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Abstract

Multi-class and multi-scale object detection for au-

tonomous driving is challenging because of the high vari-

ation in object scales and the cluttered background in com-

plex street scenes. Context information and high-resolution

features are the keys to achieve a good performance in

multi-scale object detection. However, context information

is typically unevenly distributed, and the high-resolution

feature map also contains distractive low-level features. In

this paper, we propose a location-aware deformable convo-

lution and a backward attention filtering to improve the de-

tection performance. The location-aware deformable con-

volution extracts the unevenly distributed context features

by sampling the input from where informative context ex-

ists. Different from the original deformable convolution, the

proposed method applies an individual convolutional layer

on each input sampling grid location to obtain a wide and

unique receptive field for a better offset estimation. Mean-

while, the backward attention filtering module filters the

high-resolution feature map by highlighting the informa-

tive features and suppressing the distractive features using

the semantic features from the deep layers. Extensive ex-

periments are conducted on the KITTI object detection and

PASCAL VOC 2007 datasets. The proposed method shows

an average 6% performance improvement over the Faster

R-CNN baseline, and it has the top-3 performance on the

KITTI leaderboard with the fastest processing speed.

1. Introduction

Vision-based object detection is one of the most active

research areas in computer vision for a long time. For ap-

plications such as autonomous driving, accurate real-time

multi-class object detection is required to understand the

driving situation and avoid hitting other traffic participants.

Traditional object detection systems rely on hand-crafted

feature extraction and machine learning based classifica-

Figure 1. Comparison between (a) Faster R-CNN and (b) our pro-

posed method on KITTI object detection dataset. Different box

color indicates different object category. Our method success-

fully detects the cyclists behind the pedestrian, and two small cars,

which are not detected by Faster R-CNN.

tion. Recently, object detectors based on deep convolutional

neural networks (CNN) [1] have shown a huge performance

improvement in the benchmark such as KITTI [2] that fo-

cuses on driving scenes.

A typical driving scene is shown in Figure 1, which is

captured by a car-mounted camera. Three main objects that

should be detected accurately in the driving scene are pedes-

trians, cyclists, and cars. These traffic participants interact

with the autonomous car all the time and must be detected in

real-time to avoid accident. Multi-class object detection for

these traffic participants is challenging because they have

different distance to the camera, which results in high scale

variation. Also, pedestrians, cyclists and cars interact with

each other frequently, as a result, occlusion occurs quite of-

ten. Furthermore, a street scene in a modern city contains

cluttered backgrounds with various visual attributes, which

makes the object detection even harder.

According to previous studies [3] [4] [5], context infor-
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mation and high-resolution features are crucial for detect-

ing multi-scale objects under complex scenes. The most

common solution to extract context features is to increase

the receptive field so that a larger area can be seen by the

convolutional layers [6]. However, it is observed that the

distribution of context information is uneven and not fixed.

To capture the context information, not only a large recep-

tive field is needed, but also an adaptive geometric structure

of inputs is desired. The standard convolution has a fixed

input sampling grid that is not flexible to handle the high

variation of context distribution. The deformable convolu-

tion [7] breaks the fixed geometry of the standard convo-

lution by introducing a set of offsets to shift the location of

each input sample, which makes it a good approach to adap-

tively extract context features. Another important aspect for

a successful detection is to utilize high-resolution features

to handle small objects. However, high-resolution features

found in shallow CNN layers are cluttered and distractive

in a street scene. To keep the detector focused on the target,

it is desired to highlight the informative features while sup-

pressing distractive ones. One good solution is to use deep

convolutional layers with high level of semantic features as

the attention map to filter the high-resolution feature maps

generated from shallow convolutional layers.

In this paper, we propose a location-aware deformable

convolution and a backward attention filtering to improve

the detection performance. The contributions can be de-

scribed as follows: (1) We propose a location-aware de-

formable convolution to extract context features that do not

have a fixed geometric distribution. The context features ex-

tracted by the proposed deformable convolution is used to

enhance the standard convolutional features for improving

the object detection performance. (2) We propose a back-

ward attention filtering module to filter the feature map of

shallower layers using deeper layer features. The filtered

feature maps make the informative features stand out for

classification and bounding box regression and also make

the region proposal network (RPN) easier to generate rea-

sonable ROIs. Thus, the number of ROIs needed is re-

duced, and the detection speed is improved. (3) We combine

the location-aware deformable convolution and the back-

ward attention filtering module into a forward-backward ob-

ject detection network. The proposed detection network

achieves the top performance for multi-class object detec-

tion on KITTI and PASCAL VOC dataset with the shortest

runtime among the top-performing methods.

