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Abstract

Cosine-based softmax losses [20, 29, 27, 3] signifi-

cantly improve the performance of deep face recognition

networks. However, these losses always include sensitive

hyper-parameters which can make training process unsta-

ble, and it is very tricky to set suitable hyper parameters

for a specific dataset. This paper addresses this challenge

by directly designing the gradients for training in an adap-

tive manner. We first investigate and unify previous co-

sine softmax losses from the perspective of gradients. This

unified view inspires us to propose a novel gradient called

P2SGrad (Probability-to-Similarity Gradient), which lever-

ages a cosine similarity instead of classification probabil-

ity to control the gradients for updating neural network pa-

rameters. P2SGrad is adaptive and hyper-parameter free,

which makes training process more efficient and faster. We

evaluate our P2SGrad on three face recognition bench-

marks, LFW [7], MegaFace [8], and IJB-C [16]. The re-

sults show that P2SGrad is stable in training, robust to

noise, and achieves state-of-the-art performance on all the

three benchmarks.

1. Introduction

Over the last few years, deep convolutional neural net-

works have significantly boosted the face recognition accu-

racy. State-of-the-art approaches are based on deep neu-

ral networks and adopt the following pipeline: training a

classification model with different types of softmax losses

and use the trained model as a feature extractor to test un-

seen samples. Then the cosine similarities between testing

faces’ features, are exploited to determine whether these

features belong to the same identity. Unlike other vision

tasks, such as object detection, where training and testing

have the same objectives and evaluation procedures, con-

ventional face recognition systems were trained with soft-

max losses but tested with cosine similarities. In other

words, there is a gap between the softmax probability in

training and inner product similarity in testing.

This problem is not well addressed in the classical soft-

max cross-entropy loss function (softmax loss for short

in the remaining part), which mainly considers probabil-

ity distributions of training classes and ignores the test-

ing setup. In order to bridge this gap, cosine softmax

losses [28, 13, 14] and their angular margin based vari-

ants [29, 27, 3] directly use cosine distances instead of in-

ner products as the input raw classification scores, namely

logits. Specially, the angular margin based variants aim to

learn the decision boundaries with a margin between dif-

ferent classes. These methods improve the face recognition

performance in the challenging setup.

In spite of their successes, cosine-based softmax loss is

only a trade-off: the supervision signals for training are still

classification probabilities, which are never evaluated dur-

ing testing. Considering the fact that the similarity between

two testing face images is only related to themselves while

the classification probabilities are related to all the identi-

ties, cosine softmax losses are not the ideal training mea-

sures in face recognition.

This paper aims to address these problems from a differ-

ent perspective. Deep neural networks are generally trained

with Stochastic Gradient Descent (SGD) algorithms where

gradients play an essential role in this process. In addition

to the loss function, we focus on the gradients of cosine

softmax loss functions. This new perspective not only al-

lows us to analyze the relations and problems of previous

methods, but also inspires us to develop a novel form of

adaptive gradients, P2SGrad, which mitigates the problem

of training-testing mismatch and further improves the face

recognition performance in practice.

To be more specific, P2SGrad optimizes deep models by

well-designed gradients. Compared with the conventional

gradients in cosine-based softmax losses, P2SGrad uses co-

sine distances to replace the probabilities in the original gra-

dients. P2SGrad decouples gradients from hyperparameters

and the number of classes, and matches testing targets.

This paper mainly contributes in the following aspects:

1. We analyze the recent cosine softmax losses and their

angular-margin based variants from the perspective of

gradients, and propose a general formulation to unify

different cosine softmax cross-entropy losses;

2. With this unified model, we propose an adaptive
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Figure 1. Pipeline of current face recognition system. In this general pipeline, deep face models trained on classification tasks are treated

as feature extractors. Best viewed in color.

hyperparameter-free gradient method - P2SGrad for

training deep face recognition networks. This method

reserves advantages of using cosine distances in train-

ing but replaces classification probabilities with cosine

similarities in the backward propagation;

3. We conduct extensive experiments on large-scale face

datasets. Experimental results show that P2SGrad out-

performs state-of-the-art methods on the same setup

and clearly improves the stability of the training pro-

cess.

