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Abstract

Deep Neural Networks (DNNs) have achieved remark-

able successes in large-scale visual recognition. However,

they often suffer from overfitting under noisy labels. To

alleviate this problem, we propose a conceptually simple

but effective MetaCleaner, which can learn to hallucinate a

clean representation of an object category, according to a

small noisy subset from the same category. Specially, Meta-

Cleaner consists of two flexible submodules. The first sub-

module, namely Noisy Weighting, can estimate the confi-

dence scores of all the images in the noisy subset, by an-

alyzing their deep features jointly. The second submodule,

namely Clean Hallucinating, can generate a clean repre-

sentation from the noisy subset, by summarizing the noisy

images with their confidence scores. Via MetaCleaner,

DNNs can strengthen its robustness to noisy labels, as well

as enhance its generalization capacity with richer data di-

versity. Moreover, MetaCleaner can be easily integrated

into the standard training procedure of DNNs, which pro-

motes its value for real-life applications. We conduct ex-

tensive experiments on two popular benchmarks in noisy-

labeled recognition, i.e., Food-101N and Clothing1M. For

both datasets, our MetaCleaner significantly outperforms

baselines, and achieves the state-of-the-art performance.

1. Introduction

Over the past years, visual recognition has been driven

by Deep Neural Networks (DNNs) [10, 11, 32]. However,

these models rely on large-scale data sets with manually-

annotated labels. Collecting such data sets is expensive or

time-consuming. Alternatively, a practical solution is to

crawl images automatically from the internet. But these

web images are noisy-labeled, e.g., a pizza image is often

collected into the steak category. Many studies have shown
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Figure 1. MetaCleaner. Suppose that there are 5 images altogether

in the steak category, where 2 images are noisy-labeled, i.e., ham-

burger and pizza. In a training batch, we feed a randomly-sampled

subset of this category (e.g., 4 images) into DNNs, and generate

the semantic representations of these images. First, MetaCleaner

compares these representations in the feature space, which can dis-

cover relations between images, and thus generate the confidence

score of each image in the subset. Second, MetaCleaner summa-

rizes the importance of different images in the subset to hallucinate

a ‘clean’ representation of steak. This imaginary representation

can improve the robustness of DNNs to label noise as well as gen-

eralize the capacity of DNNs with richer data diversity.

that, such corrupted labels tend to deteriorate the classifica-

tion performance of DNNs [5, 26].

One solution is label noise correction [23, 42]. However,

these approaches mainly work on the label space, which

requires a confusion matrix to build connections between

clean and noise labels. In practice, it is often difficult and

labor-intensive to obtain such statics information for large-

scale data sets. To further improve effectiveness, an alterna-

tive solution has been proposed by weighting [12, 15, 25],

i.e., assigning the confidence score of each image into the

corresponding training loss. However, such mechanism
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may suffer from the following limitations. First, the con-

fidence score is independently estimated [12, 25]. Hence, it

may ignore the relations between images in this category,

i.e., a key factor to depress the noisy-labeled confusion.

Second, it is often challenging to distinguish between hard

clean images and noisy ones. In this case, simple weighting

may reduce data diversity by decreasing the importance of

hard clean images [12, 15, 25]. Finally, these approaches ei-

ther require the complex design of curriculum learning [12],

or extra supervision of clean/verification set [15, 25]. This

may limit their power in real-life applications.

To address these difficulties, we propose a conceptually

simple but effective MetaCleaner, which can learn to hallu-

cinate clean representations for noisy-labeled visual recog-

nition. First, we propose a Noisy Weighting submodule. In-

stead of assigning a confidence score of each image inde-

pendently into training loss, our Noisy Weighting can com-

pare all the images in a small noisy subset of a specific

category. This allows to discover the important relations

between images, and thus provides a better estimation of

confidence score for each image in the subset. Second,

we introduce a Clean Hallucinating submodule, which can

leverage the importance of different images in the subset

to summarize a clean representation of the corresponding

category. Via our MetaCleaner, DNNs can improve its ro-

bustness to label noise, as well as generalize its model ca-

pacity with richer data diversity. Moreover, MetaCleaner

can be flexibly integrated into the standard training proce-

dure of DNNs without any difficulties. This conciseness

significantly promotes its value in practice. Finally, we

evaluate MetaCleaner on two popular benchmarks in noisy-

labeled recognition, i.e., Food-101N and Clothing1M. For

both datasets, we achieve the state-of-the-art performance.

