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Abstract

Facial action unit (AU) intensity is an index to charac-

terize human expressions. Accurate AU intensity estima-

tion depends on three major elements: image representa-

tion, intensity estimator, and supervisory information. Most

existing methods learn intensity estimator with fixed image

representation, and rely on the availability of fully annotat-

ed supervisory information. In this paper, a novel general

framework for AU intensity estimation is presented, which

differs from traditional estimation methods in two aspect-

s. First, rather than keeping image representation fixed, it

simultaneously learns representation and intensity estima-

tor to achieve an optimal solution. Second, it allows in-

corporating weak supervisory training signal from human

knowledge (e.g. feature smoothness, label smoothness, la-

bel ranking, and positive label), which makes our model

trainable even fully annotated information is not available.

More specifically, human knowledge is represented as ei-

ther soft or hard constraints which are encoded as regular-

ization terms or equality/inequality constraints, respective-

ly. On top of our novel framework, we additionally propose

an efficient algorithm for optimization based on Alternat-

ing Direction Method of Multipliers (ADMM). Evaluations

on two benchmark databases show that our method outper-

forms competing methods under different ratios of AU in-

tensity annotations, especially for small ratios.

1. Introduction

Facial Action Coding System (FACS) [7] defines AUs to

depict facial muscle movements. It quantifies AU intensi-

ties into 6 ordinal levels and provides instructions for anno-

tation. AU intensity estimation is challenging partially due

to the lack of annotations. Reliable AU intensity labels can

be annotated by trained human coders. It is convenient to

capture a large set of expression sequences through digital
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Figure 1: The diagram of joint learning for AU intensity estima-

tion. It simultaneously learns image representation and intensity

estimator with limited annotations. Human knowledge is incorpo-

rated as hard or soft constraints to provide weak supervision.

cameras. However, it requires great effort to annotate every

frame, which makes it difficult to construct a large database.

The performance of AU intensity estimation is deter-

mined by several factors, including image representation,

intensity estimator, and supervisory information. Most ex-

isting methods [16, 10] focus on estimator learning, regard-

less of image representation and unlabeled frames. Repre-

sentation is firstly learned by an unsupervised or supervised

method. Then, the estimator is trained in the pre-learned

feature space. However, the pre-learned feature space is

not guaranteed to fit well the estimator learning since they

are learned separately without considering their connection-

s. Recently, deep learning provides an end-to-end strategy

to learn a mapping from the input to the output [8]. It can

be treated as a joint representation and estimator learning

method. But deep models require a large amount of labeled

samples to avoid overfitting. Though [41] learns a weakly

supervised deep model, it still requires thousands of images.

Besides, few works focus on intensity estimation with

limited annotations except for [26, 43, 42, 41]. Human

knowledge such as label smoothness or label ranking are

exploited to compensate the lack of annotations. [26] en-

codes label smoothness through the structure of dynamic

models while [42] emphasizes the smoothness on relevance
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through regularization. Label ranking has been studied in

ordinal regression [9] and applied to intensity estimation

in [43, 42, 41]. Other types of general knowledge such as

feature smoothness and positive intensity are rarely studied.

The smoothness refers to soft constraint while label ranking

and positive intensity refer to hard constraint. Though there

exist various types of human knowledge, existing methods

always leverage one of them and there is no general frame-

work to incorporate different types of knowledge.

Joint representation and estimator learning and human

knowledge have been studied individually, but there lacks

a framework to simultaneously incorporate all of them. To

alleviate this issue, we propose a general framework for AU

intensity estimation (see Fig. 1), which can not only joint-

ly learn representation and estimator with weakly labeled

sequences, but also flexibly incorporate different types of

knowledge on AU intensity and image representation. Weak

annotation refers that locations of peak and valley frames

are firstly identified in training sequences (qualitative an-

notation) and then intensities of few selected frames are la-

beled (quantitative annotation). Identification of peak and

valley frames can be performed according to their defini-

tions in [17], which is much easier to obtain than quanti-

tatively annotating every frame. The proposed framework

has several advantages. Firstly, representation and estima-

tor are jointly optimized to make accurate intensity predic-

tion. The joint learning can obtain a better solution than

individual learning. Secondly, human knowledge involves

both representation and estimator. It can provide weak su-

pervision for joint learning and make it feasible to exploit

unlabeled frames more efficiently by using relationships a-

mong labeled and unlabeled frames. Thirdly, this frame-

work requires scarce intensity annotations to obtain satis-

fied performance, while deep models need much more.

Our main contributions are three-fold. (1) We propose

a general framework for AU intensity estimation to joint-

ly learn representation and estimator with very limited in-

tensity annotations and to encode different types of human

knowledge. (2) We develop an efficient algorithm based

on the ADMM framework to optimize the formulated prob-

lem. (3) Evaluations under different annotation ratios are

performed on two benchmark databases to demonstrate the

superior performance of the proposed method.

