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Abstract

Point cloud based retrieval for place recognition is an

emerging problem in vision field. The main challenge is how

to find an efficient way to encode the local features into a

discriminative global descriptor. In this paper, we propose

a Point Contextual Attention Network (PCAN), which can

predict the significance of each local point feature based on

point context. Our network makes it possible to pay more at-

tention to the task-relevent features when aggregating local

features. Experiments on various benchmark datasets show

that the proposed network can provide outperformance than

current state-of-the-art approaches.

1. Introduction

The task of visual localization is a core problem in

computer vision, which can be widely applied in aug-

mented reality[24], robot navigation [22, 6, 39, 38], and

autonomous driving[7, 18]. Visual localization is always

defined as follows: Given an image from a scene, the pur-

pose is to predict the location where the photo is taken. The

common process to complete this task is first to construct a

large 2D image database, and then retrieval an image from

the database which is closest to the query image. According

to whether storing 3D point cloud in database, existing lo-

calization methods can be catagorized into image-retrieval

based methods [23, 17, 28, 21] and direct 2D-3D matching

based methods [16, 15, 35, 35]. All these methods are im-

age based retrieval. However, image based retrieval always

suffers from the illumination conditions. e.g. different day

time, different climate environment, season changes. As

the 3D scanned tech becomes mature, e.g. 3D Lidar sensor

is widely used in robotics and autonomous driving, point

cloud based retrieval for place recognition is first proposed

in PointNetVLAD [1], a deep network for large-scale 3D

point cloud retrieval. It uses PointNet [25] to extract local

features which are then fed into a NetVLAD [2] to get the

final discriminative global descriptor.
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Figure 1. (a) Our Point Contextual Attention Network (PCAN)

takes the per-point local features and produces an attention map

which estimates an attention score for each point based on the

contextual information. (b) The input point cloud. (c) The vi-

sualization of the attention map.

Actcually, when aggregating the local features into a

global one, it is more reasonable to reweight the contribu-

tions for each local point feature before being aggregated to

the global descriptor for distributing more attention to the

task-relevant regions. For instance, in localization task, the

time-varying objects such as pedestrians, or floating noisy

pieces caused by unknown objects may lead to false re-

trieval results.

There has been a number of works focus on selecting

the most important or interesting local features for local-

ization in 2D image area [9, 13, 33]. Most of these works

pay attention to the discriminative local features in feature

space which can represent the image more efficiently. Kim

et al.[12] addresses the problem that the significance of a lo-

cal feature in a 2D image is largely effected by its context in

432112436



conv (w,b) 
1x1xDxK

softmax

Point Contextual
Attention Network

N x 1

V
L
A

D
  

co
re

L2
 n

o
rm

a
liz

a
ti

o
n

in
tr

a
-n

o
rm

a
liz

a
ti

o
n

FC
 L

a
ye

r

L2
 n

o
rm

a
liz

a
ti

o
n

NetVLAD  Layer

G
lo

b
a
l 
Fe

a
tu

re

Attention Map

Local features extraction

N x 3 N x D

PointNet

Figure 2. Overall network architecture. The network takes N points as input and uses the PointNet to extract local point features. Our

Point Contextual Attention Network then takes the local point feaures and output a per-point attention map of size N × 1. To efficiently

leverage the attention map, we apply the attention map on the NetVLAD layer during feature aggregation. Finally, a fully connected(FC)

layer is used to reduce the dimension of the feature vector and the L2 normalization is applied.

the scene and proposes a Contextual Reweighting Network

(CRN).

We notice that context information is also essential in

predicting the significance of local point features in point

cloud based tasks. Since we do not use the color as the net-

work input to avoid the false matching caused by different

illumination conditions, each point more on their surround-

ings to infer point-wise semantic information. For instance,

a sphere constructed by several points can be a street lamp

when there is a lamp holder alike structure near by, while it

also can be floating noises when it has no neighborhoods in

a big search radius and is far away from all other points.

In this paper, we propose a novel context-aware

reweighting network for 3D point cloud as illustrated in Fig.

1. The PCAN takes the local point features and produces an

attention map which estimates a weight for each point based

on the contextual information (Fig. 1 (a)). Unlike 2D im-

ages, convolution operator can not be directly used in point

clouds due to the sensitivity to the input permutation. In-

spired by PointNet++ [27], we consider to use ball query

search which depends on different query radius to aggre-

gate muti-scale features. Both quality and quantity results

on the benchmark datasets show the ability of our network

in finding more important features to produce a more dis-

criminative global descriptor.