2. Related Work

Noisy-Labeled Recognition. The recent studies have

shown that, DNNs often suffer from overfitting on noisy la-

bels [5, 26, 31]. To alleviate such problems, a number of

approaches have been introduced by outlier removal [19,

29, 41], weakly/semi-supervised learning [34, 40, 45, 46],

knowledge distillation and transfer learning [15, 17, 18, 22],

robust loss function design [8, 21, 35, 44], label prediction

and correction [14, 23, 24, 31, 33, 36, 42], sample weight-

ing [7, 12, 15, 25], and so on. One well-known solution

is label prediction and correction, where the predicted la-

bel is either used as extra training supervision of DNNs

[14, 24, 33, 36], or passed through a label confusion ma-

trix to reconstruct the noisy label [23, 31, 42]. However,

the reliability of predicted label is often limited, and the

ground truth confusion matrix is difficult to obtain for real-

life applications. To improve the effectiveness, several ap-

proaches have been recently proposed by weighting train-

ing loss of each training samples. They implicitly inherit

the spirit of meta learning, i.e., learning to evaluate the im-

portance of different images by curriculum learning [7, 12],

gradient direction [25], similarity matching [15], etc. How-

ever, [7, 12] often requires a complex training procedure or

predefined curriculum, which may limit its application in

practice. Furthermore, [12, 25] assigns the weight of each

image independently into the corresponding training loss,

which may ignore the important relations between images

in a category. [15] can alleviate this difficulty to some de-

gree, by matching similarity between a query and reference

embedding. However, this approach requires extra verifica-

tion sets as supervision. Different from existing approaches,

our MetaCleaner can effectively exploit the relations be-

tween different images in a random subset of a category,

and leverage the importance of images to hallucinate diver-

sified clean representations for noise reduction.

Meta Learning. Meta learning monitors the automatic

learning process itself, in the context of the learning prob-

lems it encounters and tries to adapt its behavior to perform

better [16]. Hence, it is also named as learning to learn.

Recently, it has been highlighted for optimization and ini-

tialization [2, 4, 20], reinforcement learning [38], few-shot

image recognition [9, 27, 30, 37, 39], etc. In particular,

[9, 39] and our MetaCleaner follows the similar insight of

hallucination. However, [9, 39] aims at few-shot learning,

while our MetaCleaner works on noisy-labeled recognition.

This leads to different hallucination mechanisms and train-

ing procedures. Additionally, our MetaCleaner shares the

spirit of prototype in [30]. But different from prototypical

network, our MetaCleaner mainly develops a robust classi-

fier to reduce confusion of noisy labels. Hence, it adaptively

uses the weighted prototype as a ‘clean’ representation to

generalize softmax classifier, instead of using the mean pro-

totype to construct a metric classifier for low-shot learning.

3. MetaCleaner

This section describes the proposed MetaCleaner for

noisy-labeled image classification. Our method is partly in-

spired by the remarkable ability of human vision system to

extract vision concepts from noisy images. Cognitive stud-

ies have shown that, humans can perceive and learn novel

concepts from input images under unsupervised and noisy

conditions [28]. Specifically, humans can analyze the rela-

tionship of input samples and identify which ones are reli-

able and important to the target concept. Then humans can

leverage this knowledge to summarize the input samples for

learning the target concept.