2. Related Works

The accuracy improvements of face recognition [9, 6,

18, 25] enjoy the large-scale training data, and the im-

provements of neural network structures. Modern face

datasets contain a huge number of identities, such as

LFW [7], PubFig [10], CASIA-WebFace [32], MS1M [4]

and MegaFace [17, 8], which enable the effective training

of very deep neural networks. A number of recent studies

demonstrated that well-designed network architectures lead

to better performance, such as DeepFace [26], DeepID2,

3 [22, 23] and FaceNet [21].

In face recognition, feature representation normaliza-

tion, which restricts features to lie on a fixed-radius hyper-

sphere, is a common operation to enhance models’ final per-

formance. COCO loss [13, 14] and NormFace [28] stud-

ied the effect of normalization through mathematical analy-

sis and proposed two strategies through reformulating soft-

max loss and metric learning. Coincidentally, L2-softmax

[20] also proposed a similar method. These methods obtain

the same formulation of cosine softmax loss from different

views.

Optimizing auxiliary metric loss function is also a pop-

ular choice for boosting performance. In the early years,

most face recognition approaches utilized metric loss func-

tions, such as triplet loss [30] and contrastive loss [2], which

use Euclidean margin to measure distance between features.

Taking advantages of these works, center loss [31] and

range loss [33] were proposed to reduce intra-class varia-

tions through minimizing distance within target classes [1].

Simply using Euclidean distance or Euclidean margin

is insufficient to maximize the classification performance.

To circumvent this difficulty, angular margin based softmax

loss functions were proposed and became popular in face

recognition. Angular constraints were added to traditional

softmax loss function to improve feature discriminativeness

in L-softmax [12] and A-softmax [11], where A-softmax

applied weight normalization but L-softmax [12] did not.

CosFace [29], AM-softmax [27] and ArcFace [3] also em-

braced the idea of angular margins and employed simpler as

well as more intuitive loss functions compared with afore-

mentioned methods. Normalization is applied to both fea-

tures and weights in these methods.

3. Limitations of cosine softmax losses

In this section we will discuss limitations caused by the

mismatch between training and testing of face recognition

models. We first provide a brief review of the workflow of

cosine softmax losses. Then we will reveal the limitations

of existing loss functions in face recognition from the per-

spective of forward and backward calculation respectively.

3.1. Gradients of cosine softmax losses

In face recognition tasks, the cosine softmax cross-

entropy loss has an elegant two-part formulation, softmax

function and cross-entropy loss.

We discuss softmax function at first. Assuming that the

vector ~xi denotes the feature representation of a face image,

the input of the softmax function is the logit fi,j , i.e.,

fi,j = s ·
〈~xi, ~Wj〉

‖~xi‖2‖ ~Wj‖2
= s · 〈x̂i, Ŵj〉 = s · cos θi,j , (1)

where s is a hyperparameter and fi,j is the classification

score (logit) that ~xi is assigned to class j, and Wj is the

weight vector of class j. x̂i and Ŵj are normalized vec-

tors of xi and Wj respectively. θi,j is the angle between
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feature xi and class weight Wj . The logits fi,j are then

input into the softmax function to obtain the probability

Pi,j = Softmax(fi,j) =
efi,j

∑
C
k=1

efi,k
, where C is the number

of classes and the output Pi,j can be interpreted as the prob-

ability of ~xi being assigned to a certain class j. If j = yi,

then Pi,yi
is the class probability of ~xi being assigned to its

corresponding class yi.

Then we discuss the cross-entropy loss associated with

the softmax function, which measures the divergence be-

tween the predicted probability Pi,yi
and ground truth dis-

tributions as

LCE(~xi) = − logPi,yi
= − log

efi,yi
∑C

k=1 e
fi,k

, (2)

where LCE(~xi) is the loss of input feature ~xi. The larger

probability Pi,yi
is, the smaller loss LCE(~xi) is.