2. Related work

Handcrafted 3D Descriptors. Extracting robust local ge-

ometric descriptors has been a core problem in 3D vision.

Some classic descriptors have been developed in the early

years, such as Spin Images [10] and Geometry Histograms

[5]. Recent works include Point Feature Histograms (PFH)

[30], Fast Point Feature Histograms (FPFH) [29], Signature

of Histogram Orientations(SHOT) [32]. Some of these de-

scriptors are already included in PCL [31]. Most of these

hand-crafted descriptors are designed for specific tasks and

they are sensitive to noisy, incomplete RGB-D images cap-

tured by sensors. Besides, these methods focus on extract-

ing local descriptors which are not applicable to extracting

global features due to the huge computation.

Learned 3D Global Descriptors. With the breakthroughs

of some learning based 2D vision tasks over the past few

years, e.g. image classification, object detection, more and

more researchers focus on representing 3D geometry us-

ing learning methods. In the early days, several works

use volumetric representations as network input and de-

velop learned descriptors for object retrieval and classifica-

tion [37, 20, 26]. Recently researchers shifted to use raw

point cloud [40, 34, 14]. PointNet [25] directly handles

point cloud and uses symmetric function to make the out-

put invariant to the order permutation of the input points.

PointNet++ [27] leverages neighborhoods at multiple scales

to capture local structures. Several network architectures on

point cloud are proposed in succession mainly for classifi-

cation and segmentation. [36] proposes Parametric Contin-

uous Convolution, a new learnable operator that operates

over non-grid structured data. All these works focus on ex-

tracting features from 3D data at a global level, but most

of them aim at handling complete 3D models instead of 3D

scanned data which is incomplete and noisy.

Learned 3D Local Descriptors. 3DMatch [41] uses voxel

grid as input and introduced a 3D convolution network to

distinguish the positive and negative pairs. Compact Ge-

ometric Features (CGF) [11] uses histogram representation

as network input to learn a compact local descriptor. PPFnet

[4] and PPF-FoldNet [3] directly operate on points and uses

a point pair feature encoding of the local 3D geometry into

patches. 3DFeat-Net [8] proposes a weakly supervised net-
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work that learns both 3D feature detector and descriptor.

However, these descriptors aiming at extracting local fea-

tures are difficult to be applied in extracting global features

due to the data increasing.

Point cloud based retrieval can be defined as a match-

ing problem of the global descriptors of 3D point clouds.

Mikaela and Gim [1] first propose PointNetVLAD which

is a deep network combining PointNet [25] and NetVLAD

[2] to extract the global descriptor from a scanned 3D point

cloud for retrieval task. Though PointNetVLAD is more ef-

ficient to add a NetVLAD layer to the global feature than

just using the vanilla PointNet architecture, it does not dis-

criminate the local features which positively contribute to

the final global feature representations. Based on these ob-

servations, we add a context-aware attention mechanism to

the global feature extraction pipeline.

3. Network

The overall architecture of our network is shown in Fig.

2. We use the PointNet to extract local point features, and

the input is a set of 3D points with coordinates which is

denoted as P = {p1, ..., pN} ∈ R3. Our Point Contextual

Attention Network then takes the local point feaures and

output a per-point attention map of size N × 1. Instead of

directly multiplying the local features by the corresponding

scores on the attention map, we apply the attention map on

the NetVLAD layer during feature aggregation. The details

of our PCAN and feature aggregation process is described

in Sec. 3.2.1.

3.1. Local feature extraction

Similar to PointNetVLAD, we use PointNet as the basic

network to extract per-point local features. The PointNet

contains 2 transformation nets and 5 shared fully connected

layers which is the same as the architecture used in Point-

NetVLAD.

3.2. Attention map

When computing an attention map for all the input

points, we formulate the process as follows: After the lo-

cal feature extraction, we get the per-point local features

which are denoted as F = {f1, ..., fN} ∈ RD, where D

denotes the output feature dim of each point. Our goal is to

learn a score matrix of size N×C, where C can be 1 which

represents one score for one point, or the same as the lo-

cal feature dim which represents one score for one channel.

The attention score s and the local feature f at the space

location l is denoted as sl and fl. We do a multiply between

the local feature map and the attention map:

Fw = {s1 × f1, ..., sN × fN}. (1)

Fw denotes the reweighted local feature map. The final step

is to aggregate the Fw into a global descriptor.