2. Related works

2.1. Convolutional neural network for object detec­
tion

In the recent years, deep learning-based object detectors

have shown significantly improved performance over the

traditional hand-crafted models [8] [9]. Region-based con-

volutional neural networks (R-CNN) is presented in [10]

for object detection task, which is improved by Fast R-

CNN [11] with a faster speed. Faster R-CNN [12] replaces

the traditional non-CNN based ROI generation scheme with

RPN to construct an two-stage object detector, which first

generates ROIs using RPN and then performs classification

and bounding box regression for each ROI.

2.2. Context information

In MultiPath network [3], four field-of-view are em-

ployed for each ROI to capture different levels of contextual

information around the object. By increasing the padding

ratio of ROIs such that the actual pooled region is larger

than the object proposal itself, MS-CNN [13] can exploit

the contextual information for object detection. The use of

recurrent neural network (RNN) is another way to extract

contextual information. In [5], four-direction IRNN [14] is

applied to gather contextual information from four direc-

tions. Rolling recurrent network (RRN) [4] explores the

contextual information from different convolutional layers

in a rolling fashion.

2.3. Deformable model

Deformable part model (DPM) [15] is a widely used

part-based method for highly variable object detection.

Later it was formulated as a CNN in [16]. Spatial transform

networks (STN) [17] introduces the spatial transformer to

warp feature maps. The active convolution unit (ACU) was

proposed in [18] to learn the shape of convolution through

backpropagation so that the generalization of convolution

can be achieved. The deformable convolution was proposed

in [7] to break the limitation of the fixed geometric structure

in the standard convolution. The deformable convolution

features a convolutional layer that estimates 2D offsets to

the regular grid sampling locations, and the sampling loca-

tions are adjusted based on the offsets to achieve a spatially

adaptive convolution operation.

2.4. Multi­scale object detection

In MS-CNN [13], the RPN has multiple branches for

detecting objects with different scales. In Inside-Outside

Net [5] and MultiPath network [3], skip pooling is per-

formed on multiple convolutional layers to obtain high-

resolution features for small object detection like multi-

stage features in [19]. In SSD [20], multi-scale object de-

tection is achieved by assigning different detection convolu-

tional layers on feature maps with different levels of resolu-

tion. In scale-dependent pooling (SDP) network [21], ROI

pooling, classification, and bounding box regression for a

certain object scale are performed on the convolutional fea-

ture map that has the most suitable level of resolution and

abstraction for detection.
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Figure 2. The overall architecture of the proposed network. During the forward pass, the input image is fed into a VGG-16 based feed-

forward network to generate the feature maps. Context features are embedded using the location-aware deformable CNN. After the Conv6

layer is obtained, the backward pass applies the proposed backward attention filtering to filter feature maps from deep layers to shallow

layers. ROIs are generated by region proposal networks, and ROI pooling is carried out for each ROI on three filtered feature maps. The

pooled features are fed into the classification and bounding box regression subnetworks to obtain the detection result.

2.5. Attention mechanism

Attention mechanism has been utilized in many com-

puter vision tasks. The diversified visual attention network

(DVAN) was proposed in [22] to search the area with high

attention value and zoom in the image for fine-grained ob-

ject classification. In [23], weak semantic segmentation is

applied as the attention map to regularize the feature map

for pedestrian detection. In RON [24], an objectness map

is generated and used as the attention map to suppress the

features that belong to background areas. Aspect ratio at-

tention bank and sub-region attention bank were proposed

in [25] to refine pooled features for each ROI. Residual at-

tention network was proposed in [26] for image classifica-

tion. The attention map produced in [26] is both spatial and

channel-wise, which means features on different location

and channel are filtered differently.

3. Proposed method

3.1. Overview

The proposed method can be applied to different back-

bone networks such as VGG [27], ResNet [28], Mo-

bileNet [29], GoogleNet [30] and Inception ResNet [31].

