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Abstract

Multi-class and multi-scale object detection for au-
tonomous driving is challenging because of the high vari-
ation in object scales and the cluttered background in com-
plex street scenes. Context information and high-resolution
features are the keys to achieve a good performance in
multi-scale object detection. However, context information
is typically unevenly distributed, and the high-resolution
feature map also contains distractive low-level features. In
this paper, we propose a location-aware deformable convo-
lution and a backward attention filtering to improve the de-
tection performance. The location-aware deformable con-
volution extracts the unevenly distributed context features
by sampling the input from where informative context ex-
ists. Different from the original deformable convolution, the
proposed method applies an individual convolutional layer
on each input sampling grid location to obtain a wide and
unique receptive field for a better offset estimation. Mean-
while, the backward attention filtering module filters the
high-resolution feature map by highlighting the informa-
tive features and suppressing the distractive features using
the semantic features from the deep layers. Extensive ex-
periments are conducted on the KITTI object detection and
PASCAL VOC 2007 datasets. The proposed method shows
an average 6% performance improvement over the Faster
R-CNN baseline, and it has the top-3 performance on the
KITTI leaderboard with the fastest processing speed.

1. Introduction

Vision-based object detection is one of the most active
research areas in computer vision for a long time. For ap-
plications such as autonomous driving, accurate real-time
multi-class object detection is required to understand the
driving situation and avoid hitting other traffic participants.
Traditional object detection systems rely on hand-crafted
feature extraction and machine learning based classifica-
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(b) Our method

Figure 1. Comparison between (a) Faster R-CNN and (b) our pro-
posed method on KITTI object detection dataset. Different box
color indicates different object category. Our method success-
fully detects the cyclists behind the pedestrian, and two small cars,
which are not detected by Faster R-CNN.

tion. Recently, object detectors based on deep convolutional
neural networks (CNN) [1] have shown a huge performance
improvement in the benchmark such as KITTI [2] that fo-
cuses on driving scenes.

A typical driving scene is shown in Figure 1, which is
captured by a car-mounted camera. Three main objects that
should be detected accurately in the driving scene are pedes-
trians, cyclists, and cars. These traffic participants interact
with the autonomous car all the time and must be detected in
real-time to avoid accident. Multi-class object detection for
these traffic participants is challenging because they have
different distance to the camera, which results in high scale
variation. Also, pedestrians, cyclists and cars interact with
each other frequently, as a result, occlusion occurs quite of-
ten. Furthermore, a street scene in a modern city contains
cluttered backgrounds with various visual attributes, which
makes the object detection even harder.

According to previous studies [3] [4] [5], context infor-
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mation and high-resolution features are crucial for detect-
ing multi-scale objects under complex scenes. The most
common solution to extract context features is to increase
the receptive field so that a larger area can be seen by the
convolutional layers [6]. However, it is observed that the
distribution of context information is uneven and not fixed.
To capture the context information, not only a large recep-
tive field is needed, but also an adaptive geometric structure
of inputs is desired. The standard convolution has a fixed
input sampling grid that is not flexible to handle the high
variation of context distribution. The deformable convolu-
tion [7] breaks the fixed geometry of the standard convo-
lution by introducing a set of offsets to shift the location of
each input sample, which makes it a good approach to adap-
tively extract context features. Another important aspect for
a successful detection is to utilize high-resolution features
to handle small objects. However, high-resolution features
found in shallow CNN layers are cluttered and distractive
in a street scene. To keep the detector focused on the target,
it is desired to highlight the informative features while sup-
pressing distractive ones. One good solution is to use deep
convolutional layers with high level of semantic features as
the attention map to filter the high-resolution feature maps
generated from shallow convolutional layers.

In this paper, we propose a location-aware deformable
convolution and a backward attention filtering to improve
the detection performance. The contributions can be de-
scribed as follows: (1) We propose a location-aware de-
formable convolution to extract context features that do not
have a fixed geometric distribution. The context features ex-
tracted by the proposed deformable convolution is used to
enhance the standard convolutional features for improving
the object detection performance. (2) We propose a back-
ward attention filtering module to filter the feature map of
shallower layers using deeper layer features. The filtered
feature maps make the informative features stand out for
classification and bounding box regression and also make
the region proposal network (RPN) easier to generate rea-
sonable ROIs. Thus, the number of ROIs needed is re-
duced, and the detection speed is improved. (3) We combine
the location-aware deformable convolution and the back-
ward attention filtering module into a forward-backward ob-
ject detection network. The proposed detection network
achieves the top performance for multi-class object detec-
tion on KITTI and PASCAL VOC dataset with the shortest
runtime among the top-performing methods.

