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Abstract

This research strives for natural language moment re-

trieval in long, untrimmed video streams. The problem is

not trivial especially when a video contains multiple mo-

ments of interests and the language describes complex tem-

poral dependencies, which often happens in real scenar-

ios. We identify two crucial challenges: semantic misalign-

ment and structural misalignment. However, existing ap-

proaches treat different moments separately and do not ex-

plicitly model complex moment-wise temporal relations. In

this paper, we present Moment Alignment Network (MAN),

a novel framework that unifies the candidate moment en-

coding and temporal structural reasoning in a single-shot

feed-forward network. MAN naturally assigns candidate

moment representations aligned with language semantics

over different temporal locations and scales. Most impor-

tantly, we propose to explicitly model moment-wise tempo-

ral relations as a structured graph and devise an iterative

graph adjustment network to jointly learn the best struc-

ture in an end-to-end manner. We evaluate the proposed

approach on two challenging public benchmarks DiDeMo

and Charades-STA, where our MAN significantly outper-

forms the state-of-the-art by a large margin.

1. Introduction

Video understanding is a fundamental problem in com-

puter vision and has drawn increasing interests over the past

few years due to its vast potential applications in surveil-

lance, robotics, etc. While fruitful progress [44, 49, 47, 4,

48, 51, 5, 52, 50, 28, 10, 41, 2, 61, 42, 53, 59] has been

made on activity detection to recognize and localize tempo-

ral segments in videos, such approaches are limited to work

on pre-defined lists of simple activities, such as playing bas-

ketball, drinking water, etc. This restrains us from mov-

ing towards real-world unconstrained activity detection. To

Query: The child touches the ground the second time.

Query: Child is running away after is closest to the camera.

Figure 1: We consider the natural language moment re-

trieval task in untrimmed videos. To properly localize the

moment, the retrieval model must handle both semantic

misalignment (top) with multiple moments of interests and

structural misalignment (bottom) with complex temporal

dependencies.

solve this problem, we tackle the natural language moment

retrieval task. Given a verbal description, our goal is to de-

termine the start and end time (i.e. localization) of the tem-

poral segment (i.e. moment) that best corresponds to this

given query. While this formulation opens up great oppor-

tunities for better video perception, it is substantially more

challenging as it needs to model not only the characteristics

of sentence and video but also their complex relations.

On one hand, a real-world video often contains multiple

moments of interests. Consider a simple query like “The

child touches the ground the second time”, shown in Fig-

ure 1, a robust model needs to scan through the video and

compare the video context to find the second occurrence of

“child touches the ground”. This raises the first challenge

for our task: semantic misalignment. A simple ordinal num-

ber will result in searching from a whole video, where a

naive sliding approach will fail. On the other hand, the lan-

guage query usually describes complex temporal dependen-

cies. Consider another query like ”Child is running away af-
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ter is closest to the camera”, different from the sequence de-

scribed in sentence, the ”close to the camera” moment hap-

pens before ”running away”. This raises the second chal-

lenge for our task: structural misalignment. The language

sequence is often misaligned with video sequence, where a

naive matching without temporal reasoning will fail.

These two key challenges we identify: semantic mis-

alignment and structural misalignment have not been solved

in existing methods [18, 14] for the natural language mo-

ment retrieval task. Existing methods sample candidate mo-

ments by scanning videos with varying sliding windows,

and compare the sentence with each moment individually

in a multi-modal common space. Although simple and in-

tuitive, this individualist representations of sentence and

video make it hard to model semantic and structural rela-

tions among two modalities.

To address the above challenges, we propose an end-

to-end Moment Alignment Network (MAN) for the natu-

ral language moment retrieval task. The proposed MAN

model directly generates candidate moment representations

aligned with language semantics, and explicitly model tem-

poral relationships among different moments in a graph-

structured network. Specifically, we encode the entire video

stream using a hierarchical convolutional network and nat-

urally assign candidate moments over different temporal

locations and scales. Language features are encoded as

efficient dynamic filters and convolved with input visual

representations to deal with semantic misalignment. In

addition, we propose an Iterative Graph Adjustment Net-

work (IGAN) adopted from Graph Convolution Network

(GCN) [26] to model relations among candidate moments

in a structured graph. Our contributions are as follows:

• We propose a novel single-shot model for the natural

language moment retrieval task, where language de-

scription is naturally integrated as dynamic filters into

an end-to-end trainable fully convolutional network.