To mimic this process, we introduce a conceptually sim-

ple and generic MetaCleaner for training deep CNNs under

noisy labels. The key idea is to hallucinate a clean represen-

tation vc of the k-th object category, by randomly sampling

a small subset of N noisy-labeled images in the same cate-

gory, i.e., V = {vi}
N
i=1

, where vi can be the feature vec-
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Figure 2. The whole framework of MetaCleaner. It can mimic the learning procedure of humans to hallucinate a clean representation from

a noisy-labeled set of an object category (e.g., steak). To achieve this goal, MetaCleaner consists of two submodules, i.e., Noisy Weighting

and Clean Hallucinating. First, Noisy Weighting is used to estimate the importance of each image, by comparing all the representations

in this set. Second, Clean Hallucinating summarizes the weighted representations as a clean representation for classification. It is worth

mentioning that, no prior knowledge (i.e., which images are noisy-labeled) is required for our MetaCleaner. It can adaptively depress the

noisy-labeled images and highlight the clean images in an end-to-end learning framework.

tor from CNNs. Ideally, we hope that MetaCleaner can

identify the correctly labeled samples in V and summarize

their representations into vc. Subsequently, vc severs as a

reliable and rich (generated from multiple samples) repre-

sentation for training CNNs. Moreover, the subset V has a

small size N for the k-th object category. Hence, it is possi-

ble to construct a huge number of subsets (i.e., CN
M ), where

M is the total number of training samples for the k-th ob-

ject category. This allows to construct the diversified vc for

learning.

Mathematically, we formulate hallucination by

vc = MetaCleaner(V)

= E[v · pclean(v|V)]

≈
1

∑N

i=1
pclean(vi|V)

∑N

i=1
vi · pclean(vi|V), (1)

where pclean(v|V) is the conditional density function of

the clean representation given the subset V. The main

challenge of using the above formula comes from how to

estimate pclean(v|V), since the subset V only includes a

small number of samples with noisy labels. Statistically,

it is difficult to estimate a precise pclean with V. However,

pclean(vi|V) can be seen as a confident score of sample vi

being with correct label given subset V. So instead of es-

timating the density pclean, we circumvent this difficulty by

directly calculating the values of pclean(vi|V).

Based on the analysis above, we design MetaCleaner
with two modules, i.e., Noisy Weighting for confidence

score estimation, Clean Hallucinating for clean represen-

tation generation. The whole framework of MetaCleaner is

shown in Fig. 2.

3.1. Noisy Weighting

As stated above, Noisy Weighting aims at estimating a

confidence score αi about whether vi is a correctly labeled

sample. For example, a pizza image is mistakenly collected

into the steak category (Fig. 2). To effectively avoid confu-

sion when learning steak, Noisy Weighting should assign a

low confident score for the pizza image, while applying the

high scores for other steak images.

To achieve this goal, we propose to apply a multi-layer

network for confidence score estimation,

[α1, ..., αN ] = fNoisy Weighting([v1, ...,vN ]), (2)

where the input of the network is the concatenation of fea-

ture vectors in V, and the outputs are the predicted confi-

dence scores. Note that, fNoisy Weighting is a nonlinear map-

ping in general, which does not depend on the specific train-

ing category. In our experiment, we investigate different

choices of this mapping, and empirically find that a simple

two-layer MLP works well.

Furthermore, although sample weighting methods [12,
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25] have been studied for noisy labels, our MetaCleaner dif-

fers these methods in two aspects. First, the previous meth-

ods independently estimate the confidence score of each im-

age, w.r.t., the evaluation factors such as training loss [12],

gradients [25]. They often ignore the relations between im-

ages, i.e., an important clue to discover the noisy-labeled

confusion. Alternatively, our method applies a subset of one

category as input, and leverages MLP for relation compari-

son. As a result, it can depress the noisy labels with adap-

tive weighting. Second, instead of reweighting the training

loss with the importance of samples [25], we use the confi-

dence scores to construct novel clean samples. Hence, our

MetaCleaner tends to generalize DNNs with richer data di-

versity.