Here, we use VGG-16 as the example to describe the over-

all architecture as shown in Figure 2. The network consists

of three major components: the forward pass, the backward

pass, and the object detection subnetworks. During the for-

ward pass, the input image is fed into the backbone net-

work that includes 14 convolutional layers. Three context

embedding modules are inserted before Conv3 3, Conv4 3

and Conv5 3. In these modules, context features generated

by the proposed location-aware deformable convolution are

embedded with the features from standard convolution to

obtain the enhanced Conv3 3, Conv4 3, and Conv5 3 lay-

ers. During the backward pass, the proposed backward at-

tention filtering is carried out from deep layers to shallow

layers. There are three backward attention filtering modules

in the backward pass. Each module filters the input feature

map using the output from the predecessor module. Af-

ter the backward pass, three filtered feature maps (Conv3 3,

Conv4 3, and Conv5 3) are obtained. They are fed into the

RPN to generate the ROIs. For each ROI, ROI pooling is

carried out on all three filtered feature maps. These pooled

features are processed by additional layers and fused at the

fully-connected layer. Finally, the fused features for each

ROI are sent to the classification and bounding box regres-

sion subnetworks. The classification subnetwork predicts

the class (pedestrian, cyclist, car, or background), while

the bounding box regression subnetwork predicts the ROI’s

bounding box offsets with respect to the anchor box.

3.2. Location­aware deformable convolution

The standard convolutional unit [1] samples the input

feature map at fixed locations and generates the output by

computing the weighted sum of the samples. Recently, de-

formable convolution has been proposed to overcome the

limitations of standard convolution. In deformable convolu-

tion [7], 2D offsets to the regular grid sampling locations in

the standard convolution are estimated using an additional
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Figure 3. Example of 3×3 location-aware deformable convolution

with the dilation size D = 2. H , W , and Z are the input feature

map’s height, width, and number of channels, respectively. Better

viewed in color.

convolutional layer and the weighted sum of the samples at

offset-augmented locations is computed to obtain the output

feature.

In the deformable convolution module, there is only one

convolutional layer for estimating all the offsets, which is

based on the same receptive field as in the standard convo-

lution. Estimating the offset for each input sample using

the same receptive field and convolutional layer does not

fully utilize the unique characteristics of each input, which

may cause sub-optimal offset estimation. Besides, the re-

ceptive field is so small that surrounding features are not

seen during the offset estimation, which makes it hard to

capture useful context information. In this paper, we pro-

pose a location-aware deformable convolution module to

capture the unevenly distributed context features. The pro-

posed method adjusts the receptive field in offset estimation

adaptively based on each input sample’s location and sur-

roundings.

Our proposed location-aware deformable convolution

module for context feature extraction is depicted in Fig-

ure 3. Note that the offset estimation and the offset-

augmented sampling take place in 2D spatial domain. As-

sume that the input feature map is I , and the output feature

map is O, for each 2D location pc=(xc, yc) on the output

feature map. The 3×3 deformable convolution that is cen-

tered on pc is defined as:

O(pc) =

8∑

n=0

W (pn) · I(pc +D · pn +∆n), (1)

where W is the weight matrix. pn ∈ G is a location in

the 3×3 regular sampling grid G, and D is the dilation

size. The input sample on the regular sampling grid with-

out offset-augmentation is located at pc + D · pn. After

the offset ∆n for each input sample is estimated, the offset-

augmented input sample is located at pc + D · pn + ∆n,

which has an irregular and adaptive geometric structure to

capture context information that does not have a fixed dis-

tribution. The sampling grid G has nine elements and is

defined as:

G = {(−1,−1), (−1, 0), ..., (0, 0), ..., (1, 1)}. (2)

Before estimating the offsets for each input sample, a

1×1 convolution is applied to the input feature map to re-

duce the channel size to 64. Reducing the channel size is

necessary to keep the computation cost cheap because the

offset estimation is done individually to each input sample.

After the 1×1 convolution, nine 3×3 convolutional layers

Cn, n ∈ {0, 1, , 8} are applied to estimate the offset for

each input sample. Unlike [7] where the convolution for

offset estimation is always centered on pc, the center of the

3×3 convolutional layer Cn in the proposed method is lo-

cated at pc+D·pn. Thus, each input sample’s offset estima-

tion is determined by its location and unique surroundings.

For each input sample pc + D · pn, Cn outputs the offset

∆n = (∆xn,∆xn), where ∆xn is the x coordinate of the

offset, and ∆yn is the y coordinate of the offset. Note that

the nine offset estimation convolutional layers do not share

parameters and they are trained individually. By having a

3×3 convolutional layer centered on each input sample, the

receptive field for offset estimation is extended to cover the

area outside the original 3×3 sampling grid G.