• To the best of our knowledge, we are the first to ex-

ploit graph-structured moment relations for temporal

reasoning in videos, and we propose the IGAN model

to explicitly model temporal structures and improve

moment representation.

• We conduct extensive experiments on two challenging

benchmarks: Charades-STA [14] and DiDeMo [18].

We demonstrate the effectiveness of each component

and the proposed MAN significantly outperforms the

state-of-the-art by a large margin.

2. Related Work

Temporal Activity Detection. Temporal activity detection

is the task to predict the start and end time (i.e., localiza-

tion) and the label (i.e., classification) of activity instances

in untrimmed videos. Earlier works on activity detection

mainly used temporal sliding windows as candidates and

trained activity classifier on hand-crafted features [35, 13,

23, 33, 46]. With the vast successes of deep learning meth-

ods, two-stream networks [44, 12, 49], 3D ConvNet [47]

and other deep neural networks [4, 48, 38, 51, 9] have been

proposed to model video sequences and significantly im-

proved recognition performance. To better localize tempo-

ral boundaries, a large body of work incorporated deep net-

works into the detection framework and obtained improved

performance [5, 28, 10, 41, 2, 61, 42, 53, 59]. Among these

works, S-CNN [42] proposed a multi-stage CNN which

adopted 3D ConvNet with multi-scale sliding window; R-

C3D [53] proposed an end-to-end trainable activity detector

based on Faster-RCNN [39]; S3D [59] performed single-

shot activity detection to get rid of explicit temporal pro-

posals.

However, most of these methods have focused on detect-

ing a fixed set of activity classes without language queries.

In this paper, we propose to build a highly-integrated re-

trieval framework and adopt a similar single-shot encoding

scheme inspired by the single-shot detectors [30, 59, 28].

Natural Language Moment Retrieval. The natural lan-

guage moment retrieval is a new task introduced re-

cently [18, 14]. The methods proposed in [18, 14] learn

a common embedding space shared by video segment fea-

tures and sentence representations and measure their simi-

larities through sliding window [14] or handcrafted heuris-

tics [18]. While simple and effective, these methods fail to

consider the challenging alignment problems.

Until recently, several methods were proposed to closely

integrate language and video representation [54, 6]: Xu et

al. [54] proposed multilevel language and video feature fu-

sion; TGN [6] applied frame-by-word interactions between

video and language and obtained improved performance.

Although these works share the same spirit with ours to bet-

ter align semantic information, they fail to reason the com-

plex cross-modal relations. Our work is the first to model

both semantic and structural relations together in an unified

network, allowing us to directly learn the complex temporal

relations in an end-to-end manner.

Visual Relations and Graph Network. Reasoning about

the pairwise relationships has been proven to be very help-

ful in a variety of computer vision tasks [16, 57, 58, 8]. Re-

cently, visual relations have been combined with deep neu-

ral networks in areas such as object recognition [21, 11],

visual question answering [40] and action recognition [31,

34]. A variety of papers have considered modeling spatial

relations in natural images [7, 22, 37], and scene graph is

widely used in the image retrieval tasks [24, 56]. In the field

of natural language moment retrieval: Liu et al. [29] pro-

posed to parse sentence structure as a dependency tree and

construct a temporal modular network accordingly; Hen-

dricks et al. [19] modeled video context as a latent variable
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Figure 2: An overview of our end-to-end Moment Alignment Network (MAN) for natural language moment retrieval (best

viewed in color). MAN consists three major components: (1) A language encoder to convert the input language query to

dynamic convolutional filters through a single-layer LSTM. (2) A video encoder to produce multi-scale candidate moment

representations in a hierarchical fully-convolutional network, where input visual features are aligned with language semantics

by convolution. (3) An iterative graph adjustment network to directly model moment-wise temporal relations and update

moment representations. Finally, the moments are retrieved by its matching scores with the language query.

to reason about the temporal relationships. However, their

reasoning relies on a hand-coded structure, thus, fail to di-

rectly learn complex temporal relations.