3.2. Clean Hallucinating

After obtaining the confidence scores of the noisy-

labeled images in the subset, we can hallucinate (generate)

a clean representation by summarizing these noisy images

with their weights. We term this process as a Clean Hallu-

cinating submodule in MetaCleaner. According to Eq. (1)

and Eq. (2), we can obtain a clean representation vc,

vc =

∑
i αivi∑
i αi

, (3)

which is treated as a training sample for classifier.

3.3. Training & Testing of MetaCleaner

Our MetaCleaner is a general and flexible module,

which can be easily integrated into any deep classification

architecture with mini-batch SGD training. In the training

phase, we use MetaCleaner as a new layer before classifier.

For each batch, we randomly select K categories. Then, for

each selected category, we randomly select N examples as

subset. For each subset, we can use MetaCleaner to halluci-

nate a clean representation for training. In this way, we can

generate diversified samples with reliable labels for differ-

ent batches. Additionally, when we perform concatenation,

the order of image representations is random in a subset. As

the number of batches increases, all possible orders tend to

be enumerated. This allows our MetaCleaner to be general-

ized well in the training, avoiding the influence of particular

orders.

After training with the hallucinated clean features from

MetaCleaner, we expect that softmax classifier has been

gradually generalized well for learning how to recognize

an object in the image. Hence, we propose to remove the

MetaCleaner layer in the testing phase, and feed the feature

vector of a testing sample directly into softmax classifier for

visual recognition. But if the test input is a noisy-labeled

set (not individual samples), one can still apply the trained

MetaCleaner to improve the performance.

3.4. Prototypical Interpretation of MetaCleaner

MetaCleaner aims at learning to hallucinate a represen-

tative embedding from a noisy subset of one category. It

implicitly inherits the spirit of Prototypical Network [30],

where the cluster center of a category is used as a prototype

for low-shot learning. Next, we interpret the connections

and clarify the difference between these two meta learners.

In the meta training period, both meta learners exploit

deep CNNs to generate the semantic representations. How-

ever, due to different learning goals, these two meta learners

introduce different training strategies. Prototypical Network

aims at low-shot learning. Hence, it mainly establishes a

metric classifier to reduce overfitting, i.e., this classifier di-

rectly assigns the class probabilities of a query, based on its

distance from the mean representation (prototype) of each

selected category. Different from Prototypical Network,

MetaCleaner aims at noisy-labeled recognition. Hence, it

estimates the confidence scores of input samples, and hallu-

cinates a clean representation by using these scores. During

the end-to-end training, the weights of different images can

be adaptively adjusted to generalize softmax classifier for

noisy-labeled images.

In the meta testing period, Prototypical Network aims

at classifying test images of new categories, given a low-

shot support set of these categories. To achieve this goal, it

leverages the support set to generate the prototypes of new

categories, and uses the metric based classifier to recognize

test images. Alternatively, MetaCleaner aims at improving

the robustness of softmax classifier to noisy labels. Hence,

in its testing phase, one can feed the feature vector of an

image directly into softmax classifier for visual recognition.

4. Experiment

Data Sets. In this paper, we mainly evaluate our Meta-

Cleaner on two popular benchmarks for noisy-labeled vi-

sual recognition, i.e., Food-101N [15] and Clothing1M

[42]. (1) Food-101N consists of 310k/25k train/test images,

with 101 food categories of the original Food-101 data set

[1]. Around 80% of train set is correctly labeled, and 55k/5k

training/test images contain extra noise verification labels.

(2) Clothing1M consists of 1M/14k/10k train/val/test im-

ages with 14 fashion classes. Around 61.54% of train set is

correctly labeled. Furthermore, there is an extra clean train-

ing set with around 50k images, where around 25k images

contain both clean and noisy labels. Due to the fact that the

categories in Food-101N and Clothing1M are fine-grained

with large confusions, they are two challenging benchmarks

for noisy-labeled recognition.