2. Related works

2.1. Convolutional neural network for object detec-
tion

In the recent years, deep learning-based object detectors
have shown significantly improved performance over the

traditional hand-crafted models [8] [9]. Region-based con-
volutional neural networks (R-CNN) is presented in [10]
for object detection task, which is improved by Fast R-
CNN [11] with a faster speed. Faster R-CNN [12] replaces
the traditional non-CNN based ROI generation scheme with
RPN to construct an two-stage object detector, which first
generates ROIs using RPN and then performs classification
and bounding box regression for each ROI.

2.2. Context information

In MultiPath network [3], four field-of-view are em-
ployed for each ROI to capture different levels of contextual
information around the object. By increasing the padding
ratio of ROIs such that the actual pooled region is larger
than the object proposal itself, MS-CNN [13] can exploit
the contextual information for object detection. The use of
recurrent neural network (RNN) is another way to extract
contextual information. In [5], four-direction IRNN [14] is
applied to gather contextual information from four direc-
tions. Rolling recurrent network (RRN) [4] explores the
contextual information from different convolutional layers
in a rolling fashion.

2.3. Deformable model

Deformable part model (DPM) [15] is a widely used
part-based method for highly variable object detection.
Later it was formulated as a CNN in [16]. Spatial transform
networks (STN) [17] introduces the spatial transformer to
warp feature maps. The active convolution unit (ACU) was
proposed in [18] to learn the shape of convolution through
backpropagation so that the generalization of convolution
can be achieved. The deformable convolution was proposed
in [7] to break the limitation of the fixed geometric structure
in the standard convolution. The deformable convolution
features a convolutional layer that estimates 2D offsets to
the regular grid sampling locations, and the sampling loca-
tions are adjusted based on the offsets to achieve a spatially
adaptive convolution operation.

2.4. Multi-scale object detection

In MS-CNN [13], the RPN has multiple branches for
detecting objects with different scales. In Inside-Outside
Net [5] and MultiPath network [3], skip pooling is per-
formed on multiple convolutional layers to obtain high-
resolution features for small object detection like multi-
stage features in [19]. In SSD [20], multi-scale object de-
tection is achieved by assigning different detection convolu-
tional layers on feature maps with different levels of resolu-
tion. In scale-dependent pooling (SDP) network [21], ROI
pooling, classification, and bounding box regression for a
certain object scale are performed on the convolutional fea-
ture map that has the most suitable level of resolution and
abstraction for detection.
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Figure 2. The overall architecture of the proposed network. During the forward pass, the input image is fed into a VGG-16 based feed-
forward network to generate the feature maps. Context features are embedded using the location-aware deformable CNN. After the Conv6
layer is obtained, the backward pass applies the proposed backward attention filtering to filter feature maps from deep layers to shallow
layers. ROIs are generated by region proposal networks, and ROI pooling is carried out for each ROI on three filtered feature maps. The
pooled features are fed into the classification and bounding box regression subnetworks to obtain the detection result.

2.5. Attention mechanism

Attention mechanism has been utilized in many com-
puter vision tasks. The diversified visual attention network
(DVAN) was proposed in [22] to search the area with high
attention value and zoom in the image for fine-grained ob-
ject classification. In [23], weak semantic segmentation is
applied as the attention map to regularize the feature map
for pedestrian detection. In RON [24], an objectness map
is generated and used as the attention map to suppress the
features that belong to background areas. Aspect ratio at-
tention bank and sub-region attention bank were proposed
in [25] to refine pooled features for each ROI. Residual at-
tention network was proposed in [26] for image classifica-
tion. The attention map produced in [26] is both spatial and
channel-wise, which means features on different location
and channel are filtered differently.

