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Abstract

Optimizing a network of maps among a collection of ob-

jects/domains (or map synchronization) is a central prob-

lem across computer vision and many other relevant fields.

Compared to optimizing pairwise maps in isolation, the

benefit of map synchronization is that there are natural con-

straints among a map network that can improve the qual-

ity of individual maps. While such self-supervision con-

straints are well-understood for undirected map networks

(e.g., the cycle-consistency constraint), they are under-

explored for directed map networks, which naturally arise

when maps are given by parametric maps (e.g., a feed-

forward neural network). In this paper, we study a natural

self-supervision constraint for directed map networks called

path-invariance, which enforces that composite maps along

different paths between a fixed pair of source and target

domains are identical. We introduce path-invariance bases

for efficient encoding of the path-invariance constraint and

present an algorithm that outputs a path-variance basis

with polynomial time and space complexities. We demon-

strate the effectiveness of our approach on optimizing object

correspondences, estimating dense image maps via neural

networks, and semantic segmentation of 3D scenes via map

networks of diverse 3D representations. In particular, for

3D semantic segmentation our approach only requires 8%

labeled data from ScanNet to achieve the same performance

as training a single 3D segmentation network with 30% to

100% labeled data.

1. Introduction

Optimizing a network of maps among a collection of ob-

jects/domains (or map synchronization) is a central problem

across computer vision and many other relevant fields. Im-

portant applications include establishing consistent feature

correspondences for multi-view structure-from-motion [1,

11, 44, 5], computing consistent relative camera poses for

3D reconstruction [20, 17], dense image flows [57, 56], im-

age translation [59, 52], and optimizing consistent dense
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Figure 1: (Left) A network of 3D representations for the task

of semantic segmentation of 3D scenes. (Right) Computed path-

invariance basis for regularizing individual neural networks.

correspondences for co-segmentation [47, 16, 48] and ob-

ject discovery [40, 8], just to name a few. The benefit

of optimizing a map network versus optimizing maps be-

tween pairs of objects in isolation comes from the cycle-

consistency constraint [31, 18, 15, 47]. For example, this

constraint allows us to replace an incorrect map between a

pair of dissimilar objects by composing maps along a path

of similar objects [18]. Computationally, state-of-the-art

map synchronization techniques [3, 7, 15, 19, 43, 16, 18,

25, 57, 58, 29] employ matrix representations of maps [25,

18, 15, 48, 16]. This allows us to utilize a low-rank formu-

lation of the cycle-consistency constraint (c.f. [15]), leading

to efficient and robust solutions [16, 58, 43, 19].

In this paper, we focus on a map synchronization set-

ting, where matrix-based map encodings become too costly

or even infeasible. Such instances include optimizing dense

flows across many high-resolution images [30, 24, 41] or

optimizing a network of neural networks, each of which

maps one domain to another domain (e.g., 3D semantic seg-

mentation [12] maps the space of 3D scenes to the space

of 3D segmentations). In this setting, maps are usually

encoded as broadly defined parametric maps (e.g., feed-

forward neural networks), and map optimization reduces

to optimizing hyper-parameters and/or network parameters.

Synchronizing parametric maps introduces many technical

challenges. For example, unlike correspondences between

objects, which are undirected, a parametric map may not

have a meaningful inverse map. This raises the challenge
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of formulating an equivalent regularization constraint of

cycle-consistency for directed map networks. In addition,

as matrix-based map encodings are infeasible for paramet-

ric maps, another key challenge is how to efficiently enforce

the regularization constraint for map synchronization.

We introduce a computational framework for optimiz-

ing directed map networks that addresses the challenges de-

scribed above. Specifically, we propose the so-called path-

invariance constraint, which ensures that whenever there ex-

ists a map from a source domain to a target domain (through

map composition along a path), the map is unique. This

path-invariance constraint not only warrants that a map net-

work is well-defined, but more importantly it provides a nat-

ural regularization constraint for optimizing directed map

networks. To effectively enforce this path-invariance con-

straint, we introduce the notion of a path-invariance basis,

which collects a subset of path pairs that can induce the

path-invariance property of the entire map network. We also

present an algorithm for computing a path-invariance basis

from an arbitrary directed map network. The algorithm pos-

sesses polynomial time and space complexities.