After all nine offsets ∆n, n ∈ {0, 1, , 8} are obtained,

the offset-augmented input samples are located at pc +D ·
pn+∆n. Since the estimated offset ∆n is often a fractional

number, interpolation is carried out to obtain the feature

value of the fractionally sampled input. The weighted sum

over all offset-augmented input samples is computed based

on Equation (1) to obtain the output feature value O(pc).
The output feature map O is obtained by estimating the off-

set and computing the convolution using Equation (1) to all

inputs from the input feature map I .
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Figure 4. Context embedding module.

3.3. Context feature embedding

The proposed context feature embedding module is illus-

trated in Figure 4. There are two links from the input feature

map to the output feature map. The top link is the standard

convolution which generates the standard feature map with

the regular sampling grid. The bottom link applies the pro-

posed location-aware deformable convolution which gener-

ates the context feature map using Equation (1). After the

standard feature map and the context feature map are gener-

ated, these two features maps are concatenated, and a 1×1

convolution is applied on the concatenated map to generate

the output feature map.

During the forward pass, context feature embedding

is carried out on multiple convolutional layers to exploit

the context information of different resolutions. Specifi-

cally, context feature embedding is performed to generate

Conv3 3, Conv4 3, and Conv5 3 layers by using Conv3 2,

Conv4 2, and Conv5 2 as the input, respectively. The di-

lation size D in location-aware deformable convolution is

set to 2 to have a large and adaptive receptive field for a

better context feature extraction. Section 4.3 includes more

detailed information regarding the dilation setups.

3.4. Backward attention filtering

Multi-scale object detection, especially small object de-

tection, relies heavily on the high-resolution features from

shallow convolutional layers. While high-resolution fea-

tures provide informative clues for small objects, they also

contains distractive features which are not beneficial for

RPN, classification, and bounding box regression subnet-

works. To suppress the distraction while highlighting the

informative high-resolution features, we filter the high-

resolution feature maps with the low-resolution feature

maps which are rich in semantically meaningful informa-

tion.

Figure 5. Backward attention filtering module.

The architecture of the proposed backward attention fil-

tering module is given in Figure 5. There are two inputs

for the attention filtering module: one is the target feature

map T to be filtered, and the other is the semantic feature

map S from the deeper convolutional layer, which is used

to generate the attention map.

First, the semantic feature map S is processed by a 3×3

convolutional layer. The output A has the same channel

size as the target feature map so that elemental-wise oper-

ation can be performed. The sigmoid function is used for

non-linear activation. The attention map Aup is obtained

by up-sampling A to the same spatial size as the target fea-

ture map T . Elemental-wise multiplication is carried out

between the attention map Aup and the target feature map

T . The filtered feature map F is obtained by elemental-

wise summation between T and T ·Aup. Assume that the

feature at the spatial location (x, y) and channel c on the

target feature map is T (x, y, c). The filtered feature on the

output feature map F can be formulated as:

F (x, y, c) = (1 +Aup(x, y, c)) · T (x, y, c) (3)

Equation (3) is similar in spirit to residual-

connection [28], which is used to prevent the filtered

feature value from degradation. The filtered feature map

F is used as the semantic feature map for the next filtering

module as well as the feature map for the object detection

subnetworks. In the proposed network, there are three such

attention filtering modules to filter the Conv 5 3, Conv 4 3,

and Conv 3 3 layers in a backward connection as shown

in Figure 2. After the backward filtering is complete, three

filtered feature maps are obtained and sent to the object

detection subnetworks.
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3.5. Object detection subnetworks

The object detection subnetworks are based on the Faster

R-CNN [12] architecture, which is a two-stage detector.

The first stage is to generate object proposals or ROIs with

the RPN. The setup of the RPN is similar to the original

one proposed in [12]. The second stage is to perform ROI

pooling for each ROI from the three feature maps obtained

from the backward attention filtering. We use ROI pooling

from multiple feature maps of different resolutions to im-

prove the performance for multi-scale object detection. As

shown in Figure 2, for each ROI, we use skip pooling [5]

to extract a fixed-length feature descriptor from the filtered

Conv3 3, Conv4 3, Conv5 3 feature maps.

As in [3] and [32], we apply a late feature fusion that

performs feature concatenation at fully-connected layers.