Local Features(N×K)

SAG Layer3
[NM,r3,K3,D3]

SAG Layer2
[NM,r2,K2,D2]

SAG Layer1
[NM,r1,K1,D1]

concat

SAG Layer4[NA,rA,KA,DA]

FP layer1(DF1)

NM×(D1+D2+D3)

NA×DA

Multi-scale Feature Concating

Feature Accumulation 

FP layer2(DF2)

NM×DF1

N×DF2

FC layers

Attention Map(N×1)

Figure 3. PCAN architecture. PCAN takes the per-point local fea-

tures and outputs an attention map representing the significance of

spatial regions. It uses ball query search with different radius to

aggregate multi-scale contextual information.

To get an effective attention map, we proposed a point

contextual network which concerns multi-scale context in-

formation to get an attention map. The output attention map

is of size N × 1 where we assign one score for one point.

3.2.1 Contextual Attention Map

Multi-scale Contextual Information Aggregation In

CRN [12], it uses context filters to obtain multi-scale con-

textual information implemented by convolution operator

with different kernel sizes. However, convolution operator

can not be directly applied on point cloud due to the order-

less property of the point cloud. Inspired by PointNet++

[27], we use ball query search to aggregate multi-scale con-

textual information around a point.

To group the contextual information of a point, it in-

volves two main operations: sampling and grouping. We

use the implementation of the sampling and grouping layer

introduced in PointNet++. The sampling layer samples a

sub set of N ′ points from the origin N points using itera-

tive farthest point sampling (FPS) algorithm. The grouping

layer uses ball query to find the neighborhoods. Given a ra-

dius r, ball query finds points that are within the radius r

to the query point. The input to this layer is a point set of

size N × (d + C) and the coordinates of a set of sampled

centroids of size N ′×d. The output are groups of point sets

of size N ′×K× (d+C), where each group corresponds to

a local region and K is the number of points in the neigh-

borhood of centroid points. Following the grouping layer,

the PointNet layer with a pooling operation is used to ag-

gregate the neighborhood information. So the final output
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data size is N ′ × (d + C ′). We also use the feature prop-

agation(FP) layer introduced in PointNet++. It propagates

features with distance based interpolation and across level

skip links which can be considered as an upsampling opera-

tion. We use the FP layer to produce the final attention map.

Refer to PointNet++ [27] for more details.

For a clear expression, we use the following notations:

SAG(N, r,K,D) layer includes a sampling layer which

samples K local neighborhoods, a grouping layer with ball

radius r and a PointNet of with the final output dim N ×D.

FP(D) layer is the same with the FP layer introduced in

PointNet++ and D represents the final output feature dim.

The architecture of our PCAN is shown in Fig. 3. To

aggregate multi-scale features, we use three SAG layers for

grouping the neighbor points with different ball query ra-

dius but with the same sampling number.

We then concatenate these features to a multi-scale fea-

ture of size N ′ ×D. A following SAG layer groups all the

points for feature accumulation. The accumulated feature

is then fed to FP layers to recover the original point num-

ber. Finally, two fully connected layers are used to obtain

the attention map of size N × 1. Note that a sigmod activa-

tion function is applied to the attention map to restrict each

attention score to 0− 1.

Feature Aggregation Since our goal is to apply the at-

tention map on the point cloud feature extraction pipeline,

thus the final step is to aggregate the reweighted local fea-

tures into a discriminative and compact global representa-

tion. PointNetVLAD uses a NetVLAD layer as a part of the

network and it outperforms the original PointNet in retrieval

task. Rather than directly multiplying the local features by

the corresponding score on the attention map, we apply the

attention map on the NetVLAD layer. The attention score

s and the local feature f at the space location l is denoted

as sl and fl. The NetVLAD layer learns K visual words

{c1, .., ck|ck ∈ RD}, and the output subvector correspond-

ing to the ck is denoted as Vk. Vk is computed as the ac-

cumulation of differences between fl and ck, weighted by

a soft assignment akl which computes a weight of fl to ck.