Our work is inspired by the GCN [26] and other success-

ful graph-based neural networks [32, 55]. While the origi-

nal GCN is proposed to reason on a fixed graph structure,

we modify the architecture to jointly optimize relations to-

gether. That is, instead of fixing the temporal relations, we

learn it from the data.

3. Model

In this work, we address the natural language moment

retrieval task. Given a video and a natural language de-

scription as a query, we aim to retrieve the best matching

temporal segment (i.e., moment) as specified by the query.

To specifically handle the semantic and structural misalign-

ment between video and language, we propose Moment

Alignment Network (MAN), a novel framework combining

both video and language information in a single-shot struc-

ture to directly output matching scores between moment

and language query through temporal structure reasoning.

As illustrated in Figure 2, our model consists of three main

components: a language encoder, a video encoder and an it-

erative graph adjustment network. We introduce the details

of each component and network training in this section.

3.1. Language Encoding as Dynamic Filters

Given an input of a natural language sentence as a query

that describes the moment of interest, we aim to encode it

so that we can effectively retrieve specific moment in video.

Instead of encoding each word with a one-hot vector or

learning word embeddings from scratch, we rely on word

embeddings obtained from a large collection of text docu-

ments. Specifically, we use the Glove [36] word2vec model

pre-trained on Wikipedia. It enables us to model complex

linguistic relations and handle words beyond the ones in the

training set. To capture language structure, we use a single-

layer LSTM network [20] to encode input sentences. In

addition, we leverage the LSTM outputs at all time steps to

seek more fine-grained interactions between language and

video. We also study the effects of using word-level or

sentence-level encoding in our ablation study.

In more detail, a language encoder is a function Fl(ω)
that maps a sequence of words ω = {wi}

L
i=1

to a semantic

embedding vector fl ∈ R
L×d, where L is the number of

words in a sentence and d is the feature dimension, and Fl

is parameterized by Glove and LSTM in our case.

Moreover, to transfer textual information to the visual

domain, we rely on dynamic convolutional filters as earlier

used in [27, 15]. Unlike static convolutional filters that are

used in conventional neural networks, dynamic filters are
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generated depending on the input, in our case on the en-

coded sentence representation. As a general convolutional

layer, dynamic filters can be easily incorporated with the

video encoder as an efficient building block.

Given a sentence representation fl ∈ R
L×d, we generate

a set of word-level dynamic filters {Γi}
L
i=1

with a single

fully-connected layer:

Γi = tanh(WΓf
i
l + bΓ) (1)

where f i
l ∈ R

d is the word-level representation at index i,
and for simplicity, Γi is designed to have the same num-

ber of intput channels as f i
l . Thus, by sharing the same

transformation for all words, each sentence representation

fl ∈ R
L×d can be converted to a dynamic filter Γ ∈ R

d×L

through a single 1D convolutional layer.

As illustrated in Figure 2, we convolve the dynamic fil-

ters with the input video features to produce a semantically-

aligned visual representation, and also with the final

moment-level features to compute the matching scores. We

detail our usage in Section 3.2 and Section 3.3, respectively.

3.2. SingleShot Video Encoder

Existing solutions for natural language moment retrieval

heavily relies on handcrafted heuristics [18] or temporal

sliding windows [14] to generate candidate segments. How-

ever, the temporal sliding windows are typically too dense

and often times designed with multiple scales, resulting in

a heavy computation cost. Processing each individual mo-

ment separately also fails to efficiently leverage semantic

and structural relations between video and language.