In order to decrease the loss LCE(~xi), the model needs

to enlarge Pi,yi
and thus enlarge fi,yi

. Then θi,yi
becomes

smaller. In summary, cosine softmax loss function maps

θi,yi
to the probability Pi,yi

and calculates the cross-entropy

loss to supervise the training.

In the backward propagation process, classification prob-

abilities Pi,j play key roles for optimization. The gradient

of ~xi and ~Wj in cosine softmax losses are calculated as

∂LCE(~xi)

∂~xi
=

C
∑

j=1

(Pi,j − ✶(yi = j)∇f(cos θi,j) ·
∂ cos θi,j

∂~xi
,

∂LCE(~xi)

∂ ~Wj

= (Pi,j − ✶(yi = j)∇f(cos θi,j) ·
∂ cos θi,j

∂ ~Wj

,

(3)

where the indicator function ✶(j = yi) returns 1 when j =

yi and 0 otherwise.
∂ cos θi,j

∂~xi
and

∂ cos θi,j

∂ ~Wj

can be computed

respectively as:

∂ cos θi,j
∂~xi

=
1

‖~xi‖2
(Ŵj − cos θi,j · x̂i),

∂ cos θi,j

∂ ~Wj

=
1

‖ ~Wj‖2
(x̂i − cos θi,j · Ŵj),

(4)

where Ŵj and x̂i are unit vectors of ~Wj and ~xi, respec-

tively.
∂ cos θi,j

∂ ~Wj

is visualized as the red arrow in Fig. 2. This

gradient vector is updating directions of class weights ~Wj .

Intuitively, we expect the updating of ~Wj makes ~Wyi
close

to ~xi, and makes ~Wj for j 6= yi away from ~xi. Gradient
∂ cos θi,j

∂ ~Wj

is vertical to ~Wj and points toward ~xi. Thus it is

the fastest and optiaml direction for updating ~Wj .

Then we consider the gradient ∇f(cos θi,j). In con-

ventional cosine softmax losses [20, 28, 13], classification

score f(cos θi,j) = s · cos θi,j and thus ∇f(cos θi,j) = s.

In angular margin-based cosine softmax losses [27, 29, 3],

𝒙𝒊
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Figure 2. Gradient direction of
∂ cos θi,j

∂ ~Wj
. Note this gradient is the

updating direction of ~Wj . The red pointed line shows that the

gradient of ~Wj is vertical to ~Wj itself and in the plane spanned by

~xi and ~Wj . This can be seen as the fastest direction for updating
~Wyi to be close to ~xi and for updating ~Wj , j 6= yi to be far away

from ~xi. Best viewed in color.

however, the gradient of fmargin(cos θi,yi
) for j = yi de-

pends on where the margin parameter m is. For exam-

ple, in CosFace [29] f(cos θi,yi
) = s · (cos θi,yi

−m),
thus ∇f(cos θi,yi

) = s and in ArcFace [3] f(cos θi,yi
) =

s · cos (θi,yi
+m), thus ∇f(cos θi,yi

) = s ·
sin (θi,yi+m)

sin θi,yi
. In

general, gradient ∇f(cos θi,j) is always a scalar related to

parameters s, m and cos θi,j .

Based on the aforementioned discussions, we reconsider

gradients of class weights ~Wj in Eq. (3). In ∂LCE

∂ ~Wj

, the first

part (Pi,j − ✶(yi = j) · ∇f(cos θi,j) is a scalar, which de-

cides the length of gradient, while the second part
∂ cos θi,j

∂ ~Wj

is a vector which decides the direction of gradient. Since

the directions of gradients for various cosine softmax losses

remain the same, the essential difference of these cosine

softmax losses is the different lengths of gradients, which

significantly affect the optimization of model. In the follow-

ing sections, we will discuss the suboptimal gradient length

caused by forward and backward process respectively.

3.2. Limitations in probability calculation

In this section we discuss the limitations of the forward

calculation of cosine softmax losses in deep face networks

and focus on the classification probability Pi,j obtained in

the forward calculation.