2. Related Work

AU intensity estimation. Most existing approaches

use supervised techniques for AU intensity estimation such

as [16, 10, 38, 22, 32, 21, 12, 36]. They leverage only la-

beled images. Several methods exploit spatial relationships

among the intensities of multiple AUs through probabilistic

graphical models, such as tree-structured Markov random

field [27], copula conditional random field [35]. Kaltwang

et al. [11] propose a latent tree model by learning graph

structure from features and labels. The co-occurrence of

AU pairs is spatial label smoothness which is implicitly en-

coded in potential functions. Besides, several works con-

sider temporal label smoothness by using dynamic model-

s, such as hidden Markov model [18], dynamic Bayesian

networks [14], context-sensitive conditional ordinal random

field [24]. Temporal label smoothness is implicitly encod-

ed in the model structure. However, these supervised mod-

els require frame-level intensity annotations and they on-

ly focus on estimator learning, regardless of representation

learning. Deep models have made astonishing progress in

different fields due to their large model complexity. Super-

vised deep models have been used to estimate AU intensi-

ty [8, 34, 31]. However, they contain millions of parameters

and require a large amount of annotated images for training.

Few works focus on using unlabeled images for AU

intensity estimation. Multi-instance learning (MIL) has

been used for event detection such as MS-MIL [29], RMC-

MIL [25], and LOMo [30]. Event detection is a binary

classification problem, but the AU intensity has multiple

levels. They can not be directly applied. Only method-

s [26, 43, 42, 41] exploit unlabeled images for AU intensity

estimation. Ruiz et al. [26] propose Multi-instance Dynam-

ic Ordinal Random Fields (MI-DORFs) by exploiting multi-

instance learning to treat each sequence as a bag. Zhang et

al. [42] propose a bilateral ordinal multi-instance regression

model (BORMIR). Both use temporal label smoothness to

exploit unlabeled images. Zhao et al. [43] estimate expres-

sion intensity estimation by combining ordinal regression

and SVR (OSVR). They use label ranking to exploit unla-

beled images. These methods learn only intensity estima-

tor or leverage only one type of domain knowledge, regard-

less of image representation. Differently, our method joint-

ly learns estimator and representation. We simultaneously

incorporate all types of knowledge such as features smooth-

ness, label smoothness, label ranking, and positive intensity.

Besides, knowledge is applied in the subspace rather than in

the original feature space. A weakly supervised deep mod-

el is used in [41], but it still requires thousands of labeled

images. Differently, our method performs the joint learning

with only few hundreds of labeled images and is applicable

to a small database.

Semi-supervised learning. Semi-supervised learning

methods learn models with both labeled and unlabeled im-

ages. Different assumptions are made on the correlation

between sample representation and target label, including

smoothness assumption [15], cluster assumption [4], and

manifold assumption [1, 20]. Kim et al. [13] consider the

second-order Hessian energy for semi-supervised regres-

sion (HSSR) under the manifold assumption. These meth-

ods leverage unlabeled images, but they do not learn the rep-

resentation. Zhang et al. [40] proposed a convex subspace

learning (CSL) approach by combining unsupervised sub-
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space learning and supervised classifier learning. Compared

to [40], our method incorporates various types of human

knowledge to leverage unlabeled images more efficiently.

3. The Proposed Approach

3.1. Weak annotation

The smoothness of muscle movements leads to the s-

mooth evolution of facial appearance. AU intensity also e-

volves smoothly in sequences if the frame rate of camera is

high enough to capture subtle changes of facial appearance.

Weak annotation consists of two parts, i.e., qualitative an-

notation and quantitative annotation. Qualitative annotation

refers to identifying the locations of key frames, i.e., peak

and valley frames. Quantitative annotation refers to anno-

tating AU intensities of a small set of frames in sequences.

Though multiple peaks and valleys exist in a sequence, they

occupy a small portion in the whole database. Weak an-

notation contains the locations of key frames and intensity

annotations of few frames, which is easier to achieve than

labeling every frame. Given the weak annotation, training

sequences can be split into segments according to the loca-

tions of key frames. AU intensity monotonically evolves in

each training segment and it has three types, i.e., increasing,

decreasing, and keeping the same. Following [42], to avoid

using an extra variable to specify the trend, we reverse the

frame ordering of segments that evolve from a peak to a val-

ley. Finally, AU intensity increases or keeps the same in all

training segments.

3.2. Problem statement

Given unlabeled expression sequences, the locations of

key frames are firstly identified. Then, intensities of par-

tial randomly selected frames are labeled. The training

set consists of two parts. One part is qualitatively labeled

segments, Ds = {Sm
u }

M
m=1, where S

m
u = {Sm,t

u }Tm

t=1 ∈
R

Tm×d denotes the features of frames in the m-th segment

and Tm is the number of frames. Su = [S1
u; ...;S

M
u ] is the

concatenated features of all segments. This part has only

the trend of intensity. Intensity in S
m
u increases or keep-

s the same. The other part is a small set of quantitatively

labeled frames, Df = {xn, yn}
N
n=1, where xn ∈ R

d is

the raw feature vector of the n-th frame and yn ∈ R is its

intensity. Xl ∈ R
N×d is the concatenated features of all la-

beled frames and Yl ∈ R
N is their AU intensities. Frames

in Xl are randomly selected frames rather than neighbor

frames. Each row of Xl and Su represents the features of a

frame. Note that Xl is a subset of Su. For convenience, we

denote them separately to avoid extra frame indexes. Let

B ∈ R
K×d denote the basis vectors. K is the number of

basis vectors. Φl denotes the coefficients of labeled frames

Xl in latent space, and Φu = [Φ1
u; ...;Φ

M
u ] denotes the co-

efficients of segments Su, where Φ
m
u ∈ R

Tm×K . w ∈ R
K

denotes the parameters of the estimator. For training, giv-

en Df and Ds, we jointly learn the representation Φl and

Φu, the subspace span(B), and the intensity estimator w.