3. Proposed method
3.1. Overview

The proposed method can be applied to different back-
bone networks such as VGG [27], ResNet [28], Mo-
bileNet [29], GoogleNet [30] and Inception ResNet [31].
Here, we use VGG-16 as the example to describe the over-
all architecture as shown in Figure 2. The network consists
of three major components: the forward pass, the backward
pass, and the object detection subnetworks. During the for-
ward pass, the input image is fed into the backbone net-
work that includes 14 convolutional layers. Three context

embedding modules are inserted before Conv3_3, Conv4_3
and Conv5_3. In these modules, context features generated
by the proposed location-aware deformable convolution are
embedded with the features from standard convolution to
obtain the enhanced Conv3_3, Conv4_3, and Conv5_3 lay-
ers. During the backward pass, the proposed backward at-
tention filtering is carried out from deep layers to shallow
layers. There are three backward attention filtering modules
in the backward pass. Each module filters the input feature
map using the output from the predecessor module. Af-
ter the backward pass, three filtered feature maps (Conv3_3,
Conv4_3, and Conv5_3) are obtained. They are fed into the
RPN to generate the ROIs. For each ROI, ROI pooling is
carried out on all three filtered feature maps. These pooled
features are processed by additional layers and fused at the
fully-connected layer. Finally, the fused features for each
ROI are sent to the classification and bounding box regres-
sion subnetworks. The classification subnetwork predicts
the class (pedestrian, cyclist, car, or background), while
the bounding box regression subnetwork predicts the ROI’s
bounding box offsets with respect to the anchor box.

3.2. Location-aware deformable convolution

The standard convolutional unit [1] samples the input
feature map at fixed locations and generates the output by
computing the weighted sum of the samples. Recently, de-
formable convolution has been proposed to overcome the
limitations of standard convolution. In deformable convolu-
tion [7], 2D offsets to the regular grid sampling locations in
the standard convolution are estimated using an additional
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Figure 3. Example of 3 x3 location-aware deformable convolution
with the dilation size D = 2. H, W, and Z are the input feature
map’s height, width, and number of channels, respectively. Better
viewed in color.

convolutional layer and the weighted sum of the samples at
offset-augmented locations is computed to obtain the output
feature.

In the deformable convolution module, there is only one
convolutional layer for estimating all the offsets, which is
based on the same receptive field as in the standard convo-
lution. Estimating the offset for each input sample using
the same receptive field and convolutional layer does not
fully utilize the unique characteristics of each input, which
may cause sub-optimal offset estimation. Besides, the re-
ceptive field is so small that surrounding features are not
seen during the offset estimation, which makes it hard to
capture useful context information. In this paper, we pro-
pose a location-aware deformable convolution module to
capture the unevenly distributed context features. The pro-
posed method adjusts the receptive field in offset estimation
adaptively based on each input sample’s location and sur-
roundings.

Our proposed location-aware deformable convolution
module for context feature extraction is depicted in Fig-
ure 3. Note that the offset estimation and the offset-
augmented sampling take place in 2D spatial domain. As-
sume that the input feature map is I, and the output feature
map is O, for each 2D location p.=(z., y.) on the output
feature map. The 3x3 deformable convolution that is cen-
tered on p. is defined as:

8
n=0

where W is the weight matrix. p, € G is a location in
the 3x3 regular sampling grid G, and D is the dilation
size. The input sample on the regular sampling grid with-
out offset-augmentation is located at p. + D - p,,. After
the offset A, for each input sample is estimated, the offset-
augmented input sample is located at p, + D - p,, + A,
which has an irregular and adaptive geometric structure to
capture context information that does not have a fixed dis-
tribution. The sampling grid G has nine elements and is
defined as:

G={(-1,-1),(-1,0),..,(0,0),.... (1, D} (2

Before estimating the offsets for each input sample, a
1x1 convolution is applied to the input feature map to re-
duce the channel size to 64. Reducing the channel size is
necessary to keep the computation cost cheap because the
offset estimation is done individually to each input sample.
After the 1x 1 convolution, nine 3x3 convolutional layers
C,,n € {0,1,,8} are applied to estimate the offset for
each input sample. Unlike [7] where the convolution for
offset estimation is always centered on p,,, the center of the
3x3 convolutional layer C, in the proposed method is lo-
cated at p.+D-p,,. Thus, each input sample’s offset estima-
tion is determined by its location and unique surroundings.
For each input sample p, + D - p,,, C,, outputs the offset
A, = (Az,, Ax,), where Az, is the 2 coordinate of the
offset, and Ay, is the y coordinate of the offset. Note that
the nine offset estimation convolutional layers do not share
parameters and they are trained individually. By having a
33 convolutional layer centered on each input sample, the
receptive field for offset estimation is extended to cover the
area outside the original 3x3 sampling grid G.