We demonstrate the effectiveness of our approach on

three settings of map synchronization. The first setting con-

siders undirected map networks that can be optimized using

low-rank formulations [16, 58]. Experimental results show

that our new formulation leads to competitive and some-

times better results than state-of-the-art low-rank formula-

tions. The second setting studies consistent dense image

maps, where each pairwise map is given by a neural net-

work. Experimental results show that our approach signifi-

cantly outperforms state-of-the-art approaches for comput-

ing dense image correspondences. The third setting consid-

ers a map network that consists of 6 different 3D representa-

tions (e.g., point cloud and volumetric representations) for

the task of semantic 3D semantic segmentation (See Fig-

ure 1). By enforcing the path-invariance of neural networks

on unlabeled data, our approach only requires 8% labeled

data from ScanNet [12] to achieve the same performance as

training a single semantic segmentation network with 30%

to 100% labeled data.

2. Related Works

Map synchronization. Most map synchronization tech-

niques [20, 17, 54, 31, 15, 57, 16, 7, 49, 5, 58, 2, 53, 19, 34,

43, 14, 56, 59, 52] have focused on undirected map graphs,

where the self-regularization constraint is given by cycle-

consistency. Depending on how the cycle-consistency con-

straint is applied, existing approaches fall into three cate-

gories. The first category of methods [20, 17] utilizes the

fact that a collection of cycle-consistent maps can be gen-

erated from maps associated with a spanning tree. How-

ever, it is hard to apply them for optimizing cycle-consistent

neural networks, where the neural networks change during

the course of the optimization. The second category of ap-

proaches [54, 31, 57] applies constrained optimization to

select cycle-consistent maps. These approaches are typi-

cally formulated so that the objective functions encode the

score of selected maps, and the constraints enforce the con-

sistency of selected maps along cycles. Our approach is rel-

evant to this category of methods but addresses a different

problem of optimizing maps along directed map networks.

The third category of approaches apply modern numer-

ical optimization techniques to optimize cycle-consistent

maps. Along this line, people have introduced convex op-

timization [15, 16, 7, 49], non-convex optimization [5, 58,

2, 53, 19], and spectral techniques [34, 43]. To apply these

techniques for parametric maps, we have to hand-craft an

additional latent domain, as well as parametric maps be-

tween each input domain and this latent domain, which may

suffer from the issue of sub-optimal network design. In con-

trast, we focus on directed map networks among diverse do-

mains and explicitly enforce the path-invariance constraint

via path-invariance bases.

Joint learning of neural networks. Several recent works

have studied the problem of enforcing cycle-consistency

among a cycle of neural networks for improving the qual-

ity of individual networks along the cycle. Zhou et al. [56]

studied how to train dense image correspondences between

real image objects through two real-2-synthetic networks

and ground-truth correspondences between synthetic im-

ages. [59, 52] enforce the bi-directional consistency of

transformation networks between two image domains to im-

prove the image translation results. People have applied

such techniques for multilingual machine translation [21].

However, in these works the cycles are explicitly given.

In contrast, we study how to extend the cycle-consistency

constraint on undirected graphs to the path-invariance con-

straint on directed graphs. In particular, we focus on how

to compute a path-invariance basis for enforcing the path-

invariance constraint efficiently. A recent work [55] studies

how to build a network of representations for boosting in-

dividual tasks. However, self-supervision constraints such

as cycle-consistency and path-invariance are not employed.

Another distinction is that our approach seeks to leverage

unlabeled data, while [55] focuses on transferring labeled

data under different representations/tasks. Our approach is

also related to model/data distillation (See [38] and refer-

ences therein), which can be considered as a special graph

with many edges between two domains. In this paper, we

focus on defining self-supervision for general graphs.

Cycle-bases. Path-invariance bases are related to cycle-

bases on undirected graphs [22], in which any cycle of

a graph is given by a linear combination of the cycles

in a cycle-basis. However, besides fundamental cycle-

bases [22] that can generalize to define cycle-consistency

bases, it is an open problem whether other types of cycle-

bases generalize or not. Moreover, there are fundamental

differences between undirected and directed map networks.