Implementation Details. Unless stated otherwise, we

perform MetaCleaner as follows. First, we use ResNet50

as CNN backbone. For each image, we generate a seman-

tic representation (after global pooling), i.e., 2048-dim fea-
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Method Food-101N Clothing1M

Baseline 81.44 68.94

MetaCleaner 82.52 72.50

Table 1. Baseline vs. MetaCleaner. Baseline is the standard CNN

without MetaCleaner.

Operations Food-101N Clothing1M

Constant 81.24 70.41

Attentionsig 81.44 71.08

Attentionexp 81.78 70.68

FC-FC-Sig 82.09 71.15

FC-FC-ReLU-Sig 82.52 72.50

FC-ReLU-FC-ReLU-Sig 82.18 71.67

Table 2. Noisy Weighting. (I) Constant. We assign the importance

score αi = 1 for each image in the small subset. In this case, the

hallucinated representation in Eq. (3) is reduced as the mean of

noisy-labeled representations. (II) Attention. We use two widely-

used attention mechanisms as the weighting operation, i.e., αi =
Sigmoid[a·tanh(Wvi+b)] and αi = Exp[a·tanh(Wvi+b)].
(III) FC. We use the FC layers as the weighting operation. Since

αi is the confidence score, we use sigmoid (Sig) in the last layer as

a soft gate. Furthermore, we explore the role of ReLU in different

layers. More explanations can be found in Section 4.1.

Operations Food-101N Clothing1M

(I) Loss Reweight 78.77 68.89

(II) Hallucination 82.52 72.50

Table 3. Clean Hallucinating. (I) Loss Reweight. Since αi is the

confidence score of each image, we multiply αi with the training

loss of the corresponding image for reweighting. (II) Hallucina-

tion. It is the hallucinated representation in Eq. (3), which is the

weighted sum of original representations. As expected, (II) out-

performs (I). It illustrates that, the proposed hallucination is more

robust to noisy labels.

ture vector. The neural network structure in Noisy Weight-

ing is two-layer, i.e., FC-FC-ReLU-Sigmoid. The input /

output dimension of the 1st FC layer is N × 2048/384
(Food-101N), N × 2048/512 (Clothing1M). The input /

output dimension of the 2nd FC layer is 384/N (Food-

101N), 512/N (Clothing1M). For Food-101N/Clothing1M,

the size of small subset N in MetaCleaner is 4/4 per cat-

egory, and the batch size is 480/256. Second, for both

data sets, we just use the noisy-labeled train set for training

our model, and report the classification accuracy on the test

set. Third, we implement our network by PyTorch, where

we use the standard SGD, the momentum is 0.9, weight

decay is 0.001/0.005 for Food-101N/Clothing1M. Further-

more, the initial learning rate is 0.01. It is divided by 10

at each 20/5 epoches, and the training procedure is finished

with 80/20 epoches for Food-101N/Clothing1M.

4.1. Ablation Studies

To investigate the properties of our MetaCleaner, we

mainly evaluate its key model submodules. For fairness,

when we explore different strategies of one submodule, oth-

ers are with the basic strategy in the implementation details.

Baseline vs. MetaCleaner. First of all, we compare our

MetaCleaner with Baseline, i.e., the standard CNN with-

out MetaCleaner. As shown in Table 1, MetaCleaner sig-

nificantly outperforms Baseline, showing the essentiality of

MetaCleaner.

Noisy Weighting. We investigate different weighting op-

erations for Noisy Weighting. (I) Constant. We does not

use any weight operations, and assign the importance score

αi = 1 for each image in the small group. In this case,

the hallucinated representation in Eq. (3) is reduced as the

mean of noisy-labeled representations. (II) Attention. We

use two widely-used attention mechanisms as the weighting

operation. Attentionsig and Attentionexp are respectively

formulated as i.e., αi = Sigmoid[a · tanh(Wvi + b)]
and αi = Exp[a · tanh(Wvi + b)] with the parameter