The original VLAD representation V is denoted as:

V = [V1, ..., VK ], (2)

where

Vk =
∑

j∈R

akl (fl − ck). (3)

R denotes a set of spatial location in the feature map. We

apply the learned attention map to the NetVLAD layer

which reweights the VLAD representation Vk as follows:

Vk =
∑

l∈R

sl · a
k
l (fl − ck). (4)

The soft assignment operation is the same as the implemen-

tation described in PointNetVLAD. Our learned attention

SAG layer1 N = 256, r = 0.1,K = 16, [16, 16, 32]
SAG layer2 N = 256, r = 0.2,K = 32, [32, 32, 64]
SAG layer3 N = 256, r = 0.4,K = 64, [32, 64, 64]
SAG layer4 N = 1, r = inf,K = 256, [256, 512]
FP layer1 [256, 128]
FP layer2 [128, 128]
FC layers [1, 1]

Table 1. Parameters of each layer in PCAN.

map can be seen as a reweighted pooling of the local fea-

ture. The final descriptor we got is of size K × D, it is

time-consuming in our task. Like PointNetVLAD, we use

a fully connected layer to get a more compact global de-

scriptor V ′ with intra-nomalizing and then L2 normalizing.

4. Implements Details

We show the parameters of each layer of our PCAN

in Table 1. Note that the number sets [l1, .., ld] in SAG

layer and FP layer represent that it includes a succeed-

ing PointNet layer of d fully connected layers with width

li(i = 1, ..., d). In Fig. 3, we use D to represent the width

of the final fully connected layer for a clear illustration.

Since our method mainly focuses on the attention mech-

anism of the network, we use the same lazy quadruplet loss

introduced in PointNetVLAD for a fair comparison. Most

of the training settings of our network are the same with

the settings in PointNetVLAD. Refer to the supplementary

material for more details of the training settings.

5. Experiments

5.1. Evaluation Datasets

We use the benchmark datasets proposed in Point-

NetVLAD for evaluation. It builds a database of submaps

for different areas and contains four datasets: Oxford

RobotCar [19] dataset and three in-house datasets, that is,

a university sector (U.S.), a residential area (R.A.) and a

business district (B.D.). They are all captured using a Li-

DAR sensor mounted on a car. PointNetVLAD removes

the non-formative ground planes of all submaps and down-

sample them to fixed 4096 points. Each submap is tagged

with an UTM coordinate. To get the ground-truth anno-

tations for correct matches for each submap, point clouds

are defined as positive pairs if they are at most 10m apart

and negtive pairs if they are to be at least 50m apart. In

evaluation process, the retrieved point cloud is regarded as

a correct match if the distance is within 25m between the

retrieved point cloud and the query point cloud.

Oxford Dataset consists of 21,711 submaps for training

and 3030 submaps for testing from RobotCar dataset. The

training submaps and testing submaps are splited at regular
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(a)Oxford (b)U.S. (c)R.A. (d)B.D.

Figure 4. Average recall of the networks.Top row shows the average recall of the baseline networks which are trained on Oxford. Bottom

shows the average recall of the refined networks which are trained on Oxford, U.S and R.A.

internvals of 10m and 20m. The in-house datasets contain

400, 320, 200 submaps for training and 80, 75, 200 submaps

for testing from U.S., R.A. and B.D. respectively. The train-

ing submaps and testing submaps are splited at regular in-

tervals of 12.5m and 25m.

5.2. Results

Baseline Network. We first evaluate our attention network

on the benchmark datasets proposed in PointNetVLAD. For

a fair comparison with PointNetVLAD, the only difference

between our network and PointNetVLAD is that we add the

attention network into the NetVLAD layer, as illustrated in

Fig. 2. We also compare our network with other methods

including the original PointNet architecture with the max-

pooling layer (PN MAX) and the state-of-the-art PointNet

trained for object classification on rigid objects in ModelNet

[37](PN STD). The final output vectors of all the network

are 256-dim. All above networks are trained using only the

Oxford training dataset and tested on Oxford, U.S., R.A.

and B.D. testing datasets. Table 2 shows the top 1% recall

of each network on the bechmark datasets.

Our baseline network significantly outperforms the other

methods on all the datasets which achieves the best per-

formance with an 83.81% recall at top 1%, exceeding the

recall of the PointNetVLAD by 2.8%. It proves that our

network can effectively explore the task-relevent local fea-

tures on the Oxford datasets. Our network also outperforms

the PointNetVLAD on the indoor-datasets with a margin of

1.2%-1.5%. For PointNetVLAD, we use the results of the

provided pre-trained model by the authors. For PN MAX

and PN STD, we use the recall values reported in [1].