Inspired by the single-shot object detector [30] and its

successful applications in temporal activity detection [59,

28], we apply a hierarchical convolutional network to di-

rectly produce multi-scale candidate moments from the in-

put video stream. Moreover, for the natural language mo-

ment retrieval task, the visual features itself undoubtedly

play the major role in generating candidate moments, while

the language features also help to distinguish the desired

moment from others. As such, a novel feature alignment

module is especially devised to filter out unrelated visual

features from language perspective at an early stage. We

do so by generating convolutional dynamic filters (Sec-

tion 3.1) from the textual representation and convolving

them with the visual representations. Similar to other single

shot detectors, all these components are elegantly integrated

into one feed-forward CNN, aiming at naturally generat-

ing variable-length candidate moments aligned with natural

language semantics.

In more detail, given an input video, we first obtain a

visual representation that summarizes spatial-temporal pat-

terns from raw input frames into high-level visual seman-

tics. Recently, Dai et al. proposed to decompose 3D convo-

lutions into aggregation blocks to better exploit the spatial-

temporal nature of video. We adopt the TAN [9] model to

obtain a visual representation from video. As illustrated in

Figure 2, an input video V = {vt}
Tv

t=1
is encoded into a

clip-level feature fv ∈ R
Tf×d where Tf is the total number

of clips and d is the feature dimension. For simplicity, we

set fv and fl to have the same number of channels. While

fv should be sufficient for building advanced recognition

model [53, 28, 60], the crucial alignment information be-

tween language and vision is missing specifically for natu-

ral language moment retrieval.

As such, the dynamic convolutional filters are applied to

fill the gap. We convolve the dynamic filter Γ with fv to ob-

tain a clip-wise response map M , and M is further normal-

ized to augment the visual feature. Formally, the augmented

feature f ′

v is computed as:

M = Γ ∗ fv ∈ R
Tv×L

Mnorm = softmax(sum(M)) ∈ R
Tv

f ′

v = Mnorm ⊙ fv ∈ R
Tv×d

(2)

where ⊙ denotes matrix-vector multiplication.

To generate variable-length candidate moments, we fol-

low similar design of other single-shot detectors [30, 59] to

build a multi-scale feature hierarchy. Specifically, a tem-

poral pooling layer is firstly devised on top of f ′

v to reduce

the temporal dimension of feature map and increase tempo-

ral receptive field, producing the output feature map of size

Tv/p × d where p is the pooling stride. Then, we stack

K more 1D convolutional layers (with appropriate pool-

ing) to generate a sequence of feature maps that progres-

sively decrease in temporal dimension which we denote as

{fk
v }

K
k=1

, fk
v ∈ R

Tk×d where Tk is the temporal dimension

of each layer. Thus each temporal feature cell is respon-

sive to a particular location and length, and therefore corre-

sponds to a specific candidate moment.

3.3. Iterative Graph Adjustment Network

To encode complex temporal dependencies, we propose

to model moment-wise temporal relations in a graph to ex-

plicitly utilize the rich relational information among mo-

ments. Specifically, candidate moments are represented by

nodes, and their relations are defined as edges. Since we

gather N =
∑K

k=1
Tk candidate moments in total each rep-

resented by a d-dimensional vector, we denote the node fea-

ture matrix as fm ∈ R
N×d. To perform reasoning on the

graph, we aim to apply the GCN proposed in [26]. Differ-

ent from the standard convolutions which operate on a local

regular grid, the graph convolutions allow us to compute

the response of a node based on its neighbors defined by

the graph relations. In the general form, one layer of graph

convolutions is defined as:

H = ReLU(GXW ) (3)
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where G ∈ R
N×N is the adjacency matrix, X ∈ R

N×d is

the input features of all nodes, W ∈ R
d×d is the weight

matrix and H ∈ R
N×d is the updated node representation.