3.3. Hard constraints from human knowledge

Limited AU intensity annotations In training sequences,

only few frames are labeled with AU intensities. The inten-

sity labels provide strong supervision for joint learning. The

representation and estimator are encouraged to satisfy

Φlw = Yl. (1)

The annotations of few frames are encoded as equality con-

straints. It is equivalent to put the loss in the objective, i.e.,

Ll(w,Φl,Df ) =
λ0

2
‖Φlw −Yl‖

2. (2)

Temporal label ranking During a facial action, AU in-

tensity evolves smoothly over time. As mentioned in Sec-

tion 3.2, training sequences are split into segments accord-

ing to key frames. AU intensity monotonically increases

or keeps the same in each training segment. Though AU

intensities of frames in a segment are unknown, the tempo-

ral relationships among multiple frames can provide weak

supervision for joint learning. Instead of constraining the

original representation Su, we emphasize domain knowl-

edge on the new representation Φu. In a training segment,

the representation and estimator are encouraged to satisfy

that the intensity of the current frame should be larger than

or equal to its previous frames,

Φ
m,1
u w ≤ ... ≤ Φ

m,i
u w ≤ Φ

m,i+1
u w ≤ ... ≤ Φ

m,Tm

u w,

where label ranking is encoded as inequality constraints. It

is equivalent to

Γ
m
Φ

m
u w ≤ 0, (3)

where Γ
m ∈ R

(Tm−1)×Tm is a matrix with Γ
m
i,i = 1,

Γ
m
i,i+1 = −1, and other elements being 0’s. For all qual-

itatively labeled segments, we have a set of constrains,

ΓΦuw ≤ 0, (4)

where Γ = diag([Γ1,Γ2, ...,ΓM ]) and 0 is a vector with all

elements being 0’s. Different from [43, 42], we emphasize

ranking constrains on both representation and estimator.

Positive intensity AU intensity is a non-negative value.

According to this prior knowledge, the prediction of AU in-

tensity is encouraged to be not less than 0. Such knowledge

is encoded as constraints which provide weak supervision

for joint learning. The constraints are defined as

Φuw ≥ 0,Φlw ≥ 0. (5)

The positive intensity is encoded as inequality constraints.

3459



3.4. Soft constraints from human knowledge

Temporal label smoothness AU intensity is labeled ac-

cording to corresponding local appearance. Since muscle-

s move smoothly, facial appearance also changes smooth-

ly over time. In a training segment, the intensity of a

frame is close to the intensities of its neighbor frames. The

representation and estimator are encouraged to satisfy that

the intensities of neighbor frames should be similar, i.e.,

‖Φm,i
u w−Φ

m,j
u w‖2 is supposed to be small for two neigh-

bor frames i and j. Considering all qualitatively labeled

segments, we have the following regularization, i.e.,

RI(w,Φu,Ds) =
1

2

M
∑

m=1

Tm
∑

i,j

C
m
i,j(Φ

m,i
u w −Φ

m,j
u w)2

= (Φuw)TL(Φuw), (6)

where Lm = D
m−Cm and L = diag([L1,L2, ...,LM ]). L

is a positive semi-definite matrix. Cm is an adjacent matrix,

where C
m
i,j = 1 if the j-th and i-th frames are neighbors.

Otherwise C
m
i,j = 0. Dm is a diagonal matrix with D

m
i,i =

∑

j C
m
i,j . Since frames in Xl are not neighbor frames, label

smoothness can not be applied to Φlw.

Temporal feature smoothness As facial muscles move s-

moothly, neighbor frames in sequences have similar facial

appearance. The learned representation should keep such

property that neighbor frames should have similar represen-

tations. The distance between representations of neighbor

frames should small. Such knowledge can be encoded as a

regularization term, i.e.,

RF (Φu,Ds) =
1

2

M
∑

m=1

Tm
∑

i,j

C
m
i,j ||Φ

m,i
u −Φ

m,j
u ||2

= tr(ΦT
uLΦu), (7)

where L is the sames as Eq.( 6). tr(·) represents the trace.

Representation and estimator are coupled in Eqs. (6) and (4)

while Eq. (7) involves only the representation.

3.5. Formulation

Given qualitatively labeled segments and limited quan-

titatively labeled frames, we formulate the problem as fol-

lows. For representation learning, learned coefficient ma-

trix and basis vectors should be able to reconstruct raw fea-

tures [23]. The reconstruction loss is defined as

Lu(Φl,Φu,B,Df ,Ds)

=
1

2

∥

∥

∥

[

Xl

Su

]

−

[

Φl

Φu

]

B

∥

∥

∥

2

F
+ λ1

∥

∥

∥

[

Φl

Φu

]T
∥

∥

∥

2,1
, (8)

where ‖ · ‖2,1 encourages to learn features through the w-

hole dataset rather than regularizing features of individu-

al samples. To avoid degeneracy, the convex set for B is

B = {b : ‖b‖2 ≤ 1}.