Specifically, we employ a 3×3 convolutional layer and a

fully-connected layer for the pooled Conv3 3, Conv4 3,

and Conv5 3 features. Each convolutional layer and fully-

connected layer are trained individually to exploit the

uniqueness of each pooled feature. The output size of the

fully-connected layer is 1024, which gives a good balance

between performance and speed. After all fully-connected

features are obtained, they are concatenated into a vector,

resulting in a final feature size of 3072.

After the concatenated features are obtained, the classi-

fication and bounding box regression subnetworks take the

features as the input and make the final prediction on the

ROI’s class and its bounding box offsets. The classifica-

tion subnetwork outputs a class score Cclass. The bounding

box regression subnetwork outputs the bounding box off-

sets t = [tx, ty, tw, th], where tx, ty , tw, th are the offsets

with respect to the ROI’s x coordinate, y coordinate, width,

and height, respectively. They are parameterized using the

method in [33]. The total loss function L is a multi-task loss

defined as:

L = Lcls(Cclass, CGT ) + α× Lbbox(t, tGT ), (4)

where CGT is the ground truth for multi-class classification

and tGT is the ground truth for bounding box regression.

The classification loss Lcls is the cross-entropy loss and the

bounding box regression loss Lbbox is the smooth L1 loss.

α is equal to 1 when the CGT is the non-background class.

Otherwise, α is equal to 0.

4. Experiments

4.1. Dataset

The KITTI benchmark dataset [2] is a real-world com-

puter vision dataset for autonomous driving. The 2D object

detection benchmark consists of 7481 training images and

7518 testing images. The object categories are cars, pedes-

trians, and cyclists. The evaluation metric is based on the

average precision (AP). Since KITTI dataset only provides

the ground truth annotation for training images, to evalu-

ate the design or optimize the network setup, one creates

a validation set from the training images. In our case, we

divide the training set into two parts. One half contains

3741 images, which are used as the training set. The other

half contains 3740 images and used as the validation set.

In addtion, we also evaluate our proposed method on PAS-

CAL VOC2007 dataset [34] for general object detection.

The dataset contains 9963 images, and there are 20 object

classes.

4.2. Implementation details

VGG-16 and ResNet. The proposed method can be in-

tegrated with different backbone networks. We have im-

plemented the proposed method based on VGG-16 and

ResNet-18 for KITTI dataset. ResNet-18 is chosen because

it is a computationally cheap network and therefore is suit-

able for real-time applications such as autonomous driving.

For experiments on PASCAL VOC dataset, VGG-16 and

ResNet-101 are used. To switch the backbone from VGG-

16 to ResNet, all that need to be done is to connect the con-

text embedding module and the backward attention filter-

ing module accordingly. During the ROI pooling process,

the spatial size of the pooled features is set to 3×3. After

the detection scores and the bounding box offsets for each

ROI are obtained, non-maximum suppression with the IoU

threshold of 0.5 is carried out to generate the final detection

results.

Training Details. During the training stage, positive ex-

amples are defined as the sampled regions that have an IoU

above 0.5 with the ground truth annotation. Meanwhile,

sampled regions with the IoU below 0.3 are taken as the

negative examples. The optimization of the network is done

by stochastic gradient descent (SGD). The learning rate is

set to 0.0005 for the VGG-16 version, and 0.00025 for the

ResNet-18 version. The momentum is 0.9. The maximum

iteration is set to 20000 for RPN and 40000 for the classifi-

cation and bounding box regression subnetworks.

Software and Hardware. Caffe deep learning tool-

box [35] with MATLAB interface is used as the software.

The hardware is based on the Intel Core i7-6700 CPU and

the NVIDIA Titan X GPU with 12GB memory.

4.3. Design evaluation

In this section, we evaluate the effectiveness of each pro-

posed component and compare the performance with refer-

ence methods on KITTI validation set.