This calls for new tools for defining and computing path-

invariance bases.
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3. Path-Invariance of Directed Map Networks

In this section, we focus on the theoretical contribution

of this paper, which introduces an algorithm for comput-

ing a path-invariance basis that enforces the path-invariance

constraint of a directed map network. Note that the proofs

of theorems and propositions in this section are deferred to

the supplementary material.

3.1. PathInvariance Constraint

We first define the notion of a directed map network:

Definition 1. A directed map network F is an attributed

directed graph G = (V, E) where V = {v1, . . . , v|V|}.

Each vertex vi ∈ V is associated with a domain Di. Each

edge e ∈ E with e = (i, j) is associated with a map

fij : Di → Dj . In the following, we always assume E con-

tains the self-loop at each vertex, and the map associated

with each self-loop is the identity map.

For simplicity, whenever it can be inferred from the con-

text we simplify the terminology of a directed map network

as a map network. The following definition considers in-

duced maps along paths of a map network.

Definition 2. Consider a path p = (i0, · · · , ik) along G.

We define the composite map along p induced from a map

network F on G as

fp = fik−1ik ◦ · · · ◦ fi0i1 . (1)

We also define f∅ := I where ∅ can refer to any self-loop.

In the remaining text, for two successive paths p and q,

we use p ∼ q to denote their composition.

Now we state the path-invariance constraint.

Definition 3. Let Gpath(u, v) collect all paths in G that con-

nect u to v. We define the set of all possible path pairs of G
as

Gpair =
⋃

u,v∈V

{(p, q)|p, q ∈ Gpath(u, v)}.

We say F is path-invariant if

fp = fq, ∀(p, q) ∈ Gpair. (2)

Remark 1. It is easy to check that path-invariance induces

cycle-consistency (c.f.[15]), but cycle-consistency does not

necessarily induce path-invariance. For example, a map

network with three vertices {a, b, c} and three directed

maps fab, fbc, and fac has no-cycle, but one path pair

(fbc ◦ fab, fac).

3.2. PathInvariance Basis

A challenge of enforcing the path-invariant constraint is

that there are many possible paths between each pair of do-

mains in a graph, leading to an intractable number of path

pairs. This raises the question of how to compute a path-

invariance basis B ⊂ Gpair, which is a small set of path pairs

that are sufficient for enforcing the path-invariance property

of any map network F . To rigorously define path-invariance

basis, we introduce three primitive operations on path pairs

merge, stitch and cut(See Figure 2):

Definition 4. Consider a directed graph G. We say two path

pairs (p, q) and (p′, q′) are compatible if one path in {p, q}
is a sub-path of one path in {p′, q′} or vice-versa. Without

losing generality, suppose p is a sub-path of p′ and we write

p′ = r ∼ p ∼ r′, which stitches three sub-paths r,p,and r′

in order. We define the merge operation so that it takes two

compatible path pairs (p, q) and (r ∼ p ∼ r′, q′) as input

and outputs a new path pair (r ∼ q ∼ r′, q′).

We proceed to define the stitch operation:

Definition 5. We define the stitch operation so that it

takes as input two path pairs (p, q), p, q ∈ Gpath(u, v) and

(p′, q′), p′, q′ ∈ Gpath(v, w) and outputs (p ∼ p′, q ∼ q′).

Finally we define the cut operation on two cycles, which

will be useful for strongly connected graphs:

Definition 6. Operation cut takes as input two path pairs

(C1,∅) and (C2,∅) where C1 and C2 are two distinct cycles

that have two common vertices u, v and share a common

path from v to u. Specifically, we assume these two cycles

are u
p
−→ v

q
−→ u and u

p′

−→ v
q
−→ u where p, p′ ∈ Gpath(u, v)

and q ∈ Gpath(v, u). We define the output of the cut opera-

tion as a new path pair (p, p′).

Definition 6 is necessary because fp ◦ fq = fp′ ◦ fq = I

implies fp = fp′ . As we will see later, this operation is

useful for deriving new path-invariance basis.