Considering unlabeled samples and human knowledge,

the joint learning of image representation and intensity es-

timator can be formulated as

min
B∈B

min
w

min
Φl,Φu

Lu(Φl,Φu,B,Df ,Ds) + Ll(w,Φl,Df )

+ λ2RI(w,Φu,Ds) + λ3RF (Φu,Ds)

s.t. ΓΦuw ≤ 0,Φlw ≥ 0,Φuw ≥ 0, (9)

where λ0, λ1, λ2 and λ3 are hyperparameters. The first term

is the reconstruction error of all samples. The second is the

loss of labeled samples. The third is the regularization of

temporal label smoothness. The fourth is the regularization

of temporal feature smoothness. The constraints represent

the temporal label ranking and positive intensity.

Intensities of few frames provide strong supervision

while domain knowledge provides weak supervision. A-

mong types of knowledge, intensity and feature smooth-

ness encourage smooth predictions. Label ranking encour-

ages predictions in training segments to satisfy ordinal con-

straints, and positive intensity ensures the nonnegative pre-

diction. We jointly learn the subspace Φ and regressor w,

which are coupled through the knowledge. The soft and

hard constraints involve both Φ and w. During optimiza-

tion, the constraints and regularizations cooperate with each

other to find the optimal solution of Φ and w.

3.6. Alternating optimization

Problem (9) is not jointly convex in all variables, but it

is convex in each of them. Since Eq.( 7) contains only Φu,

we can not just optimize ΦB and Φw by treating them as

new variables. We propose an algorithm to solve the prob-

lem based on ADMM [3]. The scaled form of augmented

Lagrangian function is

Lρ(Φ,B,w,C·,Λ·,Z·,V·)

=
1

2

∥

∥

∥

[

Xl

Su

]

−

[

Φl

Φu

]

B

∥

∥

∥

2

F
+ λ1

∥

∥

∥

[

Cl

Cu

]T
∥

∥

∥

2,1
(10)

+
ρ1

2

∥

∥

∥

[

Φl

Φu

]

−

[

Cl

Cu

]

+

[

Λl

Λu

]

∥

∥

∥

2

F
−

ρ1

2

∥

∥

∥

[

Λl

Λu

]

∥

∥

∥

2

F

+ I−(Z0) +
ρ2

2
||ΓΦuw − Z0 +V0||

2 −
ρ2

2
||V0||

2

+ I+(Z1) +
ρ3

2
||Φlw − Z1 +V1||

2 −
ρ3

2
||V1||

2

+ I+(Z2) +
ρ3

2
||Φuw − Z2 +V2||

2 −
ρ3

2
||V2||

2

+
λ0

2
||Φlw −Yl||

2 + λ2w
T
ΦuL

T
Φuw + λ3tr(ΦuL

T
Φu),

where Φ· = {Φl,Φu}, C· = {Cl,Cu}, Z· =
{Z1,Z2,Z3}, and V· = {V0,V1,V2}. C· and Z· are

introduced variables while Λ· and V· are the multipliers.

They are introduced to handle the L21 norm and inequality
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constraints. ρ = {ρ1, ρ2, ρ3} are penalty parameters to em-

phasize the importance of different knowledge. I−(·) and

I−(·) are projection functions, i.e., I−(·) = min(·, 0) and

I+(·) = max(·, 0). We optimize each variable alternatively

as follows (Algo. 1). PCA [37] is used to initialize B, Φl,

and Φu. Cl = Φl and Cu = Φu while other variables

are randomly initialized. Note that currently updated vari-

able will be used to update other variables. Following the

conventional procedures of ADMM [3], the updates of the

above variables are as follows:

B
(k+1) ← argmin

B

Lρ(· · · ), (11)

Φ
(k+1)
l ← argmin

Φl

Lρ(· · · ), (12)

Φ
(k+1)
u ← argmin

Φu

Lρ(· · · ), (13)

w
(k+1) ← argmin

w
Lρ(· · · ), (14)

C
(k+1)
· ← argmin

C
·

Lρ(· · · ), (15)

Z
(k+1)
· ← argmin

Z
·

Lρ(· · · ), (16)

Λ
(k+1)
· ← Λ

(k)
· +Φ

(k+1)
· −C

(k+1)
· , (17)

V
(k+1)
0 ← V

(k)
0 + ΓΦ

(k+1)
u w

(k+1) − Z
(k+1)
0 , (18)

V
(k+1)
1 ← V

(k)
1 +Φ

(k+1)
l w

(k+1) − Z
(k+1)
1 , (19)

V
(k+1)
2 ← V

(k)
2 +Φ

(k+1)
u w

(k+1) − Z
(k+1)
2 . (20)

For Problem (11), we firstly obtain the closed-form so-

lution of B̃ by taking the gradient and setting it to 0, i.e.,

B̃ = [ΦT
l Φl +Φ

T
uΦu]

−1[ΦT
l Xl +Φ

T
uXu]. (21)

We project B̃ into B = {b : ||b||2 = 1} by normalizing

each row of B̃, i.e., Bi· =
B̃i·

||B̃i·||2
, where B̃i· is the i-th row

of B̃.

For Problem (12) and (14), we can get the closed-form

solutions for Φl and w by computing the gradient and set-

ting the gradient to 0.

For Problem (13), though we can get the closed-form

solution by taking the gradient of Φu, the computation is

inefficient since it involves the inverse of a large matrix.

Instead we use a gradient-based method to update Φu, i.e.,

Φu ← Φu − α∇u, (22)

where ∇u is the gradient of Φu and the step size α is ob-

tained by exact line search. Detailed representation of α is

in the supplementary material.