set {a ∈ R
1×384,W ∈ R

384×2048,b ∈ R
384×1} for Food-

101N, {a ∈ R
1×512,W ∈ R

512×2048,b ∈ R
512×1} for

Clothing-1M. (III) FC. We use the FC layers as the weight-

ing operation. Since αi is the importance score, we use sig-

moid (Sig) in the last layer as a soft gate. Furthermore, we

explore the role of ReLU in different layers. The results are

shown in Table 2. First, the attention setting outperforms

the constant setting. It illustrates that, it is necessary to esti-

mate the importance of different images before hallucinat-

ing the clean representation. Second, the FC setting out-

performs the attention setting in general. The main reason

is that, the input of attention is an individual representation

of each image. Hence, it may lack the capacity of discov-

ering the relations between different images. Alternatively,

the input of FC is the concatenation of all the representa-

tions in a subset. As a result, the FC layers can produce the

importance of different images by similarity comparison.

Finally, we investigate ReLU in the FC layers. In Table 2,

FC-FC-ReLU-Sig outperforms FC-FC-Sig. The main rea-

son is that, Food-101N and Clothing 1M often exhibit the

fine-grained characteristics, i.e., many noisy-labeled images

look similar to the clean-labeled images in a category. In

other words, the importance αi of a noisy-labeled image

may not be low in the subset. The design of FC-FC-ReLU-

Sig allows αi to be ranged from 0.5 to 1, which reasonably

takes the importance of noisy-labeled images into account.

On the contrary, αi of FC-FC-Sig is ranged from 0 to 1.

The neural network tends to underestimate the importance

of noisy-labeled images. Furthermore, FC-FC-ReLU-Sig

outperforms FC-ReLU-FC-ReLU-Sig. It may be because

the first layer is used for dimensionality reduction, which

can be effectively achieved by linear transformation.

Clean Hallucinating. We explore different hallucination
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Figure 3. Batch Size & Subset Size. Note that, batch size = subset size × the number of sampled categories in the batch, i.e., batch size

has to be divided exactly by subset size. In this case, when we change subset size, we have to change batch size slightly. First, when using

the comparable batch size, the performance with different subset sizes tends to have notable fluctuations for most cases. Hence, subset size

may be more important for noisy-labeled recognition. Second, subset size can be strongly relevant to the level of noise. The noise level of

Clothing1M (∼ 40%) is higher than the one of Food-101N (∼ 20%). As a result, Clothing1M requires a larger subset size than Food-101N.

In Fig. 4, we further investigate the relation between subset size and noise level.

Figure 4. Noise Level. Specifically, we add random noise on the

labels of original Food-101 data set. As expected, when the noise

level is higher, larger subset size allows to hallucinate a more ro-

bust representation, and significantly boosts accuracy. More ex-

planations can be found in Section 4.1.

operations. (I) Loss Reweight. Since αi is the confidence

score of each image, we multiply αi with the training loss

of the corresponding image for reweighting. (II) Hallucina-

tion. It is the hallucinated representation in Eq. (3), which is

the weighted sum of original representations. As expected,

the proposed hallucination outperforms Loss Reweight in

Table 3. It illustrates that, the weighted sum of noisy repre-

sentation is more robust to noisy labels.

Batch Size & Subset Size. We investigate two impor-

tant hyper-parameters in our MetaCleaner, i.e., subset size

and batch size. Note that, when exploring different sizes

of subset, we should fix batch size. However, batch size =

subset size × the number of sampled categories in the batch,

i.e., batch size has to be divided exactly by subset size. In

this case, when we change subset size, we have to change

batch size slightly. The results are shown in Fig. 3. First,

when using the same value of subset size, the performance

with different batch sizes tends to be comparable. On the

contrary, when using the comparable value of batch size,

the performance with different subset sizes varies largely.