Now we define path-invariance basis, which is the criti-

cal concept of this paper:

Definition 7. We say a collection of path pairs B = {(p, q)}
is a path-invariance basis on G if every path-pair (p, q) ∈
Gpair \ B can be induced from a subset of B through a series

of merge, stitch and/or cut operations.

The following proposition shows the importance of path-

invariance basis:

p q q
′

r

q

r
′

q
′

merge

p q

p
′

q
′

pp
′

qq
′

stitch

p
′ p q p

′ p

cut

Figure 2: Illustrations of Operations
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Proposition 1. Consider a path-invariance basis B of a

graph G. Then for any map network F on G, if

fp = fq, (p, q) ∈ B,

then F is path-invariant.

3.3. PathInvariance Basis Computation

We first discuss the criteria for path-invariance basis

computation. Since we will formulate a loss term for each

path pair in a path-invariance basis, we place the following

three objectives. First, we require the length of the paths in

each path pair to be small. Intuitively, enforcing the con-

sistency between long paths weakens the regularization on

each involved map. Second, we want the size of the re-

sulting path-invariance basis to be small to increase the ef-

ficiency of gradient-descent based optimization strategies.

Finally, we would like the resulting path-invariance basis

to be nicely distributed to improve the convergence prop-

erty of the induced optimization problem. Unfortunately,

achieving these goals exactly appears to be intractable. For

example, we conjecture that computing a path-invariance

basis of a given graph with minimum size is NP-hard1.

In light of this, our approach seeks to compute a path-

invariance basis whose size is polynomial in |V|, i.e.,

O(|V||E|) in the worst case. Our approach builds upon the

classical result that a directed graph G can be factored into a

directed acyclic graph (or DAG) whose vertices are strongly

connected components of G (c.f. [4]). More precisely, we

first show how to compute a path-invariance basis for a

DAG. We then discuss the case of strongly connected com-

ponents. Finally, we show how to extend the result of the

first two settings to arbitrary directed graphs. Note that our

approach implicitly takes two other criteria into account.

Specifically, we argue that small path-invariance basis fa-

vors short path-pairs, as it is less likely to combine long

path-pairs to produce new path-pairs through merge, stitch

and cut operations. In addition, this construction takes the

global structure of the input graph G into account, leading

to nicely distributed path-pairs.

Directed acyclic graph (or DAG). Our algorithm utilizes

an important property that every DAG admits a topological

order of vertices that are consistent with the edge orienta-

tions (c.f. [4]). Specifically, consider a DAG G = (V, E).
A topological order is a bijection σ : {1, · · · , |V|} → V
so that we have σ−1(u) < σ−1(v) whenever (u, v) ∈ E .

A topological order of a DAG can be computed by Tarjan’s

algorithm (c.f. [46]) in linear time.

Our algorithm starts with a current graph Gcur = (V,∅)
to which we add all edges in E in some order later. Specifi-

cally, the edges in E will be visited with respect to a (partial)

edge order ≺ where ∀(u, v), (u′, v′) ∈ E , (u, v) ≺ (u′, v′)
if and only if σ−1(v) < σ−1(v′). Note that two edges

(u, v), (u′, v) with the same head can be in arbitrary order.

1Unlike cycle bases that have a known minimum size (c.f. [22]), the

sizes of minimum path-invariance bases vary

Algorithm 1 The high level algorithm flow to find a path-

invariance basis.

input: Directed graph G = (V, E).
output: Path-invariance basis B.

1: Calculate SCCs G1, . . . ,GK for G and the resulting

contracted DAG Gdag .

2: Calculate a path-invriance basis Bdag for Gdag and

transform Bdag to Bdag that collect path pairs on G.

3: Calculate a path-invariance basis Bi for Gi.

4: Calculate path-invirance pairs Bij whenever Gi can

reach Gj in Gdag .