For Problem (15), the subproblem with respect to Cl

and Cu is

min
Cl,Cu

λ1

∥

∥

∥

[

Cl

Cu

]T
∥

∥

∥

2,1
+

ρ1

2

∥

∥

∥

[

Φl

Φu

]

−

[

Cl

Cu

]

+

[

Λl

Λu

]

∥

∥

∥

2

F
.

Algorithm 1 Joint Representation and Estimator Learning.

Input: Labeled frames Df and weakly labeled sequences

Ds. Penalty parameters {λi}
3
i=0 and {ρi}

3
i=1.

Output: Representation Φl and Φu, basis vectors B, and

the estimator w.

1: Initi: use PCA to obtain B, Φl, and Φu. Cl = Φl and

Cu = Φu. Randomly initialize Z·, Λ·, and V·.

2: while not converging do

3: Update variables by solving Problem (11) ∼ (16)

4: Update Lagrangian multipliers by Eqs. (17) ∼ (20)

5: end while

6: return Φl , Φu, B, and w.

Let C = [Cl;Cu], Φ = [Φl;Φu], and Λ = [Λl;Λu]. The

problem can be decomposed into small problems, i.e.,

C·i = argmin
C

·i

λ1||C·i||2 +
ρ1

2
||Φ·i −C·i +Λ·i||

2
F ,

where C·i is the i-th column of C, Φ·i is the i-th column of

Φ, and Λ·i is the i-th column of Λ. The solution is

C·i = Sλ1/ρ1
(Φ·i +Λ·i), (23)

where Sk(a) = [1 − k
||a||2

]+ ⊙ a and Sk(0) = 0. [·]+ =

max(·, 0). ⊙ represents pairwise product.

For Problem (16), the solutions for Z0, Z1 and Z2 are

Z0 =min{0,ΓΦuw +V0}, (24)

Z1 =max{0,Φlw +V1}, (25)

Z2 =max{0,Φuw +V2}. (26)

The optimization details of each subproblem are present-

ed in the supplementary material.

For testing. We estimate intensities of testing samples in a

transductive manner. Let Xt denote testing samples and Φt

denote their coefficients. We jointly learn the model and es-

timate intensities of testing samples by simply augmenting

Su and Φu, i.e., S = [Su;Xt] and Φ = [Φu;Φt]. L =
diag(L1, ...,LM ,Lt) and Γ = diag(Γ1, ...,ΓM ,Γt), where

L
t and Γ

t are matrices with all elements being 0’s because

we have no information about testing samples and knowl-

edge is only applied to training segments. During testing,

we perform frame-level prediction by using Yt = Φtw.

4. Experiments

4.1. Settings

Data. BP4D-spontaneous database [39] was used as

the Train/Development splits of the FERA 2015 Chal-

lenge [32]. AU intensity is qualified into 6 discrete level-

s. Following the protocol of FERA 2015, we use the Train

split for training and the Development split for evaluation.
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Figure 2: The learning curve of KJRE on AU12 under the scenario that 6% of training samples are annotated. The last four show the

intensity prediction on a testing sequence at different iterations.

Note that FERA 2017 [33] is a challenge for AU intensi-

ty estimation under different poses. Since our goal is to

learn an estimator with limited annotations, we use FERA

2015. DISFA [19] consists of 27 sequences from 27 sub-

jects. We perform 5-fold subject independent cross valida-

tion. For feature extraction, we follow the same procedures

in [32, 33, 42] to extract 218D features.

Annotation. Instead of using the intensity label of

each frame, our method needs only weak annotation (see

Sec. 3.1), i.e., identifying locations of key frames and label-

ing the intensities of few frames. We follow [17] to identify

key frames. Knowledge can be applied to all training seg-

ments even though no frame has intensity annotation. Since

sequences in both databases are captured with a high frame

rate, faces in consecutive frames have minor changes. Se-

quences are downsampled by selecting one frame every five

frames. Segment length varies between 10 and 80. Distri-

butions of AU intensity are shown in Fig. 3 . For evaluation,

we vary the proportion of labeled frames in the training set,

including 2%, 4%, 6%, 8%, 10%, 30%, 50%, 70%, 90%,

and 100%. Labeled frames are randomly selected and key

frames have the priority to be selected. We perform each

experiment 5 times and report the average performance.

Evaluation metrics. Pearson Correlation Coefficien-

t (PCC), Intra-Class Correlation (ICC(3,1) [28]), and Mean

Absolute Error (MAE) are adopted as the measures for eval-

uation. K, {λi}
3
i=0 and {ρi}

3
i=1 are the hyperparameters of

our model. For parameter selection, the training set is di-

vided into two parts with 60% segments for training and

40% for validation. We use grid search strategy to find the

best hyperparameters from K ∈ {60, 80, 100, 120, 140},
{λi}

3
i=0, {ρi}

3
i=1 ∈ {10

−1, 10−2, 10−3, 10−4}.

Models. We incorporate four types of human knowl-

edge to jointly learn representation and estimator (KJRE).