We first revisit the relation between Pi,j and θi,j . The

classification probability Pi,j in Eq. (3) is a part of gradi-

ent length. Hence Pi,j significantly affects the length of

gradient. Probability Pi,j and logit fi,j are positively corre-

lated. For all cosine softmax losses, logits fi,j measure θi,j

between feature ~xi and class weight ~Wj . A larger θi,j pro-
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batch for non-corresponding classes, θi,j for j 6= yi. (Brown)

average angles in each mini-batch for corresponding classes, θi,yi .

duces lower classification probability Pi,j while a smaller

θi,j produces higher Pi,j . It means that θi,j affects gradient

length by its corresponding probability Pi,j . The equation

sets up a mapping relation between θi,j and Pi,j and makes

θi,j affects optimization. Above analysis is also the reason

why cosine softmax losses are effective on face recognition

tasks.

Since θi,yi
is the direct measurement of the generaliza-

tion but it can only indirectly affect gradient by correspond-

ing Pi,yi
, setting a reasonable mapping relation between

θi,yi
and Pi,yi

is crucial. However, there are two tricky

problems in current cosine softmax losses: (1) classification

probability Pi,yi
is sensitive to hyperparameter settings; (2)

the calculation of Pi,yi
is dependent on class number, which

is not related to face recognition tasks. We will discuss these

problems below.

Pi,yi
is sensitive to hyperparameters. The most

common hyperparameters in conventional cosine softmax

losses [20, 28, 13] and margin variants [3] are the scale pa-

rameter s and the angular margin parameter m. We will

analyze the sensitivity of probability Pi,yi
to hyperparam-

eter s and m. For a more accurate analysis, we first look

at the actual range of θi,j . Fig. 3 exhibits how the average

θi,j changes in training. Mathematically, θi,j could be any

value in [0, π]. In practice, however, the maximum θi,j is

around π
2 . The blue curve reveals that θi,j for j 6= yi do

not change significantly during training. The brown curve

reveals that θi,yi
is gradually reduced. Therefore we can

reasonably assume that θi,j ≈ π
2 for j 6= yi and the range

of θi,yi
is [0, π

2 ]. Then Pi,yi
can be rewritten as

Pi,yi
=

efi,yi
∑C

k=1 e
fi,k

=
efi,yi

efi,yi +
∑

k 6=yi
es·cos θi,k

≈
efi,yi

efi,yi +
∑

k 6=yi
es·cosπ/2

=
efi,yi

efi,yi + (C − 1)
,

(5)

where fi,yi
is logit that ~xi is assigned to its corresponding

class yi, and C is class number.

Theoretically, we can give the correspondence between

probability Pi,yi
and angle θi,yi

under different hyperpa-

rameter settings. In state-of-the-art angular margin based
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iteration number increases with the hyperparameter setting s = 35
and m = 0.2. Best viewed in color.

losses [3], logit fi,yi
= s · cos (θi,yi

+m). Fig. 4 reveals

that different settings of s and m can significantly affect the

relation between θi,yi
and Pi,yi

. Apparently, both the green

curve and the purple curve are examples of unreasonable re-

lations. The former is so lenient that even a very larger θi,yi

can produce a high Pi,yi
≈ 1. The later is so strict that even

a very small θi,yi
can just produce a low Pi,yi

. In short, for

a specific degree of θi,yi
, the difference of probability Pi,yi

under different settings is very large. This observation indi-

cates that probability Pi,yi
is sensitive to parameters s and

m.

To further confirm this conclusion, we take an example

of correspondences between Pi,yi
and θi,yi

in real training.

In Fig. 5, the red curve represents the change of Pi,yi
and the

blue curve represents the change of θi,yi
during the training

process. As we discussed above, Pi,yi
≈ 1 can produce

very short gradients so that has little affection in updating.

This setting is not ideal because Pi,yi
increases to 1 rapidly

but θi,yi
is still large. Therefore classification probability

Pi,yi
largely depends on the setting of hyperparameter.