Refined Network. Besides training on Oxford datasets,

PCAN PN VLAD PN MAX PN STD

Oxford 83.81 81.01 73.44 46.52

U.S. 79.05 77.83 64.64 61.12

R.A. 71.18 69.75 51.92 49.07

B.D. 66.82 65.30 54.74 53.02
Table 2. Baseline results showing the average recall (%) at top 1%

for each of the models.

Ave recall @1% Ave recall @1

PCAN PN VLAD PCAN PN VLAD

Oxford 86.40 80.70 70.72 63.33

U.S. 94.07 94.45 83.69 86.06

R.A. 92.27 93.07 82.26 82.65

B.D. 87.00 86.48 80.31 80.11
Table 3. Refined network results showing the average recall (%)

at top 1% and at top 1 after training on Oxford, U.S. and R.A. for

each of the models.

PointNetVLAD does a further comparison with adding U.S.

and R.A. to the training sets. We use the same training sets

to train a refined network and show the results in Table 3.

The results show that our network still significantly outper-

forms the PointNetVLAD on Oxford datasets. It also out-

performs our baseline on Oxford dataset. The reason is that

adding the U.S. and R.A. training set may have released the

overfitting effects on Oxford datasets in some extent. For

in-house datasets, the performance of our refined network is

similar to PointNetVLAD. Fig. 4 shows the recall carves of

PCAN and PointNetVLAD for top 25 retrieval results. We

show some visualized results in Sec. 5.3 and discuss the

reason why our refined network does not work effectively
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(b)

(c)

(d)

Query Query

(Attention Map)
PCAN PCAN

(Attenion Map)
PN_VLAD

0 1

Figure 5. Example retrieval results of our network on Oxford datasets. From left to right: query point cloud, attention map of the query

point cloud, the top retrieved point cloud using PCAN, the top retrieved point cloud using PointNetVLAD. Green and red borders indicate

correct and incorrect retrieved results, respectively.

on in-house datasets in Sec. 5.4.

5.3. Results Visualization

We show some rough cases where our refined network

can retrieve the correct match while PointNetVLAD can

not on Oxford dataset in Fig. 5. Each row represents the

query point clouds and the retrieval results. First column

shows four different query point clouds, while the third and

the fifth column show the point clouds retrieved by our net-

work and PointNetVLAD, respectively. The second and the

fourth column show the attention maps obtained during the

inference process of our PCAN. The color represents the

attention score of each point. The value represented by dif-

ferent color can be referred to the color map at the bottom

of Fig. 5.

We observe that our network gives low attention scores

to the points in a scattered structure which are tree leaves

besides the street, while it gives high scores to the buildings

(Fig. 5(a)-(b)). It implies focusing more on the buildings

instead of the trees will reduce the final retrieval losses. It is

reasonable since the structure of trees is very unstable due

to the gap between tree leaves, resulting that the acquired

3D structure of trees may vary greatly with even a very lit-

tle movement of the 3D sensors. PointNetVLAD retrieved

false point clouds which have a scattered structure of tree

leaves while the shape of the buildings is different from the

query point cloud.

In Fig. 5(c), our network pays little attention to the float-

ing strips and focuses more on the buildings instead. The

structures of the strips vary greatly from the query point

cloud (row 1) and the correct match (row 3) retrieved by

our network shows the unstableness of the strips. Point-

NetVLAD retrieves a false point cloud with similar strips

while the appearance of the buildings varies greatly from

the query point cloud. In Fig. 5(d), our network mostly fo-

cuses on the corner structure and gives comparatively low

scores to the building across the street. This implies the cor-

ner structure is more discriminative than planar buildings in

retrieval task. The retrieved results of PointNetVLAD only

focus on the planar building while ignore the corner struc-
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Query Query

(Attention Map)
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Figure 6. Example retrieval results of our PCAN on in-house datasets.

(a)

(b)

(c)

Query Query

(Attenion Map)
PCAN

PCAN

(Attenion 

Map)

Figure 7. Failure cases of our network. It shows the query point cloud with incorrect retrieved results of our network.

ture.

We also show more results of our PCAN in Fig. 6. These

results are from in-house datasets. Though we only train

our network on Oxford dataset, it also shows the ability to

remove the noisy parts in in-house datasets. From Fig. 6(a)

and (b), our network tries to ignore the parts which are far

away from the streets and floats off the grounds. From Fig.