After all nine offsets A,,,n € {0,1,,8} are obtained,
the offset-augmented input samples are located at p, + D -
p,+A,. Since the estimated offset A, is often a fractional
number, interpolation is carried out to obtain the feature
value of the fractionally sampled input. The weighted sum
over all offset-augmented input samples is computed based
on Equation (1) to obtain the output feature value O(p,).
The output feature map O is obtained by estimating the off-
set and computing the convolution using Equation (1) to all
inputs from the input feature map I.
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3.3. Context feature embedding

The proposed context feature embedding module is illus-
trated in Figure 4. There are two links from the input feature
map to the output feature map. The top link is the standard
convolution which generates the standard feature map with
the regular sampling grid. The bottom link applies the pro-
posed location-aware deformable convolution which gener-
ates the context feature map using Equation (1). After the
standard feature map and the context feature map are gener-
ated, these two features maps are concatenated, and a 1x 1
convolution is applied on the concatenated map to generate
the output feature map.

During the forward pass, context feature embedding
is carried out on multiple convolutional layers to exploit
the context information of different resolutions. Specifi-
cally, context feature embedding is performed to generate
Conv3_3, Conv4_3, and Conv5_3 layers by using Conv3_2,
Conv4_2, and Conv5_2 as the input, respectively. The di-
lation size D in location-aware deformable convolution is
set to 2 to have a large and adaptive receptive field for a
better context feature extraction. Section 4.3 includes more
detailed information regarding the dilation setups.

3.4. Backward attention filtering

Multi-scale object detection, especially small object de-
tection, relies heavily on the high-resolution features from
shallow convolutional layers. While high-resolution fea-
tures provide informative clues for small objects, they also
contains distractive features which are not beneficial for
RPN, classification, and bounding box regression subnet-
works. To suppress the distraction while highlighting the
informative high-resolution features, we filter the high-
resolution feature maps with the low-resolution feature
maps which are rich in semantically meaningful informa-
tion.

3x3 Conv

+ Sigmoid Elemental-wise

Summation

®

.- Up-samplin
Semantic feature map p PHIE Elemental-wise
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Target feature map Filtered feature map

Figure 5. Backward attention filtering module.

The architecture of the proposed backward attention fil-
tering module is given in Figure 5. There are two inputs
for the attention filtering module: one is the target feature
map T to be filtered, and the other is the semantic feature
map S from the deeper convolutional layer, which is used
to generate the attention map.

First, the semantic feature map .S is processed by a 3x3
convolutional layer. The output A has the same channel
size as the target feature map so that elemental-wise oper-
ation can be performed. The sigmoid function is used for
non-linear activation. The attention map A,,, is obtained
by up-sampling A to the same spatial size as the target fea-
ture map T'. Elemental-wise multiplication is carried out
between the attention map A, and the target feature map
T. The filtered feature map F' is obtained by elemental-
wise summation between T" and T" - A,,;,. Assume that the
feature at the spatial location (x,y) and channel c on the
target feature map is T'(x, y, ¢). The filtered feature on the
output feature map F' can be formulated as:

F(xay7c) = (1+Aup(x,y,c))-T(:c,y,c) (3)

Equation (3) is similar in spirit to residual-
connection [28], which is used to prevent the filtered
feature value from degradation. The filtered feature map
F is used as the semantic feature map for the next filtering
module as well as the feature map for the object detection
subnetworks. In the proposed network, there are three such
attention filtering modules to filter the Conv 5_3, Conv 4_3,
and Conv 3_3 layers in a backward connection as shown
in Figure 2. After the backward filtering is complete, three
filtered feature maps are obtained and sent to the object
detection subnetworks.
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3.5. Object detection subnetworks

The object detection subnetworks are based on the Faster
R-CNN [12] architecture, which is a two-stage detector.
The first stage is to generate object proposals or ROIs with
the RPN. The setup of the RPN is similar to the original
one proposed in [12]. The second stage is to perform ROI
pooling for each ROI from the three feature maps obtained
from the backward attention filtering. We use ROI pooling
from multiple feature maps of different resolutions to im-
prove the performance for multi-scale object detection. As
shown in Figure 2, for each ROI, we use skip pooling [5]
to extract a fixed-length feature descriptor from the filtered
Conv3_3, Conv4_3, Conv5_3 feature maps.