Pi,yi
contains class number. In closed-set classification

problems, probabilities Pi,j become smaller as the growth

of class number C because each class is assigned more or

less probability (but not 0). This is reasonable in classifica-

tion tasks. However, this is not suitable for face recognition,

which is an open-set problem. Since θi,yi
is the direct mea-

surement of generalization of ~xi while Pi,yi
is the indirect

measurement, we expect that they have a consistent seman-

tic meaning. But Pi,yi
is related to class nubmer C while

9909



0
π

16

π

8

3π

16

π

4

5π

16

3π

8

7π

16

π

2

θi,yi ∈ (0, π
2
)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
il

it
y
P
i,
y
i

Class Number C = 10

Class Number C = 100

Class Number C = 1, 000

Class Number C = 10, 000

Class Number C = 100, 000

cos θi,yi

Figure 6. Pi,yi with different class numbers. The hyperparameter

setting is fixed to s = 15 and m = 0.5 for fair comparison. Best

viewed in color.

θi,yi
is not, which causes the mismatch between them.

As shown in Fig. 6, we can summarize that the class

number C is an important factor for Pi,yi
.

From the above discussion, we reveal that limitations

exist in the forward calculation of cosine softmax losses.

Both hyperparameters and the class number, which are un-

related to face recognition tasks, can determine the proba-

bility Pi,yi
, and thus affect the gradient length in Eq. (3).

3.3. Limitation in backward calculation of cosine
softmax losses

In this section, we discuss the limitations in the back-

ward calculation of the cosine softmax function, especially

the angular-margin based softmax losses [3].

We revisit gradient ∇f(cos θi,j) in Eq. (3). Besides

Pi,yi
, the part of ∇f(cos θi,j) also affects the length of

gradient. Larger ∇f(cos θi,j) produce longer gradients

while smaller ones produce shorter gradients. So we expect

θi,yi
and values of ∇f(cos θi,j) to be positively correlated:

small θi,yi
for small ∇f(cos θi,j) and large θi,yi

for larger

∇f(cos θi,j).

The logit fi,yi
is different in various cosine softmax

losses, and thus the specific form of ∇f(cos θi,j) is dif-

ferent. Generally, we focus on simple cosine softmax

losses [20, 28, 13] and state-of-the-art angular margin based

loss [3]. Their ∇f(cos θi,j) are visualized in Fig. 7, which

shows that, under the factor of ∇f(cos θi,j), the lengths of

gradients in conventional softmax cosine losses [20, 28, 13]

are constant. However in angular margin-based losses [3],

the lengths of gradients and θi,yi
are negatively correlated,

which is completely contrary to our expectations. More-

over, the correspondence between length of gradients in an-

gular margin-based loss [3] and θi,yi
becomes tricky: when

θi,yi
gradually reduced, Pi,yi

tends to shorten length of gra-

dients but ∇f(cos θi,j) tends to elongate the length. There-

fore the geometric meaning of the gradient length becomes

unexplained in angular margin-based cosine softmax loss.

3.4. Summary

In the above discussion, we first reveal that various

cosine softmax losses have the same updating direction.

Hence the main difference between the variants is their gra-

dient lengths. For the length of gradient, there are two

scalars that determine its value: the probability Pi,yi
in

the forward process and the gradient ∇f(cos θi,j). For

Pi,yi
, we find that it can easily lose its semantic mean-

ing with different hyperparameter settings and class num-

bers. For ∇f(cos θi,j), its value depends on the definition

of f(cos θi,yi
).

In summary, from the perspective of gradient, the widely

used cosine softmax losses [20, 28, 13] and their angular

margin variants [3] cannot produce optimal gradient lengths

with well-explained geometric meanings.

4. P2SGrad: Change Probability to Similarity

in Gradient

In this section, we propose a new method, namely

P2SGrad, that determines the gradient length only by θi,j
in training face recognition models. Formally, the gradient

length produced by P2SGrad is hyperparameter-free and not

related to the number of class C nor to a ad-hoc definition

of logit fi,yi
. P2SGrad does not need a specified formula-

tion of loss function because gradients is well-designed to

optimize deep models.