It illustrates that, subset size is more important for noisy-

labeled recognition. Second, subset size tends to be differ-

ent among data sets, i.e., it is 2/4 for the best performance of

Food-101N/Clothing1M. This observation illustrates that,

subset size may be strongly relevant to the level of noise. As

mentioned in the data description, the noise level of Cloth-

ing1M (∼ 40%) is higher than the one of Food-101N (∼
20%). Hence, Clothing1M requires a larger subset size than

Food-101N. In the next, we further investigate the relation

between subset size and noise level.

Noise Level. To investigate the influence of noise level,

we add random noise on the original Food-101 [1] data set.

For example, 20% noise level denotes that, we uniformly

sample 20% training set, and randomly flip the correct la-

bel into another category. The results are shown in Fig. 4,

where batch size is 480 for all the cases. First, when the

noise level is low, the performance tends to be compara-
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Method Data Acc

Softmax [15] Food-101 81.67

Softmax [15] Food-101N 81.44

Weakly Supervised [46] Food-101N 83.43

CleanNet (whard) [15] Food-101N+VF(55k) 83.47

CleanNet (wsoft) [15] Food-101N+VF(55k) 83.95

Our MetaCleaner Food-101N 85.05

Table 4. Comparison with The-State-of-The-Art (Food-101N).

VF(55k) is the noise-verification set used in CleanNet [15].

Method Data Acc

Softmax [23] Noise1M 68.94

LossCorrect [23] Noise1M 69.84

Weakly Supervised [46] Noise1M 71.36

JointOptim [33] Noise1M 72.23

Our MetaCleaner Noise1M 72.50

CleanNet (whard) [15] Noise1M+Clean(25k) 74.15

CleanNet (wsoft) [15] Noise1M+Clean(25k) 74.69

Our MetaCleaner Noise1M+Clean(25k) 76.00

CleanNet (wsoft) [15] Noise1M+Clean(50k) 79.90

LossCorrect [23] Noise1M+Clean(50k) 80.38

Our MetaCleaner Noise1M+Clean(50k) 80.78

Table 5. Comparison with The-State-of-The-Art (Clothing1M).

Clean(25k) is used in CleanNet [15] to obtain the verification set.

To keep same data setting, we train our MetaCleaner on 1M noisy

training set, and then fine-tune it on 25k clean images. Further-

more, we achieve the state-of-the-art performance on the setting

of Noise1M+Clean(50k), even though other approaches use extra

verification labels [15], extra label confusion information [23].

ble among different subset sizes. But still, the case with

a subset of images is better than the case with individual

images (subset size=1), i.e., baseline without MetaCleaner.

For instance, the accuracy of (subset size=3) is the best (acc:

81.67) in the 20% noise setting. It outperforms the base-

line (subset size=1, acc: 80.11%). This observation demon-

strates, hallucination with small image sets is important for

noisy-labeled recognition. Second, when the noise level is

higher, larger subset size allows to hallucinate a more robust

representation, and significantly boosts accuracy.

4.2. Comparison with TheStateofTheArt

For fairness, our comparisons are based on the same

CNN backbone, i.e., all the approaches are built upon

ResNet50 (for Food-101N / Clothing1M / ImageNet) and

WideResNet-28-10 (for CIFAR-10).

Food-101N. As shown in Table 4, MetaCleaner signifi-

cantly outperforms the softmax baseline. More importantly,

it outperforms the state-of-the-art CleanNet [15], without

using the extra 55k noise-verification images. It shows the

robustness of MetaCleaner to noisy labels.

Approach Data Acc

Baseline [25] Noisy 67.97

Reed-Hard [24] Noisy 69.66

S-Model [6] Noisy 70.64

MentorNet [12] Noisy 76.60

Reweight [25] Noisy+Clean(1k) 86.92

Our MetaCleaner Noisy 90.09

Table 6. Comparison with The-State-of-The-Art (Cifar-10). We

perform our MetaCleaner for Cifar-10, by adding 40% noise ratio

with uniform flip [25].

Clothing1M. We mainly demonstrate comparisons in

Table 5, according to the usage of different training sets.