As in [3] and [32], we apply a late feature fusion that
performs feature concatenation at fully-connected layers.
Specifically, we employ a 3x3 convolutional layer and a
fully-connected layer for the pooled Conv3_3, Conv4_3,
and Conv5_3 features. Each convolutional layer and fully-
connected layer are trained individually to exploit the
uniqueness of each pooled feature. The output size of the
fully-connected layer is 1024, which gives a good balance
between performance and speed. After all fully-connected
features are obtained, they are concatenated into a vector,
resulting in a final feature size of 3072.

After the concatenated features are obtained, the classi-
fication and bounding box regression subnetworks take the
features as the input and make the final prediction on the
ROI’s class and its bounding box offsets. The classifica-
tion subnetwork outputs a class score C¢j455. The bounding
box regression subnetwork outputs the bounding box off-
sets t = [tg,ty, tw, tn], Where iy, t,, ), tj, are the offsets
with respect to the ROI’s x coordinate, y coordinate, width,
and height, respectively. They are parameterized using the
method in [33]. The total loss function L is a multi-task loss
defined as:

L= Lcls(ccla,887 CGT) + a X Lbbom(tv tGT)» “4)

where Cgr is the ground truth for multi-class classification
and tgr is the ground truth for bounding box regression.
The classification loss L, is the cross-entropy loss and the
bounding box regression loss Lpp,, is the smooth L; loss.
« is equal to 1 when the Cr is the non-background class.
Otherwise, « is equal to 0.

4. Experiments
4.1. Dataset

The KITTI benchmark dataset [2] is a real-world com-
puter vision dataset for autonomous driving. The 2D object
detection benchmark consists of 7481 training images and
7518 testing images. The object categories are cars, pedes-
trians, and cyclists. The evaluation metric is based on the

average precision (AP). Since KITTI dataset only provides
the ground truth annotation for training images, to evalu-
ate the design or optimize the network setup, one creates
a validation set from the training images. In our case, we
divide the training set into two parts. One half contains
3741 images, which are used as the training set. The other
half contains 3740 images and used as the validation set.
In addtion, we also evaluate our proposed method on PAS-
CAL VOC2007 dataset [34] for general object detection.
The dataset contains 9963 images, and there are 20 object
classes.

4.2. Implementation details

VGG-16 and ResNet. The proposed method can be in-
tegrated with different backbone networks. We have im-
plemented the proposed method based on VGG-16 and
ResNet-18 for KITTI dataset. ResNet-18 is chosen because
it is a computationally cheap network and therefore is suit-
able for real-time applications such as autonomous driving.
For experiments on PASCAL VOC dataset, VGG-16 and
ResNet-101 are used. To switch the backbone from VGG-
16 to ResNet, all that need to be done is to connect the con-
text embedding module and the backward attention filter-
ing module accordingly. During the ROI pooling process,
the spatial size of the pooled features is set to 3x3. After
the detection scores and the bounding box offsets for each
ROI are obtained, non-maximum suppression with the IoU
threshold of 0.5 is carried out to generate the final detection
results.

Training Details. During the training stage, positive ex-
amples are defined as the sampled regions that have an loU
above 0.5 with the ground truth annotation. Meanwhile,
sampled regions with the IoU below 0.3 are taken as the
negative examples. The optimization of the network is done
by stochastic gradient descent (SGD). The learning rate is
set to 0.0005 for the VGG-16 version, and 0.00025 for the
ResNet-18 version. The momentum is 0.9. The maximum
iteration is set to 20000 for RPN and 40000 for the classifi-
cation and bounding box regression subnetworks.

Software and Hardware. Caffe deep learning tool-
box [35] with MATLAB interface is used as the software.
The hardware is based on the Intel Core i7-6700 CPU and
the NVIDIA Titan X GPU with 12GB memory.

4.3. Design evaluation

In this section, we evaluate the effectiveness of each pro-
posed component and compare the performance with refer-
ence methods on KITTI validation set.