Since the main difference of state-of-the-art cosine soft-

max losses is the gradient length, reforming a reasonable

gradient length is an intuitive thought. In order to decouple

the length factor and direction factor of the gradients, we

rewrite Eq. (3) as

∇LCE(~xi) =

C
∑

j=1

L(Pi,j , f(cos θi,j)) ·D( ~Wj , ~xi),

∇LCE( ~Wj) = L(Pi,j , f(cos θi,j)) ·D(~xi, ~Wj),

(6)

where the direction factors D( ~Wj , ~xi) and D(~xi, ~Wj) are

defined as

D( ~Wj , ~xi) =
1

‖~xi‖2
(Ŵj − cos θi,j · x̂i),

D(~xi, ~Wj) =
1

‖ ~Wj‖2
(x̂i − cos θi,j · Ŵj),

(7)

where Ŵj and x̂i are unit vectors of ~Wj and ~xi, respectively.

cos θi,j is the cosine distances between feature ~xi and class

weights ~Wj . The direction factors will not be changed be-

cause they are the fastest changing directions, which are

specified before. The length factor |L(Pi,j , f(cos θi,j))| is

defined as

|L(Pi,j , f(cos θi,j))| =

{

(1− Pi,yi
)|∇f(cos θi,yi

)| j = yi,

Pi,j · |∇f(cos θi,j)| j 6= yi.

(8)
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The length factor |L(Pi,j , f(cos θi,j))| depends on the prob-

ability Pi,j and ∇f(cos θi,j) and is what we aim to reform.

Since we expect that the new length is hyperparameter-

free, the cosine logit f(cos θi,j) will not have hyperparam-

eters like s or m. Thus a constant ∇f(cos θi,j) should be

an ideal choice.

For the probability Pi,j , because it is hard to set a rea-

sonable mapping function between θi,j and Pi,j , we can di-

rectly use cos θi,j as a good alternative of Pi,j in the gradi-

ent length term. Firstly, they have the same theoretical range

of [0, 1] where θi,j ∈ [0, π
2 ]. Secondly, unlike Pi,j which is

adversely influenced by hyperparameter and the number of

class, cos θi,j does not contain any of these. It means that

we do not need to select specified parameters settings for

ideal correspondence between θi,yi
and Pi,yi

. Moreover,

compared with Pi,j , cos θi,j is a more natural supervision

because cosine similarities are used in the testing phase of

open-set face recognition systems while probabilities only

apply for close-set classification tasks. Therefore, our re-

formed gradient length factor L̃(cos θi,j) can be defined as:

L̃(cos θi,j) = cos θi,j − ✶(j = yi), (9)

where L̃(cos θi,j) is a function of cos θi,j . The reformed

gradients G̃P2SGrad could then be defined as

G̃P2SGrad(~xi) =

C
∑

j=1

L̃(cos θi,j) ·D( ~Wj , ~xi),

G̃P2SGrad( ~Wj) = L̃(cos θi,j) ·D(~xi, ~Wj),

(10)

where ✶ is the indicator function. The full formulation can

be rewrite as

G̃P2SGrad(~xi) =

C
∑

j=1

(cos θi,j − ✶(j = yi)) ·
∂ cos θi,j

∂~xi
,

G̃P2SGrad( ~Wj) = (cos θi,j − ✶(j = yi)) ·
∂ cos θi,j

∂ ~Wj

,

(11)

Although the analysis process is slightly complicated,

the formulation of P2SGrad is not only succinct but reason-

able. When j = yi, the proposed gradient length and θi,j
are positively correlated, when j 6= yi, they are negatively

correlated. More importantly, gradient length in P2SGrad

only depends on θi,j and thus fits the testing metric of face

recognition systems.

5. Experiments

In this section, we conduct a series of experiments to

evaluate the proposed P2SGrad. We first verify advantages

of P2SGrad in some exploratory experiments by testing

the model’s performance on LFW [7]. Then we evaluate

P2SGrad on MegaFace [8] Challenge and IJBC 1:1 verifi-

cation [16] with the same training configuration.