6(c), we can see that our network attributes low scores to a

bar like object lying in the middle of the street.

Failure Cases. Fig. 7 shows some failure cases of our

network. In all the failure cases, our attention network tends

to treat all things equally and assigns the same score 1 to

all the points in the scene. So in this case, our network

degrades to PointNetVLAD.

432712442



Ave recall @1% Ave recall @1%

PCAN PAN PCAN PAN

Oxford 83.81 81.90 69.05 65.37

U.S. 79.05 78.47 62.49 62.61

R.A. 71.18 69.69 57.00 54.77

B.D. 66.82 63.87 58.14 57.21
Table 4. Results show the the average recall (%) at top 1% and at

top 1 after training on Oxford for PCAN and PAN.

MRG MSG 1 MSG 2 MSG 3

Oxford 81.35 81.56 82.10 83.81

U.S. 78.72 79.63 81.62 79.05

R.A. 66.19 70.10 69.16 71.18

B.D. 66.75 66.57 66.67 66.82
Table 5. Results show the the average recall (%) at top 1% using

different grouping methods.

5.4. Discussion

Quantity results analysis. We suspect that our refined net-

work dose not work on in-house datasets mainly due to two

reasons. One is the different structures of the point clouds

in each database. In Oxford datasets, as the point clouds

are almost continuous buildings besides the roads as shown

in Fig. 5. However, in the in-house datasets, the objects

in the scene are more complicated than in Oxford dataset

which can be seen in Fig. 6. Another reason is that there

is insufficient training data of in-house datasets. The num-

ber of the point clouds in training sets of oxford dataset are

21711, while it is 6671 of in-house datasets. With more

complicated scene structures and less training data of in-

house datasets, this makes it harder to learn a network which

can produce accurate attention maps for all datasets and our

network learns to concentrate more on Oxford dataset than

in-house datasets to reach the global minima.

As mentioned in Sec 5.3, in some failure cases, all the

outputs of the attention map of in-house datasets tend to

all be 1. However, from Fig. 6, we can see our network

still show the ability to ignore the noisy points in the point

cloud which is the reason why our baseline network can

outperform PointNetVLAD with a small margin in Table 2.

Trade-off between stability and discriminating ability.

Based on the analysis of the baseline network, it shows our

network has the ability to do a trade off between discrimi-

nating ability and stability. On one hand, PCAN gives low

scores to the unstable objects such as tree leaves and noisy

floating pieces. Though sometimes these unstable objects

can be a discriminative marker, our network learns to pay

more attention to the buildings which are more robust to the

movement of 3D scanners to reduce the global losses. On

the other hand, our network can also find the discriminative

parts in the scene. Since some buildings are very similar

which leads to the lack of the discriminative information,

our network learns to find the discriminative part like the

corner structure which is a remarkable information for rep-

resenting a scene.

5.5. The efficiency of context information

To evaluate the contribution of the context information

in our attention network, we propose another attention net-

work which does not aggregate the contextual information.

The attention network uses a PointNet alike architecture

which is originally used for semantic segmentation, and we

denote it as Point Attention Network(PAN). Refer to the

supplementary for details of PAN.

It can be seen from Table 4 that our PCAN outperforms

PAN on almost all the datasets. Our method outperforms

the PAN on Oxford dataset with a margin of 1.9% at top 1%

retrieved results and 3.6% at top 1 retrieved results. PCAN

also has a better or on-par performance on in-house datasets

compared with PAN. It proves that the contextual informa-

tion have contributions in seeking the task-relevent features

in our network.

5.6. The influences of grouping methodology

We test the grouping methodology MSG with different

scales (1 to 3) and MRG (Multi-resolution grouping)[27]

with results shown in Table 5. Note that MSG with scale

which is bigger than 3 will cause GPU memory problem

during training (with GTX 1080Ti 11GB) unless we set a

smaller per-point feature size in grouping layer.

6. Conclusion

We have proposed a Point Contextual Attention Network

which learns point cloud representations using a context-

aware features based attention map. Experiments show our

PCAN improves the existing state-of-the-art accuracy for

point cloud based place recognition. We use only local-

ization tags to get the attention map without additional su-

pervision. The visualization results show the efficiency of

our network to predict the significance of the space regions.

Due to the flexibility of our network, our introduced PCAN

can be easily integrated to other architecture for more point

cloud based tasks such as object recognition.
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