However, one major limitation of the GCN applied in our

scenario is that it can only reason on a fixed graph struc-

ture. To fix this issue, we introduce the Iterative Graph Ad-

justment Network (IGAN), a framework based on GCN but

with a learnable adjacency matrix, that is able to simultane-

ously infer a graph by learning the weight of all edges and

update each node representation accordingly. In more de-

tail, we iteratively updates the adjacency matrix as well as

node features in a recurrent manner. The IGAN model is

fully differentiable thus can be efficiently learned from data

in an end-to-end manner.

In order to jointly learn the node representation and

graph structure together, we propose certain major modifi-

cations to the original GCN block: (1) Inspired by the suc-

cessful residual network [17], we decompose the adjacency

matrix into a preserving component and a residual compo-

nent. (2) The residual component is produced from the node

representation similar to a decomposed correlation [3]. (3)

In a recurrent manner, we iteratively accumulate residual

signals to update the adjacency matrix by feeding updated

node representations. The overall architecture of a single

IGAN cell is illustrated in the top half of Figure 3 and the

transition function is formally defined as:

Rt = norm(Xt−1W
r
t X

T
t−1

)

Gt = tanh(Gt−1 +Rt)

Xt = ReLU(GtX0W
o
t )

(4)

where X0 = fm is the input candidate moment features, Rt

is the residual component derived from the output of pre-

vious cell Xt−1, norm() denotes a signed square root fol-

lowed by a L2 normalization to normalize the features, and

W r
t and W o

t are learnable weights. Note that the candidate

moment features X0 is the output of a hierarchical convo-

lutional network combined with language information, thus

can be jointly updated with the IGAN.

In our design, the initial adjacency matrix G0 is set as a

diagonal matrix to emphasize self-relations. we stack mul-

tiple IGAN cells as shown in the bottom half of Figure 3

to update the candidate moment representations as well as

the moment-wise graph structure. Finally, we convolve the

dynamic filter Γ with the final output XT to compute the

matching scores. We further study the effects of IGAN in

our ablation study.

3.4. Training

Our training sample consists of an input video, an in-

put language query and a ground truth best matching mo-

ment annotated with start and end time. During training, we

need to determine which candidate moments correspond to
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Figure 3: The structure of the proposed Iterative Graph

Adjustment Network (IGAN). Top: In each IGAN cell, a

residual component Rt is generated from the previous node

representation Xt−1 and aggregated with the preserving

component Gt−1 to produce the current adjacency matrix

Gt. Node representations are updated according to Equa-

tion 3 with Gt, X0 and W o
t . Bottom: Multiple IGAN cells

are connected to simultaneously update node representation

and graph structure.

a ground truth moment and train the network accordingly.

Specifically, for each candidate moment, we compute the

temporal IoU score with ground truth moment. If the tem-

poral IoU is higher than 0.5, we regard the candidate mo-

ment as positive, otherwise negative. After matching each

candidate moment with the ground truth, we derive a ground

truth matching score si for each candidate moment.

For each training sample, the network is trained end-to-

end with a binary classification loss using sigmoid cross-

entropy. Rather than using a hard score, we use the temporal

IoU score si as ground truth for each candidate moment.

The loss is defined as:

L = −
1

Nb

Nb∑

i

(si log(ai) + (1− si) log(1− ai)) (5)

where Nb is the number of total training candidate moments

in a batch, ai is the predicted score and si is the ground truth

score.

4. Experiments

We evaluate the proposed approach on two recent large-

scale datasets for the natural language moment retrieval
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task: DiDeMo [18] and Charades-STA [14]. In this section

we first introduce these datasets and our implementation de-

tails and then compare the performance of MAN with other

state-of-the-art approaches. Finally, we investigate the im-

pact of different components via a set of ablation studies

and provide visualization examples.

4.1. Datasets

DiDeMo The DiDeMo dataset was recently proposed

in [18], specially for natural language moment retrieval in

open-world videos. DiDeMo contains more than 10, 000
videos with 33, 005, 4, 180 and 4, 021 annotated moment-

query pairs in the training, validation and testing datasets

respectively. To annotate moment-query pairs, videos in

DiDeMo are trimmed to a maximum of 30 seconds, di-

vided into 6 segments of 5 seconds long each, and each

moment contains one or more consecutive segments. There-

fore, there are 21 candidate moments in each video and the

task is to select the moment that best matches the query.