5.1. Exploratory Experiments

Preprocessing and training setting. We use CASIA-

WebFace [32] as training data and ResNet-50 as the neural

network architecture. Here WebFace [32] dataset is cleaned

and contains about 450k facial images. RSA [15] is ap-

plied to images to extract facial areas and then aligns the

faces similarity transformation. All images are resized to

144 × 144. Also, we conduct pixel value normalization

by subtracting 127.5 and then dividing by 128. For all ex-

ploratory experiments, the size of a mini-batch is 512 in

every iteration.

9911



0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0k 30k 60k 90k

Iteration.

π
16

π
8

3π
16

π
4

5π
16

3π
8

7π
16

π
2

A
v
g
.
θ
i,
y
i

Avg. θi,yi of P2SGrad.

Grad. Length of P2SGrad.

0k 30k 60k 90k

Iteration.

π
16

π
8

3π
16

π
4

5π
16

3π
8

7π
16

π
2

A
v
g
.
θ
i,
y
i

Avg. θi,yi of l2-softmax.

Grad. Length of l2-softmax.

0k 30k 60k 90k

Iteration.

π
16

π
8

3π
16

π
4

5π
16

3π
8

7π
16

π
2

A
v
g
.
θ
i,
y
i

Avg. θi,yi of CosFace.

Grad. Length of CosFace.

0k 30k 60k 90k

Iteration.

π
16

π
8

3π
16

π
4

5π
16

3π
8

7π
16

π
2

A
v
g
.
θ
i,
y
i

Avg. θi,yi of ArcFace.

Grad. Length of ArcFace.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

G
ra

d
.

L
e
n

g
th

0.0

0.2

0.4

0.6

0.8

1.0

1.2

G
ra

d
.

L
e
n

g
th

0.0

0.2

0.4

0.6

0.8

1.0

1.2

G
ra

d
.

L
e
n

g
th

0.0

0.2

0.4

0.6

0.8

1.0

1.2

G
ra

d
.

L
e
n

g
th

Figure 8. Curves of θi,yi and gradient lengths w.r.t. iteration. Gradient lengths in existing cosine-based softmax losses (top-left, top-right,

bottom-left) rapidly decrease to nearly 0 while gradient length produced by P2SGrad (bottom-right) can match θi,yi between xi and its

ground truth class yi. Best viewed in color.

Init. LR
Method

NormFace CosFace ArcFace P2SGrad

10−1 × × × √

10−2
√ × × √

10−3
√ √ √ √

10−4
√ √ √ √

Table 1. The sensitiveness of initial learning rates. This table

shows whether our P2SGrad and these cosine-based softmax loss

are trainable under different initial learning rates.

The change of gradient length and θi,yi
w.r.t. iter-

ation. Since P2SGrad aims to set up a reasonable map-

ping from θi,yi
to the length of gradients, it is necessary

to visualize such mapping. In order to demonstrate the ad-

vancement of P2SGrad, we plot mapping curves of several

cosine-based softmax losses in Fig. 8. This figure clearly

shows that P2SGrad produces more optimal gradient length

according to the change of θi,yi
.

Robustness of initial learning rates. An important

problem of margin-based loss is that they are difficult to

train with large learning rates. The implementation of L-

softmax [12] and A-softmax [11] use extra hyperparameters

to adjust the margin so that the models are trainable. Thus a

small initial learning rate is important for properly training

angular-margin-based softmax losses. In contrast, accord-

ing to Table. 1, our proposed P2SGrad is stable with large

learning rates.

Convergence rate. The convergence rate is important

for evaluating an optimization method. We evaluated the

trained model’s performance on Labeled Faces in the Wild

(LFW) dataset of several cosine-based softmax losses and

our P2SGrad method at different training periods. LFW

dataset is an academic test set for unrestricted face verifi-

cation. Its testing protocol contains about 13, 000 images

of about 1, 680 identities. There are 3, 000 positive matches
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Figure 9. The change of average θi,yi w.r.t. iteration number. θi,yi
represents the angle between xi and the weight vector of its ground

truth class yi. Curves by the proposed P2SGrad, l2-softmax loss

[20], CosFace [29] and ArcFace [3] are shown.