Comparison with Faster R-CNN. We compare the pro-

posed method with Faster R-CNN [12] for VGG-16 and

ResNet-18 backbone networks. The comparison results

are given in Table 1. To evaluate the effectiveness of the

proposed context embedding and backward attention filter-
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Method Backbone
AP (%) Car AP (%) Cyclist AP (%) Pedestrian PASCAL

Easy Mod Hard Easy Mod Hard Easy Mod Hard VOC 2007

Faster
VGG-16 87.35 87.09 72.50 89.05 74.06 70.57 77.10 73.08 65.19 73.2

R-CNN [12]

Ours (a) VGG-16 91.39 90.66 80.17 91.71 81.83 77.27 82.04 78.09 68.83 75.7

Ours (b) VGG-16 90.70 90.32 75.95 90.03 78.44 72.38 80.77 77.80 68.18 74.2

Ours (c) VGG-16 92.22 91.74 81.51 91.64 83.03 78.77 83.29 79.18 70.68 76.1

Faster
ResNet-18/101 85.56 83.56 69.12 85.51 72.59 68.22 76.37 72.07 63.74 76.4

R-CNN [12]

Ours (a) ResNet-18/101 90.49 89.45 79.65 86.71 79.76 73.27 79.68 75.66 68.16 79.0

Ours (b) ResNet-18/101 90.12 89.50 78.96 86.34 78.59 70.22 77.75 73.25 65.51 77.9

Ours (c) ResNet-18/101 91.73 90.24 80.08 87.75 80.23 75.27 80.06 76.93 68.47 79.8

Table 1. Comparison with the baseline Faster R-CNN [12] on VGG-16 [27] and ResNet [28] backbone networks. Note that ResNet-18 is

for KITTI datset, and ResNet-101 is for PASCAL VOC 2007 dataset.

Method D1 D2

AP (%) at moderate difficulty

car cyclist pedestrian

Method A 1 1 86.70 74.89 73.96

(Deformable
2 2 89.26 80.84 77.25

convolution [7])

Method B 1 1 87.82 75.24 74.93

(Location-aware 1 2 87.35 75.19 74.25

deformable 2 1 90.66 81.83 78.09

convolution) 2 2 90.62 80.47 77.35

Method C

n/a n/a 87.09 74.06 73.08(Standard

convolution)

Table 2. Comparison with the original deformable convolution on

different dilation setups on KITTI validation set. D1 indicates

the dilation size of the deformable convolution. D2 indicates the

dilation size of the convolution for offset estimation.

Method
AP (%) at moderate difficulty

car cyclist pedestrian

Weak segmentation [23] [24] 86.83 74.59 73.55

Residual attention [26] 88.92 77.28 76.76

Ours 90.32 78.44 77.80

Table 3. Comparison with reference attention mechanisms on

KITTI validation set.

ing module, we conduct experiments on three setups. The

setup Ours (a) features the context embedding module us-

ing location-aware deformable convolution only. The setup

Ours (b) features the backward attention filtering module

only. The setup Ours (c) features both modules. The ob-

ject detection subnetworks for Faster R-CNN has the same

architecture as described in Section 3.5. From the results in

Table 1, it can be seen that both the context embedding and

the backward attention filtering improve the performance

on both KITTI and PASCAL VOC datasets. On KITTI

validation set, context embedding has an average 4.8% and

5.1% AP improvement on VGG-16 and ResNet-18, respec-

tively. The backward attention filtering achieves a 2.8%

Method Runtime Car Cyclist Pedestrian

Faster R-CNN [12] 2 sec 79.11 62.81 65.91

RRC [4] 3.6 sec 90.19 76.47 75.33

Sensekitt [38] 4.5 sec 90.00 72.50 67.28

SDP+RPN [21] 0.4 sec 89.42 73.08 70.20

SubCNN [39] 2 sec 88.86 70.77 71.34

MS-CNN [13] 0.4 sec 88.83 74.45 73.62

Deep3DBox [40] 1.5 sec 88.86 73.48 n/a

DeepStereo [41] 3.4 sec 88.75 65.72 67.32

Ours/VGG-16 0.22 sec 88.99 74.65 73.96

Ours/ResNet-18 0.14 sec 86.61 72.22 71.85

Table 4. Comparison with other state-of-the-art methods on KITTI

test set at moderate difficulty.

Method Backbone mAP(%)

Faster R-CNN [12] VGG-16/ResNet-101 73.2/76.4

ION [5] VGG-16 75.6

Deformable CNN [7] ResNet-101 78.7

SSD [20] VGG-16 74.3

YOLO9000 [42] DarkNet-19 73.7

RON [24] VGG-16 75.4

FPN [43] ResNet-101 80.5

R-FCN [44] ResNet-101 76.6

Ours VGG-16/ResNet-101 76.1/79.8

Table 5. Comparison with other state-of-the-art methods on PAS-

CAL VOC 2007 test set.

and 3.6% improvement in AP on VGG-16 and ResNet-18,

respectively. On PASCAL VOC test set, context embed-

ding has a 2.5% and 2.6% AP improvement on VGG-16 and

ResNet-101, respectively. The backward attention filtering

achieves a 1.0% and 1.5% improvement in AP on VGG-16

and ResNet-101, respectively. By combining both modules,

the setup Ours (c) has the best performance.