Following [18], we use Rank-1 accuracy (Rank@1),

Rank-5 accuracy (Rank@5) and mean Intersection-over-

Union (mIoU) as our evaluation metrics.

Charades-STA The Charades-STA [14] was another re-

cently collected dataset for natural language moment re-

trieval in indoor videos. Charades-STA is built upon the

original Charades [43] dataset. While Charades only pro-

vides video-level paragraph description, Charades-STA ap-

plies sentence decomposition and keyword matching to

generate moment-query annotation: language query with

start and end time. Each moment-query pair is further

verified by human annotators. In total, there are 12, 408
and 3, 720 moment-query pairs in the training and testing

datasets respectively. Since there is no pre-segmented mo-

ments, the task is to localize a moment with predicted start

and end time that best matches the query.

We follow the evaluation setup in [14] to compute

”R@n, IoU@m”, defined as the percentage of language

queries having at least one correct retrieval (temporal IoU

with ground truth moment is larger than m) in the top-n

retrieved moments. Following standard practice, we use

n ∈ {1, 5} and m ∈ {0.5, 0.7}.

4.2. Implementation Details

We train the whole MAN model in an end-to-end man-

ner, with raw video frames and natural language query as in-

put. For language encoder, each word is encoded as a 300-

dimensional Glove word2vec embedding. All the word em-

beddings are fixed without fine-tuning and each sentence is

truncated to have a maximum length of 15 words. A single-

layer LSTM with d = 512 hidden units is applied to obtain

the sentence representation. For video encoder, TAN [9] is

used for feature extraction. The model takes as input a clip

of 8 RGB frames with spatial size 256 × 256 and extracts

Method Rank@1 Rank@5 mIoU

TMN [29] 18.71 72.97 30.14

TGN [6] 24.28 71.43 38.62

MCN [18] 24.42 75.40 37.39

MAN(ours) 27.02 81.70 41.16

Table 1: Natural language moment retrieval results on

DiDeMo dataset. MAN outperforms previous state-of-the-

art mehtods by ∼ 3% among all metrics.

Method R@1

IoU=0.5

R@1

IoU=0.7

R@5

IoU=0.5

R@5

IoU=0.7

Random [14] 8.51 3.03 37.12 14.06

CTRL [14] 21.42 7.15 59.11 26.91

Xu et al. [54] 35.60 15.80 79.40 45.40

MAN(ours) 46.53 22.72 86.23 53.72

Table 2: Natural language moment retrieval results on

Charades-STA dataset. MAN significantly outperforms pre-

vious state-of-the-art methods by a large margin.

a 2048-dimensional representation as output of an average

pooling layer. We add another 1D convolutional layer to

reduce the feature dimension to d = 512. Each video is

decoded at 30 FPS and clips are uniformly sampled among

the whole video. On Charades, we sample Tf = 256 clips

and set the pooling stride p = 16 and apply a sequence of

1D convolutional filters (pooling stride 2) to produce a set

of {16, 8, 4, 2, 1} candidate moments, resulting in 31 can-

didate moments in total. Similarly, on DiDeMo, in order

to match with the pre-defined temporal boundary, we sam-

ple Tf = 240 clips and set pooling stride p = 40 with

a sequence of 1D convolutional filters (pooling is adjusted

accordingly) to produce a set of {6, 5, 4, 3, 2, 1} candidate

moments, resulting in 21 candidate moments in total. For

both datasets, we apply 3 IGAN cells. We implement our

MAN on TensorFlow [1]. The whole system is trained by

Adam [25] optimizer with learning rate 0.0001.

4.3. Comparison with Stateoftheart

We compare our MAN with other state-of-the-art meth-

ods on DiDeMo [18] and Charades-STA [14]. Note that

the video content and language queries differ a lot among

two different datasets. Hence, strong adaptivity is required

to perform consistently well on both datasets. Since our

MAN only takes raw RGB frames as input and doesn’t rely

on external motion features such as optical flow, for a fair

comparison, all compared methods use RGB features only.