Method
Num. of Iteration

30k 60k 90k

l2-softmax [20] 81.50 91.27 97.92
CosFace [29] 83.63 93.58 99.05
ArcFace [3] 85.32 94.77 99.47
P2SGrad 91.25 97.38 99.82

Table 2. Convergence rates of P2SGrad and compared losses. With

the same number of iterations, P2SGrad leads to the best perfor-

mance.

and the same number of negative matches. Table. 2 shows

the results with the same training configuration while Fig. 9

shows the decrease of average θi,yi
in P2SGrad is more

quickly than other losses. These results reveal that our pro-

posed P2SGrad can optimize neural network much faster.
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Method
Size of MegaFace Distractor

101 102 103 104 105 106

l2-softmax [20] 99.73% 99.49% 99.03% 97.85% 95.56% 92.05%
CosFace [29] 99.82% 99.68% 99.46% 98.57% 97.58% 95.50%
ArcFace [3] 99.78% 99.65% 99.48% 98.87% 98.03% 96.88%
P2SGrad 99.86% 99.70% 99.52% 98.92% 98.35% 97.25%

Table 3. Recognition accuracy on MegaFace. Inception-ResNet [24] models trained with different compared softmax loss and the same

cleaned WebFace [32] and MS1M [4] training data.

Method
True Acceptance Rate @ False Acceptance Rate

10−1 10−2 10−3 10−4 10−5 10−6 10−7

VggFace [18] 95.64% 87.13% 74.79% 59.75% 43.69% 32.20% -

Crystal Loss [19] 99.06% 97.66% 95.63% 92.29% 87.35% 81.15% 71.37%
l2-softmax [20] 98.40% 96.45% 92.78% 86.33% 77.25% 62.61% 26.67%
CosFace [29] 99.01% 97.55% 95.37% 91.82% 86.94% 76.25% 61.72%
ArcFace [3] 99.07% 97.75% 95.55% 92.13% 87.28% 82.15% 72.28%
P2SGrad 99.03% 97.79% 95.58% 92.25% 87.84% 82.44% 73.16%

Table 4. TARs by different compared softmax losses on the IJB-C 1:1 verification task. The same training data (WebFace [32] and MS1M

[4]) and Inception-ResNet [24] networks are used. Results of VggFace [18] and Crystal Loss [19] are from [19].

5.2. Evaluation on MegaFace

Preprocessing and training setting. Besides the men-

tioned WebFace [32] dataset, we add another public training

dataset, MS1M [4], which contains about 2.35M cleaned

and aligned images. Here we use Inception-ResNet [5, 24]

with a batch size of 512 for training.

Evaluation results. MegaFace 1 million Challenge [8]

is a public identification benchmark to test the perfor-

mance of facial identification algorithms. The distractor

in MegaFace contains about 1, 000, 000 images. Here we

follow the cleaned testing protocol in [3]. The results

of P2SGrad on MegaFace dataset are shown in Table 3.

P2SGrad exceeds other compared cosine-based losses on

MegaFace 1 million challenge with every size of distractor.

5.3. Evaluation on IJBC 1:1 verification

Preprocessing and training setting. Same as 5.2.

Evaluation results. The IJB-C dataset [16] contains

about 3, 500 identities with a total of 31, 334 still facial

images and 117, 542 unconstrained video frames. The en-

tire IJB-C testing protocols are designed to test detection,

identification, verification and clustering of faces. In the

1:1 verification protocol, there are 19, 557 positive matches

and 15, 638, 932 negative matches. Therefore we test Ture

Acceptance Rates at very strict False Acceptance Rates.

Table. 4 exhibits that P2SGrad surpasses all other cosine-

based losses.

6. Conclusion

we comprehensively discussed the limitation of the for-

ward and backward processes in training deep model for

face recognition. To deal with the limitations, we pro-

posed a simple but effective gradient method, P2SGrad,

which is hyperparameter free and leads to better optimiza-

tion results. Unlike previous methods which focused on loss

functions, we improve the deep network training by using

carefully designed gradients. Extensive experiments vali-

date the robustness and fast convergence of the proposed

method. Moreover, experimental results show that P2SGrad

achieves superior performance over state-of-the-art meth-

ods on several challenging face recognition benchmarks.
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