Comparison with Faster R-CNN. We compare the pro-
posed method with Faster R-CNN [12] for VGG-16 and
ResNet-18 backbone networks. The comparison results
are given in Table 1. To evaluate the effectiveness of the
proposed context embedding and backward attention filter-
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AP (%) Car AP (%) Cyclist AP (%) Pedestrian PASCAL
Method Backbone  — —Mod Hard Easy Mod Hard Easy Mod Hard | VOC 2007
Faster
RLCNN [12] VGG-16 8735 87.09 72.50 89.05 7406 7057 77.10 73.08 65.19 732
Ours (a) VGG-16 9139 90.66 80.17 9171 81.83 7727 8204 78.09 68.83 757
Ours (b) VGG-16 90.70 9032 7595 90.03 7844 7238 8077 77.80 68.18 74.2
Ours (c) VGG-16 9222 91.74 8151 91.64 83.03 7877 8329 79.18 70.68 76.1
Faster
RCNN[12] ReSNe-18/101 8556 8356 69.12 8551 7259 6822 7637 7207 6374 76.4
Ours ()  ResNet-18/101 9049 8945 79.65 8671 7976 7327 79.68 75.66 68.16 79.0
Ours ()  ResNet-18/101  90.12 8950 7896 8634 78.59 7022 7775 7325 6551 77.9
Ours (¢)  ResNet-18/101 91.73 9024 80.08 87.75 8023 7527 80.06 7693 6847 79.8

Table 1. Comparison with the baseline Faster R-CNN [12] on VGG-16 [27] and ResNet [28] backbone networks. Note that ResNet-18 is
for KITTI datset, and ResNet-101 is for PASCAL VOC 2007 dataset.

Method D, D AP (%) at moderate difficulty Method Runtime  Car  Cyclist Pedestrian

car cyclist  pedestrian Faster R-CNN [12] 2 sec 79.11  62.81 65.91

Method A 1 1 86.70  74.89 73.96 RRC [4] 36sec  90.19 7647 75.33

(Deformable Sensekitt [38] 4.5 sec 90.00 72.50 67.28

convolution [7]) 2 2 8926 80.84 7725 SDP+RPN [21] 0.4 sec 89.42  73.08 70.20

Method B 1 1 87.82 75.24 74.93 SubCNN [39] 2 sec 88.86  70.77 71.34

(Location-aware 1 2 87.35 75.19 74.25 MS-CNN [13] 0.4sec 88.83 7445 73.62
deformable 2 1 90.66 81.83 78.09 Deep3DBox [40] 1.5 sec 88.86 73.48 n/a

convolution) 2 2 90.62  80.47 77.35 DeepStereo [41] 3.4 sec 88.75 65.72 67.32

Method C Ours/VGG-16 0.22sec  88.99  74.65 73.96

(Standard na n/a 87.09 74.06 73.08 Ours/ResNet-18 0.14sec  86.61  72.22 71.85

convolution)

Table 2. Comparison with the original deformable convolution on
different dilation setups on KITTI validation set. D; indicates
the dilation size of the deformable convolution. D, indicates the
dilation size of the convolution for offset estimation.

AP (%) at moderate difficulty

Method ; -

car cyclist  pedestrian
Weak segmentation [23] [24] 86.83  74.59 73.55
Residual attention [26] 88.92  77.28 76.76
Ours 90.32 78.44 77.80

Table 3. Comparison with reference attention mechanisms on
KITTI validation set.

ing module, we conduct experiments on three setups. The
setup Ours (a) features the context embedding module us-
ing location-aware deformable convolution only. The setup
Ours (b) features the backward attention filtering module
only. The setup Ours (c) features both modules. The ob-
ject detection subnetworks for Faster R-CNN has the same
architecture as described in Section 3.5. From the results in
Table 1, it can be seen that both the context embedding and
the backward attention filtering improve the performance
on both KITTI and PASCAL VOC datasets. On KITTI
validation set, context embedding has an average 4.8% and
5.1% AP improvement on VGG-16 and ResNet-18, respec-
tively. The backward attention filtering achieves a 2.8%

Table 4. Comparison with other state-of-the-art methods on KITTI
test set at moderate difficulty.

Method Backbone mAP(%)

Faster R-CNN [12] VGG-16/ResNet-101  73.2/76.4
ION [5] VGG-16 75.6
Deformable CNN [7] ResNet-101 78.7
SSD [20] VGG-16 74.3
YOLO9000 [42] DarkNet-19 73.7
RON [24] VGG-16 75.4
FPN [43] ResNet-101 80.5
R-FCN [44] ResNet-101 76.6

Ours VGG-16/ResNet-101  76.1/79.8

Table 5. Comparison with other state-of-the-art methods on PAS-
CAL VOC 2007 test set.

and 3.6% improvement in AP on VGG-16 and ResNet-18,
respectively. On PASCAL VOC test set, context embed-
ding has a 2.5% and 2.6% AP improvement on VGG-16 and
ResNet-101, respectively. The backward attention filtering
achieves a 1.0% and 1.5% improvement in AP on VGG-16
and ResNet-101, respectively. By combining both modules,
the setup Ours (c) has the best performance.
Location-aware deformable convolution. Here, we
evaluate the effectiveness of the location-aware deformable
convolution module by comparing it with the original de-
formable convolution [7] under different dilation setups.
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Figure 6. Effect of changing the number of ROIs on KITTI val-
idation set. Car detection is evaluated because cars appear more
frequently than cyclists and pedestrians. The mean AP is calcu-
lated from all difficulties.