DiDeMo Table 1 shows our natural language moment re-

trieval results on the DiDeMo dataset. We compare with

state-of-the-art methods published recently including the
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Method Rank@1 Rank@5 mIoU

Base 23.56 77.66 36.36

Base+FA(1) 24.45 78.69 37.72

Base+FA(L) 25.10 79.57 38.78

Base+FA+IGANx1 25.67 79.36 39.13

Base+FA+IGANx2 26.10 80.08 40.21

Base+FA+IGANx3 27.02 81.70 41.16

Table 3: Ablation study for effectiveness of MAN compo-

nents: Top: Advantage of a single-shot video encoder. Mid:

Effectiveness of the feature alignment. Bottom: Importance

of the IGAN.

methods that use temporal modular network [29], fine-

grained frame-by-word attentions [6] and temporal contex-

tual encoding [18]. Among all three evaluation metrics,

the proposed method outperforms previous state-of-the-art

methods by around 3% in absolute values.

Charades-STA We also compare our method with the re-

cent state-of-the-art methods on Charades-STA dataset. The

results are shown in Table 2, where CTRL [14] applies a

cross-modal regression localizer to adjust temporal bound-

aries and Xu et al. [54] even boosts the performance with

more closely multilevel language and vision integration.

Our model tops all the methods among all evaluation met-

rics and significantly improves R@1, IoU=0.5 by over 10%
in absolute values.

4.4. Ablation Studies

To understand the proposed MAN better, we evaluate our

network with different variants to study their effects.

Network Components. On DiDeMo dataset, we perform

ablation studies to investigate the effect of each individual

component we proposed in this paper: single-shot video en-

coder, feature alignment with language query and iterative

graph adjustment network.

Single-shot video encoder. In this work, we introduced a

single-shot video encoder using hierarchical convolutional

network for the natural language moment retrieval task. To

study the effect of this architecture alone, we build a Base

model which is the same as we described in Section 3.2

except for two modifications: (1) We remove the feature

alignment component (Equation 2) and directly use the vi-

sual feature fv to construct the network. (2) We remove all

IGAN cells on top and directly feed fm to compute match-

ing scores. The result is reported in the top line in Table 3,

even with only a single-shot encoding scheme, we achieve

23.56% on Rank@1 and 77.66% on Rank@5 which is bet-

ter or competitive with other state-of-the-art methods.

Dynamic filter. We further validate our design to aug-

ment the input clip-level features with dynamic filters. The

results are shown in the middle part in Table 3. On

Method R@1

IoU=0.5

R@1

IoU=0.7

R@5

IoU=0.5

R@5

IoU=0.7

Xu et al. [54] 35.60 15.80 79.40 45.40

MAN-VGG 41.24 20.54 83.21 51.85

MAN-TAN 46.53 22.72 86.23 53.72

Table 4: Ablation study on different visual features. MAN

with VGG-16 features already outperforms state-of-the-art

method, and TAN features further boost the performance.

top of the Base model, we study two different variants:

(1) Construct a sentence-level dynamic filter where only

the last LSTM hidden state is used for feature alignment,

denoted as Base+FA(1). (2) Construct word-level dy-

namic filters where all LSTM hidden states are converted

to a multi-channel filter for feature alignment, denoted

as Base+FA(L). We observe that Base+FA(1) already im-

proves the accuracy compared to the base model, which in-

dicates the importance of adding feature alignment in our

model. Moreover, adding more fine-grained word-level in-

teractions between video and language can further improve

the performance.

Iterative graph adjustment network. A major contribu-

tion of MAN is using the IGAN cell to iteratively update

graph structure and learned representation. We measure the

contribution of this component to the retrieval performance

in the bottom section in Table 3, where Base+FA+IGANxn

denotes our full model with n IGAN cells. The result shows

a decrease in performance with fewer IGAN cells, drop-

ping monotonically from 27.02% to 25.67% on Rank@1.