To verify the effectiveness of each type of knowledge, we

compare the performance of not using knowledge (JRE)

with the performance of using only one type of knowl-

edge, including label ranking (KJRE-O), label smoothness

(KJRE-I), feature smoothness (KJRE-F), and positive inten-

sity (KJRE-P). KE-PCA first uses PCA to get the represen-

tation and then uses knowledge for estimator learning. We

then compare with the state-of-the-art supervised methods

(SVR [32], RVR [10], SOVRIM [5], LT [11], COR [35],

DSRVM [12]), semi-supervised methods (CSL [40], HSS-

R [13]), and weakly supervised methods (OSVR [43],

0

0
1
2
3
4
5

1 2 4 5 6 9
0

0
1
2
3
4
5

Figure 3: Intensity distribution.

BORMIR [42] ). Supervised methods use only labeled

samples while weakly and semi-supervised methods use

both labeled and unlabeled samples. For weakly supervised

methods, OSVR, BORMIR, and our method require prepro-

cessing by splitting sequences into segments. We also com-

pare to supervised deep models (CCNN [34], 2CD [31]) and

a weakly supervised deep model (KBSS [41]).

Complexity and convergence. The computational com-

plexity is O(d3 + T (K3 + (2N + d)K2 + NKd)). The

space complexity is O(Nd + d2). d denotes the dimen-

sion of input space. T denotes the iterations of ADMM.

When d and K are large, the complexity can be reduced

to O(d2.373 + T (K2.373 + (2N + d)K2 + NKd)) by us-

ing [6] to compute matrix inversion. Fig. 2 illustrates the

learning curve of AU12 with KJRE and also the prediction

on a testing sequence at different iterations. The primal ob-

jective decreases while the dual objective increases. When

they get close, the algorithm converges. Our method has the

same complexity as BORMIR [42] (O(Nd2T )) and is more

efficient than OSVR [43] (O(N2dT )) when N ≫ d.

4.2. Results

Comparison with baseline methods. The results are

shown in Table 1. Methods are valuated under the scenari-

o that 6% of training frames have intensity labels. Each

method achieves better performance on FERA than on D-

ISFA because DISFA is a more challenge database due to

the low-quality images, large head poses, complex illumina-

tions, and imbalanced intensity distribution. Detailed anal-

yses are as follows. Firstly, methods that use one type of hu-

man knowledge, including KJRE-O, KJRE-I, KJRE-F, and

KJRE-P, achieve better results than JRE which does not use

any type of knowledge. It demonstrates the effectiveness of

each type of knowledge. Label ranking and label smooth-

ness are relatively more important than feature smoothness

and positive intensity. Secondly, KJRE combines all type-

s of knowledge and achieves better performance than JRE

as well as methods that use partial knowledge. It further
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Table 1: Comparison with baseline methods. The performance is evaluated under the scenario that 6% of training frames are annotated.

Bold numbers with gray background indicate the best performance; bold numbers indicate the second best.