Location-aware deformable convolution. Here, we

evaluate the effectiveness of the location-aware deformable

convolution module by comparing it with the original de-

formable convolution [7] under different dilation setups.
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Figure 6. Effect of changing the number of ROIs on KITTI val-

idation set. Car detection is evaluated because cars appear more

frequently than cyclists and pedestrians. The mean AP is calcu-

lated from all difficulties.

The network setup is the same as the VGG-16 version of

Ours (a) in Table 1, except that Method B uses the pro-

posed location-aware deformable convolution, and Method

A uses the original deformable convolution to extract con-

text features. We test different combinations of dilation se-

tups. Note that the original deformable convolution uses

the same dilation setup for offset estimation and convolu-

tion. The comparison results are shown in Table 2. We can

observe that a decent performance improvement is obtained

when the deformable convolution’s dilation size D1 is set

to 2. This observation suggests the usefulness of context in-

formation by increasing the receptive field of convolution.

Among all dilation setups, the best result is obtained when

the dilation size is 2 for deformable convolution and 1 for

offset estimation convolution layers.

Backward Attention filtering. We compare the per-

formance of the proposed attention filtering module with

two popular attention mechanisms that can be used for ob-

ject detection: a weak semantic segmentation-based atten-

tion module [23] [24] and a residual attention module [26].

Since the original methods in [23] [24] [26] are not tested on

KITTI dataset, we implement them based on the description

given in the corresponding publication. The weak semantic

segmentation subnetwork is built based on FCN [36], and it

is trained by labeling all pixels inside the positive bounding

box as 1 and background as 0. For the residual attention

method, we replace the proposed backward attention mod-

ule with the feed-forward residual attention module. All

other components are the same as the VGG-16 version of

Ours (b) in Table 1. Table 3 shows the comparison results.

It is observed that the backward attention filtering has the

best performance.

ROI reduction. We investigate how the backward at-

tention filtering module helps speed up the detection. In a

Faster R-CNN based method, a larger number of ROIs slow

down the processing speed dramatically [37]. By highlight-

ing the features for the target object using the attention fil-

tering module, the number of ROIs needed to reach a good

performance can be reduced. Figure 6 compares the mean

AP for car detection based on the number of ROIs with and

without the backward attention filtering module. It can be

observed that after applying the attention filtering module,

the number of ROIs required to achieve a good performance

is reduced by over 50%. As a result of processing a smaller

number of ROIs for each frame, the runtime is reduced. For

the evaluation on the validation and testing set, the number

of ROIs for each frame is set to 150.

4.4. Comparison with state­of­the­art methods

We compare the performance with other state-of-the-art

vision-based multi-class detection methods on KITTI and

PASCAL VOC 2007 test set. The proposed network is

trained using all images from the training set. All hyper-

parameters are the same as the training setup described in

Section 4.2. Table 4 and Table 5 show the performance

comparison results in terms of mAP. On KITTI dataset, our

method has the second-best performance on pedestrian and

cyclist categories. On car detection task, our method has

the 4th best performance. Since a small number of ROIs

are needed after applying the backward attention filtering,

the proposed method has the fastest speed among the top-

performing methods. Especially, our method achieves a

runtime of 0.14 seconds per frame with a comparable av-

erage precision based on ResNet-18. On PASACL VOC

test set, our method outperforms all other methods except

for FPN.

5. Conclusion

In this paper, we propose a location-aware deformable

convolution and a backward attention filtering module to

improve the performance of multi-class, multi-scale ob-

ject detection for autonomous driving. The location-aware

deformable convolution adaptively extracts unevenly dis-

tributed context features, which are embedded with the stan-

dard convolutional features to build strong and comprehen-

sive features for detecting objects in a complex scene. To

further improve the performance and reduce the number of

ROIs needed, the backward attention filtering module uti-

lizes the high-level semantic features from deep convolu-

tional layers to highlight informative high-resolution fea-

tures and suppress the distractive ones. By combining the

two proposed methods into a forward-backward network,

the proposed detection network achieves good performance

on KITTI and PASCAL VOC dataset with a fast speed

among the top-performing methods.
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