This is because the temporal relations represented in a mo-

ment graph structure can be iteratively optimized thus more

IGAN cells result in better representation for each candidate

moment. Despite the performance gain, we also notice that

Base+FA+IGANx3 converges faster and generalizes better

with smaller variance.

Visual Features. We conduct experiments to study the ef-

fect of different visual features on Charades-STA dataset.

We consider two different visual features: (1) Two-stream

RGB features [44] from the original Charades dataset,

which is a frame-level feature from VGG-16 [45] network,

we denote the model as MAN-VGG. (2) TAN features as

described in the paper, which is a clip-level feature from ag-

gregation blocks, we denote the model as MAN-TAN. The

results are summarized in Table 4. It can be seen that TAN

features outperform VGG-16 features among all evaluation

metrics, this is consistent with the fact that better base net-

work leads to better overall performance. But more inter-

estingly, while the overall performance using only VGG vi-

sual features is noticeably lower than using TAN features,

our MAN-VGG model already significantly outperforms

the state-of-the-art method. Since frame-level VGG-16 net-
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Query: the person throws their clothes on the shelf.

GT

Pred
[9.5 – 15.2s]

[8.4 – 16.7s]

GT

Pred
[5.0 – 10.0s]

[5.0 – 10.0s]

Query: a woman wearing a green and yellow shirt shows her face for the first time.

Figure 4: Qualitative visualization of the natural language moment retrieval results (Rank@1) by MAN (best viewed in

color). First example is from Charade-STA dataset, and second example is from DiDeMo dataset. Ground truth moments are

marked in black and retrieved moments are marked in green.

Query: a man walks across the screen and blocks the guitar player

1.0

0.8
0.55

0.6
[10-20s] [15-25s]

[10-25s]

[15-20s] [20-25s]

Figure 5: Qualitative example of MAN evaluated on a

video-query pair (best viewed in color). The final moment-

wise graph structure with top related edges and their cor-

responding moments is visualized. The retrieved moment

is marked in green and other moments are marked in blue.

The dashed line indicates the strength of each edge with the

highest one normalized to 1.0.

work provides no motion information when extracting fea-

tures, this superity highlights MAN’s strong ability to per-

form semantic alignment and temporal structure reasoning.

Visualization. Qualitative Results. We provide qualita-

tive results to demonstrate the effectiveness and robustness

of the proposed MAN framework. As shown in Figure 4,

MAN is capable of retrieving a diverse set of moments in-

cluding the one requiring strong temporal dependencies to

identify ”woman shows her face for the first time”. The ad-

vantage of MAN is best pronounced for tasks that rely on

reasoning complex temporal relations.

Graph Visualization. An advantage of a graph structure

is its interpretability. Figure 5 visualizes the final moment-

wise graph structure learned by our model. In more detail,

Figure 5 displays a 30-second video where ”man walks”

from 10 to 30 seconds and ”blocks the guitar player” from

15 to 25 seconds. MAN is able to concentrate on those mo-

ments with visual information related to ”man walks across

the screen”. It also reasons among multiple similar mo-

ments including some incomplete moments (15-20s, 20-

25s) and some other moments partially related to ”blocks

the guitar player” (10-20s, 10-25s) to retrieve the one best

matching result (15-25s).

5. Conclusion

We have presented MAN, a Moment Alignment Network
that unifies candidate moment encoding and temporal struc-
tural reasoning in a single-shot structure for natural lan-
guage moment retrieval. Particularly, we identify two key
challenges (i.e. semantic misalignment and structural mis-
alignment) and study how to handle such challenges in a
deep learning framework. To verify our claim, we propose
a fully convolutional network to force cross-modal align-
ments and an iterative graph adjustment network is devised
to model moment-wise temporal relations in an end-to-end
manner. With this framework, We achieved state-of-the-
art performance on two challenging benchmarks Charades-
STA and DiDeMo.
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