Database FERA 2015 DISFA

AU 6 10 12 14 17 Avg 1 2 4 5 6 9 12 15 17 20 25 26 Avg

P
C

C

KE-PCA .63 .49 .64 .18 .45 .48 .18 .29 .15 .34 .25 .32 .54 .10 .15 .30 .47 .27 .28

JRE .66 .56 .81 .30 .36 .54 .07 .26 .25 .29 .34 .29 .44 .05 .17 .17 .58 .22 .26

KJRE-O .70 .60 .85 .39 .37 .58 .14 .30 .31 .39 .43 .35 .62 .12 .22 .19 .70 .28 .34

KJRE-I .68 .60 .83 .36 .36 .57 .15 .30 .27 .36 .43 .34 .60 .10 .20 .21 .71 .29 .33

KJRE-F .67 .57 .82 .32 .37 .55 .11 .30 .26 .35 .39 .31 .49 .07 .19 .19 .64 .25 .30

KJRE-P .69 .60 .82 .33 .35 .56 .21 .38 .28 .28 .52 .33 .59 .04 .10 .20 .69 .25 .32

KJRE .72 .65 .87 .40 .43 .62 .28 .38 .26 .34 .54 .33 .69 .18 .18 .22 .75 .25 .37

IC
C

KE-PCA .61 .45 .63 .15 .39 .45 .05 .07 .03 .13 .06 .09 .22 .03 .04 .07 .17 .06 .08

JRE .65 .56 .81 .30 .36 .54 .07 .22 .17 .22 .31 .28 .33 .06 .13 .16 .52 .19 .22

KJRE-O .70 .60 .85 .37 .36 .58 .14 .27 .26 .37 .42 .34 .61 .11 .21 .18 .70 .27 .32

KJRE-I .68 .59 .83 .35 .36 .56 .15 .29 .27 .35 .41 .31 .60 .09 .20 .18 .70 .28 .32

KJRE-F .66 .57 .81 .32 .37 .55 .11 .28 .23 .33 .37 .29 .41 .08 .18 .18 .61 .23 .27

KJRE-P .69 .58 .82 .32 .34 .55 .20 .33 .26 .26 .48 .30 .57 .04 .11 .18 .68 .24 .30

KJRE .71 .61 .87 .39 .42 .60 .27 .35 .25 .33 .51 .31 .67 .14 .17 .20 .74 .25 .35

M
A

E

KE-PCA 1.56 2.02 2.37 1.78 1.09 1.76 .81 .64 1.51 .41 1.03 .61 1.21 .43 .77 .44 1.92 .94 .89

JRE 1.07 1.09 .87 1.23 1.04 1.06 1.75 1.59 2.97 1.15 1.38 1.39 2.05 1.00 1.33 1.00 1.49 1.57 1.56

KJRE-O .91 1.00 .71 1.10 .92 .93 1.38 1.31 2.28 .74 .96 1.09 1.01 .71 .92 .90 .97 1.28 1.13

KJRE-I .98 1.00 .78 1.14 .97 .97 1.08 .96 1.90 .63 .90 .97 .95 .66 .86 .65 .91 1.03 .96

KJRE-F 1.09 1.06 .85 1.21 1.04 1.05 1.43 1.21 2.36 .81 1.16 1.25 1.68 .85 1.03 .79 1.22 1.38 1.26

KJRE-P .99 1.01 .78 1.15 .94 .98 1.21 .99 1.86 .90 .89 1.10 1.13 .71 1.06 .83 1.07 1.11 1.07

KJRE .82 .95 .64 1.08 .85 .87 1.02 .92 1.86 .70 .79 .87 .77 .60 .80 .72 .96 .94 .91
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Figure 4: Comparison with the state-of-the-art methods under different annotation ratios. It presents the average performance under

different annotation ratios. ‘The percentage of annotated frames’ refers to
#quantitatively annotated frames

#all frames
. Competitive methods are SVR [32],

RVR [10], SOVRIM [5], LT [11], COR [35], DSRVM [12], CSL [40], HSSR [13], OSVR [43], and BORMIR [42].

demonstrates human knowledge helps improve both rep-

resentation and estimator learning. Thirdly, our method

achieves much better results than KE-PCA which uses PCA

to learn representation in an unsupervised manner and then

incorporates knowledge for estimator learning. On DISFA,

KE-PCA achieves slightly better MAE than our method, but

it gets much worse PCC and ICC. Since intensity levels are

imbalanced and the majority intensity is 0 in DISFA, the

representation learning will be dominated by samples with

the intensity of 0. It makes KE-PCA tend to predict the in-

tensity of 0 for all testing samples. As the majority intensity

is 0, KE-PCA can get good MAE, but poor performance in

ICC. The comparison to KE-PCA shows that our method is

more robust on the learning of representation and estimator

when the database is imbalanced.

Comparison with the state-of-the-art methods. Fig. 4

presents the average performance of methods under differ-

ent annotation ratios. Table 2 shows the results when the

annotation ratios is 6%. The state-of-the-art methods are e-

valuated by using the code provided by the authors. Note

that BORMIR [42] can not use segments that have no in-

tensity annotations of peak and valley frames. It can use

at most about 10% labeled frames. As shown in Fig. 4

and Table 2, on FERA 2015, our method achieves better

performance than other methods under all evaluation met-

rics, especially when the annotation ratio is small such as

2% ∼ 10%. On DISFA, our method achieves better per-

formance than other methods under PCC and ICC. Its MAE

3463



Table 2: Comparison with the state-of-the-art methods. The performance is evaluated under the scenario that 6% of training frames are

annotated. Bold numbers with gray background indicate the best performance; bold numbers indicate the second best.