First, when only using 1M noisy training set, our Meta-

Cleaner slightly outperforms the state-of-the-art JointOp-

tim [33]. But we claim that, the training procedure of our

MetaCleaner is the standard optimization of CNN, while

JointOptim requires an alternating optimization procedure

with careful regularization. Hence, our MetaCleaner is a

more practical solution for noisy-labeled recognition. Sec-

ond, we compare MetaCleaner with CleanNet [15], which

requires 25k clean images to obtain the verification set. To

keep the same data setting, we train our MetaCleaner on 1M

noisy training set, and then fine-tune it on 25k clean images.

In Table 5, our MetaCleaner outperforms CleanNet, show-

ing its effectiveness. Finally, we compare MetaCleaner

with different approaches, where all the clean training set

is available. Same as before, we train our MetaCleaner on

1M noisy training set, and then fine-tune it on 50k clean im-

ages. As one can see that, MetaCleaner achieves the state-

of-the-art performance in this setting, even though other ap-

proaches use extra verification labels [15], extra label con-

fusion information [23].

Cifar-10. We perform our MetaCleaner on Cifar-10

[13], by adding 40% noise ratio with uniform flip [25]. We

use the same backbone (WideResNet-28-10 with dropout

0.3) as [25]. Additionally, after training with MetaCleaner,

we unload it and further fine-tune CNN for feature general-

ization. As shown in Table 6, our MetaCleaner outperforms

all the state-of-the-art approaches. Moreover, it is better

than [25], which uses an extra clean data set (1k). This il-

lustrates that MetaCleaner is more robust to noisy labels.

ImageNet. We perform our MetaCleaner on ImageNet

[3], by adding 40% noise ratio with uniform flip. After

training with MetaCleaner, we unload it and further fine-

tune CNN for feature generalization. The top-1 accuracy

is 66.47 / 69.12 for ResNet50 without / with MetaCleaner.

It further shows the power of MetaCleaner for large-scale

noisy-labeled recognition.
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Figure 5. Visualization. We show the importance of different images in the subset, where we demonstrate the normalized score αi/(
∑

i
αi)

for hallucination in Eq. (3). On one hand, our MetaCleaner can effectively depress the negative influence of noisy-labeled images, by

reducing the importance scores of these images. On the other hand, our MetaCleaner can aware the fine-grained characteristics of Food-

101N and Clothing1M, i.e., the noisy-labeled images look similar to the clean ones. Hence, it can reasonably assign the lower scores on

these images, but do not delete their contribution completely.

4.3. Visualization

We visualize the importance of different images in

the subset, where we demonstrate the normalized score

αi/(
∑

i αi) for hallucination in Eq. (3). The results are

shown in Fig. 5. On one hand, our MetaCleaner can effec-

tively depress the negative influence of noisy-labeled im-

ages, by reducing the importance scores of these images.

On the other hand, our MetaCleaner can aware the fine-

grained characteristics of Food-101N and Clothing1M, i.e.,

the noisy-labeled images look similar to the clean ones.

Hence, it can reasonably assign the lower scores on these

images, but do not delete their contribution completely.

5. Conclusion

In this paper, we propose a flexible MetaCleaner, which

can learn to hallucinate clean representations for noisy-

labeled visual recognition. It mainly consists of two sub-

modules. First, Noisy Weighting compares semantic repre-

sentations in a randomly-sampled image subset of a cate-

gory. Via exploiting relations between images, it can es-

timate the importance of each image in the subset. Then,

Clean Hallucinating summarizes a clean representation by

taking the weight of different image representations into ac-

count. As a result, our MetaCleaner can improve the ro-

bustness of DNNs to noisy labels. More importantly, it can

generalize the capacity of DNNs by richer data diversity and

variations. We mainly evaluate MetaCleaner on Food-101N

and Clothing1M, where it achieves the state-of-the-art per-

formance on both benchmarks. In the future, it would be

interesting to further investigate the theoretical aspects of

MetaCleaner, such as Vicinal Risk Minimization in [43].
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