole image.

Table 3: Comparisons with existing real-time algorithms

Methods End point error Error rates Speed (fps)

Our GA-Net 0.7 px 3.21 % 15 (GPU)

DispNet [15] 1.0 px 4.65 % 22 (GPU)

Toast [20] 1.4 px 7.42 % 25 (CPU)

4.4. Complexity and Realtime Models

The computational complexity of one 3D convolutional

layer is O(K3CN), where N is the elements number of the

output blob. K is the size of the convolutional kernel and

C is the channel number of the input blob. As a compari-

son, the complexity of SGA is O(4KN) or O(8KN) for four

or eight-direction aggregations. In GC-Net [13] and PSM-

Net [3], K = 3, C = 32,64 or 128 and in our GA-Nets, K

is used as 5 (for SGA layer). Therefore, the computational

complexity in terms of floating-point operations (FLOPs) of

the proposed SGA step is less than 1/100 of one 3D convo-

lutional layer.

The SGA layer are much faster and more effective than

3D convolutions. This allows us to build an accurate real-

time model. We implement one caffe [12] version of the

GA-Net-1 (with only one 3D convolutional layer and with-

out LGA layers). The model is further simplified by us-

ing 4× down-sampling and up-sampling for cost volume.

The real-time model could run at a speed of 15∼20 fps for

300×1000 images on a TESLA P40 GPU. We also compare

the accuracy of the results with the state-of-the-art real-time

models. As shown in Table 3, the real-time GA-Net far out-

performs other existing real-time stereo matching models.

4.5. Evaluations on Benchmarks

For the benchmark evaluations, we use the GA-Net-15

with full settings for evaluations. We compare our GA-Net

with the state-of-the-art deep neural network models on the

Scene Flow dataset and the KITTI benchmarks.
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Figure 6: Results visualization and comparisons. First row: input image. Second row: Results of GC-Net [13]. Third row: Results of

PSMNet [3]. Last row: Results of our GA-Net. Significant improvements are pointed out by blue arrows. The guided aggregations can

effectively aggregate the disparity information to the large textureless regions (e.g. the cars and the windows) and give precise estimations.

It can also aggregate the object knowledge and preserve the depth structure very well (last column).

Table 4: Evaluation Results on KITTI 2012 Benchmark

Models
error rates

(2 pixels)

error rates

(3 pixels)

Reflective

regions

Avg-All

(end point)

Our GA-Net 2.18 % 1.36 % 7.87% 0.5 px

PSMNet [3] 2.44 % 1.49 % 8.36% 0.6 px

GC-Net [13] 2.71 % 1.77 % 10.80% 0.7 px

MC-CNN [30] 3.90 % 2.43 % 17.09% 0.9 px

Table 5: Evaluation Results on KITTI 2015 Benchmark

Models
Non Occlusion All Areas

Foreground Avg All Foreground Avg All

Our GA-Net-15 3.39% 1.84% 3.91% 2.03%

PSMNet [3] 4.31% 2.14 % 4.62% 2.32%

GC-Net [13] 5.58% 2.61% 6.16% 2.87%

SGM-Nets [23] 7.43% 3.09% 8.64% 3.66%

MC-CNN [30] 7.64% 3.33% 8.88% 3.89%

SGM [9] 11.68% 5.62% 13.00% 6.38%

4.5.1 Scene Flow Dataset

The Scene Flow synthetic dataset [15] contains 35,454

training and 4,370 testing images. We use the “final” set

for training and testing. GA-Nets are compared with other

state-of-the-art DNN models by evaluating with the average

end point errors (EPE) and 1-pixel threshold error rates on

the test set. The results are presented in Table 2. We find

that our GA-Net outperforms the state-of-the-arts on both of

the two evaluation metrics by a noteworthy margin (2.2%

improvement in error rate and 0.25 pixel improvement in

EPE compared with the current best PSMNet [3].).

4.5.2 KITTI 2012 and 2015 Datasets

After training on Scene Flow dataset, we use the GA-Net-

15 to fine-tune on the KITTI 2015 and KITTI 2012 data sets

respectively. The models are then evaluated on the test sets.

According to the online leader board, as shown in Table 4

and Table 5, our GA-Net has fewer low-efficient 3D con-

volutions but achieves better accuracy. It surpasses current

best PSMNet in all the evaluation metrics. Examples are

shown in Fig. 6. The GA-Nets can effectively aggregate

the correct matching information into the challenging large

textureless or reflective regions to get precise estimations.

It also keeps the object structures very well.

5. Conclusion

In this paper, we developed much more efficient and ef-

fective guided matching cost aggregation (GA) strategies,

including the semi-global aggregation (SGA) and the lo-

cal guided aggregation (LGA) layers for end-to-end stereo

matching. The GA layers significantly improve the accu-

racy of the disparity estimation in challenging regions, such

as occlusions, large textureless/reflective regions and thin

structures. The GA layers can be used to replace computa-

tionally costly 3D convolutions and get better accuracy.
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