Database FERA 2015 DISFA

AU 6 10 12 14 17 Avg 1 2 4 5 6 9 12 15 17 20 25 26 Avg

P
C

C

SVR [32] .45 .42 .74 .25 .28 .43 .06 .30 .21 .29 .33 .15 .44 .15 .01 .16 .54 .14 .23

SOVRIM [5] .50 .43 .76 .24 .30 .45 .06 .29 .24 .27 .36 .10 .41 .23 .06 .16 .57 .14 .24

RVR [10] .67 .60 .82 .27 .41 .55 .25 .35 .04 .31 .40 .27 .61 .11 .22 .06 .82 .27 .31

LT [11] .59 .61 .71 .35 .09 .47 .22 .07 .04 .24 .42 .13 .45 .04 .13 .00 .52 .28 .21

COR [35] .49 .54 .69 .16 .18 .42 .18 .18 .29 .04 .32 .24 .39 .09 .12 .01 .66 .13 .22

DSRVM [12] .63 .64 .81 .36 .22 .53 .12 .02 .12 .06 .37 .20 .40 .07 .07 -.04 .52 .06 .16

HSSR [13] .53 .55 .63 .26 .20 .43 .05 .01 -.02 .04 .11 .14 .16 .00 .00 .09 .25 .10 .08

CSL [40] .66 .52 .76 .28 .42 .53 .16 .27 .28 .23 .34 .22 .37 .18 .06 .15 .53 .19 .25

OSVR [43] .63 .54 .84 .35 .37 .55 .16 .23 .20 .12 .29 .29 .47 .14 .07 .14 .59 .17 .24

BORMIR [42] .71 .63 .82 .32 .42 .58 .24 .36 0.37 .21 .47 .24 .60 .31 .20 .20 .70 .13 .34

KJRE .72 .65 .87 .40 .43 .62 .28 .38 .26 .34 .54 .33 .69 .18 .18 .22 .75 .25 .37

IC
C

SVR [32] .40 .41 .73 .23 .26 .41 .04 .24 .16 .18 .27 .12 .32 .11 .00 .11 .47 .07 .17

SOVRIM [5] .47 .43 .76 .23 .29 .44 .05 .22 .19 .16 .30 .08 .28 .16 .04 .10 .49 .07 .18

RVR [10] .65 .59 .82 .27 .41 .55 .24 .31 .04 .29 .35 .23 .59 .08 .18 .05 .81 .27 .29

LT [11] .58 .58 .69 .32 .08 .45 .18 .05 .01 .19 .39 .09 .42 .02 .10 .00 .51 .21 .18

COR [35] .48 .54 .69 .16 .18 .41 .14 .12 .24 .01 .29 .19 .38 .05 .10 .01 .65 .11 .19

DSRVM [12] .60 .62 .80 .31 .16 .50 .02 .00 .01 .00 .07 .04 .08 .02 .02 -.02 .16 .00 .03

HSSR [13] .28 .24 .28 .09 .07 .19 .00 -.02 -.03 .03 .04 .06 .11 -.01 .01 .05 .14 .08 .04

CSL [40] .65 .49 .76 .27 .42 .52 .15 .26 .27 .22 .31 .21 .36 .18 .05 .15 .49 .18 .24

OSVR [43] .63 .53 .84 .35 .36 .54 .16 .23 .17 .11 .26 .28 .37 .14 .05 .14 .56 .12 .22

BORMIR [42] .71 .62 .82 .31 .42 .58 .19 .27 .33 .14 .41 .18 .58 .16 .16 .09 .69 .13 .28

KJRE .71 .61 .87 .39 .42 .60 .27 .35 .25 .33 .51 .31 .67 .14 .17 .20 .74 .25 .35

M
A

E

SVR [32] 1.71 1.44 1.06 1.76 1.38 1.47 2.42 1.94 3.41 2.07 1.83 2.28 2.31 1.54 2.45 1.76 1.95 2.47 2.20

SOVRIM [5] 1.41 1.46 .97 1.54 1.21 1.32 2.43 1.91 3.52 2.31 1.90 2.22 2.60 1.60 2.43 1.80 1.86 2.85 2.29

RVR [10] 1.16 1.13 .84 1.35 1.03 1.10 1.22 1.09 2.66 .88 1.03 1.20 1.31 .72 1.22 .79 .78 1.49 1.20

LT [11] .94 .99 .91 1.09 1.00 .99 1.00 .93 1.43 .61 .80 .84 .91 .56 .73 .67 1.13 .85 .87

COR [35] 1.21 1.15 .88 1.63 .92 1.16 1.16 1.24 1.18 2.88 .98 .91 1.11 .91 .68 1.15 .77 .80 1.15

DSRVM [12] .89 .96 .78 1.09 .87 .92 .89 .82 1.31 .64 .88 .78 .98 .56 .77 .58 1.27 .82 .86

HSSR [13] 1.16 1.24 1.25 1.21 .92 1.16 .92 .84 1.30 .44 .92 .66 1.08 .53 .73 .59 1.31 .80 .84

CSL [40] .97 1.37 1.22 1.32 .94 1.16 1.20 1.16 1.40 1.11 .98 1.19 1.03 .98 1.17 1.05 1.08 1.12 1.12

OSVR [43] .99 1.13 .77 1.15 1.06 1.02 1.44 1.14 3.09 .90 1.61 .94 1.94 .78 1.75 .85 1.36 1.78 1.46

BORMIR [42] .83 .99 .92 1.14 0.90 0.96 .90 .77 1.48 .58 .78 .78 0.91 0.56 .75 0.64 .95 .98 .84

KJRE .82 .95 .64 1.08 .85 .87 1.02 .92 1.86 .70 .79 .87 .77 .60 .80 .72 .96 .94 .91

Table 3: Comparison with deep models

Database FERA 2015 DISFA

Method PCC ICC MAE PCC ICC MAE

# annotated frames: more than 75,000

CCNN [34]* - .63 1.26 - .38 .66

2DC [31]* - .66 - - .50 -

# annotated frames: 120

KBSS [41] .50 .49 1.17 .23 .21 .68

KJRE .58 .57 .90 .29 .28 1.10

# annotated frames: 360

KBSS [41] .60 .58 .94 .31 .30 .62

KJRE .62 .60 .87 .37 .35 .91

# annotated frames: 1000

KBSS [41] .63 .63 .88 .37 .35 .46

KJRE .63 .61 .85 .38 .36 .82

is slightly worse than HSSR, LT, DSRVM, and BORMIR

when annotation ratio is less than 10%. HSSR, LT, and D-

SRVM have good performance in MAE because they are

sensitive to the imbalanced AU intensity distribution during

learning and tend to predict intensity level 0 for all testing

samples. Since the majority intensity is 0, this makes them

have good MAE but poor ICC and MAE.

Table 3 shows the comparison with deep models when

using limited annotated frames. The average performance is

presented. Results of CCNN and 2DC are adapted from the

corresponding papers. On FERA 2015, our method outper-

forms KBSS when using only 120 or 360 annotated frames.

When using 1000 frames, our method is comparative to KB-

SS. On DISFA, our method achieves better PCC and ICC.

The results show that our method is applicable to databas-

es with scarce annotated frames, even with few hundreds of

annotated frames where our method can outperform KBSS.

5. Conclusion

We propose a general framework for AU intensity es-

timation which jointly learns representation and estimator

with limited annotations. Besides, it can flexibly incorpo-

rate various types of human knowledge. Human knowledge

is used to provided weak supervision for the joint learning

and to efficiently exploit unlabeled images. We also propose

an algorithm for optimization based on the framework of

ADMM. Evaluations on two benchmark databases demon-

strate the effectiveness of the proposed method, especially

when the ratio of intensity annotations is small.
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