The network setup is the same as the VGG-16 version of
Ours (a) in Table 1, except that Method B uses the pro-
posed location-aware deformable convolution, and Method
A uses the original deformable convolution to extract con-
text features. We test different combinations of dilation se-
tups. Note that the original deformable convolution uses
the same dilation setup for offset estimation and convolu-
tion. The comparison results are shown in Table 2. We can
observe that a decent performance improvement is obtained
when the deformable convolution’s dilation size D7 is set
to 2. This observation suggests the usefulness of context in-
formation by increasing the receptive field of convolution.
Among all dilation setups, the best result is obtained when
the dilation size is 2 for deformable convolution and 1 for
offset estimation convolution layers.

Backward Attention filtering. We compare the per-
formance of the proposed attention filtering module with
two popular attention mechanisms that can be used for ob-
ject detection: a weak semantic segmentation-based atten-
tion module [23] [24] and a residual attention module [26].
Since the original methods in [23] [24] [26] are not tested on
KITTI dataset, we implement them based on the description
given in the corresponding publication. The weak semantic
segmentation subnetwork is built based on FCN [36], and it
is trained by labeling all pixels inside the positive bounding
box as 1 and background as 0. For the residual attention
method, we replace the proposed backward attention mod-
ule with the feed-forward residual attention module. All
other components are the same as the VGG-16 version of
Qurs (b) in Table 1. Table 3 shows the comparison results.
It is observed that the backward attention filtering has the
best performance.

ROI reduction. We investigate how the backward at-
tention filtering module helps speed up the detection. In a
Faster R-CNN based method, a larger number of ROIs slow
down the processing speed dramatically [37]. By highlight-
ing the features for the target object using the attention fil-
tering module, the number of ROIs needed to reach a good

performance can be reduced. Figure 6 compares the mean
AP for car detection based on the number of ROIs with and
without the backward attention filtering module. It can be
observed that after applying the attention filtering module,
the number of ROIs required to achieve a good performance
is reduced by over 50%. As a result of processing a smaller
number of ROISs for each frame, the runtime is reduced. For
the evaluation on the validation and testing set, the number
of ROIs for each frame is set to 150.

4.4. Comparison with state-of-the-art methods

We compare the performance with other state-of-the-art
vision-based multi-class detection methods on KITTI and
PASCAL VOC 2007 test set. The proposed network is
trained using all images from the training set. All hyper-
parameters are the same as the training setup described in
Section 4.2. Table 4 and Table 5 show the performance
comparison results in terms of mAP. On KITTI dataset, our
method has the second-best performance on pedestrian and
cyclist categories. On car detection task, our method has
the 4th best performance. Since a small number of ROIs
are needed after applying the backward attention filtering,
the proposed method has the fastest speed among the top-
performing methods. Especially, our method achieves a
runtime of 0.14 seconds per frame with a comparable av-
erage precision based on ResNet-18. On PASACL VOC
test set, our method outperforms all other methods except
for FPN.

5. Conclusion

In this paper, we propose a location-aware deformable
convolution and a backward attention filtering module to
improve the performance of multi-class, multi-scale ob-
ject detection for autonomous driving. The location-aware
deformable convolution adaptively extracts unevenly dis-
tributed context features, which are embedded with the stan-
dard convolutional features to build strong and comprehen-
sive features for detecting objects in a complex scene. To
further improve the performance and reduce the number of
ROIs needed, the backward attention filtering module uti-
lizes the high-level semantic features from deep convolu-
tional layers to highlight informative high-resolution fea-
tures and suppress the distractive ones. By combining the
two proposed methods into a forward-backward network,
the proposed detection network achieves good performance
on KITTI and PASCAL VOC dataset with a fast speed
among the top-performing methods.
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