5: return B = Bdag

⋃(
∪K
i=1 Bi

)⋃ (
∪ij Bij

)

For each newly visited edge (u, v) ∈ E , we collect a set

of candidate vertices P ⊂ V such that every vertex w ∈ P
can reach both u and v in Gcur. Next we construct a set P
by removing from P all w ∈ P such that w can reach some

distinct w′ ∈ P . In other words, w is redundant because of

w′ in this case. For each vertex w ∈ P , we collect a new

path-pair (p′, p ∼ uv), where p and p′ are shortest paths

from w to u and v, respectively. After collecting path pairs,

we augment Gcur with (u, v). With Bdag(σ) we denote the

resulting path-pair set after Ecur = E .

Theorem 3.1. Every topological order σ of G returns a

path-invariance basis Bdag(σ) whose size is at most |V||E|.

Strongly connected graph (or SCG). To construct a path-

invariance basis of a SCG G, we run a slightly-modified

depth-first search on G from arbitrary vertex. Since G is

strongly connected, the resulting spanning forest must be

a tree, denoted by T . The path pair set B is the result we

obtain. In addition, we use a Gdag to collect a acyclic sub-

graph of G and initially it is set as empty. When traversing

edge (u, v), if v is visited for the first time, then we add

(u, v) to both T and Gdag . Otherwise, there can be two

possible cases:

• v is an ancestor of u in T . In this case we add cycle

pair (P ∼ (u, v),∅), where P is the tree path from v

to u, into B.

• Otherwise, add (u, v) into Gdag .

We can show that Gdag is indeed an acyclic graph (See

Section A.3 in the supplementary material). Thus we can

obtain a path-invariance basis on Gdag by running the con-

struction procedure introduced for DAG. We add this basis

into B.

Proposition 2. The path pair set B constructed above is a

path-invariance basis of G.

General directed graph. Given path-invariance bases con-

structed on DAGs and SCGs, constructing path-invariance

bases on general graphs is straight-forward. Specifically,
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consider strongly connected components Gi, 1 ≤ i ≤ K of

a graph G. With Gdag we denote the DAG among Gi, 1 ≤
i ≤ K. We first construct path-invariance bases Bdag and

Bi for Gdag and each Gi, respectively. We then construct a

path-invariance basis B of G by collecting three groups of

path pairs. The first group simply combines Bi, 1 ≤ i ≤ K.

The second group extends Bdag to the original graph. This

is done by replacing each edge (Gi,Gj) ∈ Edag through a

shortest path on G that connects the representatives of Gi

and Gj where representatives are arbitrarily chosen at first

for each component. To calculate the third group, consider

all oriented edges between each (Gi,Gj) ∈ Edag:

Eij = {uv ∈ E : u ∈ Vi, v ∈ Vj}.

Note that when constructing Bdag , all edges in Eij are

shrinked to one edge in Edag . This means when construct-

ing B, we have to enforce the consistency among Eij on the

original graph G. This can be done by constructing a tree

Tij where V(Tij) = Eij , E(Tij) ⊂ E2
ij . Tij is a minimum

spanning tree on the graph whose vertex set is Eij and the

weight associated with edge (uv, u′v′) ∈ E2
ij is given by

the sum of lengths of ûu′ and v̂v′. This strategy encourages

reducing the total length of the resulting path pairs in Bij :

Bij := {(ûu′ ∼ u′v′, uv ∼ v̂v′) : (uv, u′v′) ∈ E(Tij)},

where ûu′ and v̂v′ denote the shortest paths from u to u′

on Gi and from v to v′ on Gj , respectively. Algorithm 1

presents the high-level pesudo code of our approach.

Theorem 3.2. The path-pairs B derived from Bdag ,

{Bi : 1 ≤ i ≤ K}, and {Bij : (Gi,Gj) ∈ Edag} using the

algorithm described above is a path-invariance basis for G.

Proposition 3. The size of B is upper bounded by |V||E|.

4. Joint Map Network Optimization

In this section, we present a formulation for jointly op-

timizing a map network using the path-variance basis com-

puted in the preceding section.

Consider the map network defined in Def. 1. We assume

the map associated with each edge (i, j) ∈ E is a parametric

map f
θij
ij , where θij denotes hyper-parameters or network

parameters of fij . We assume the supervision of map net-

work is given by a superset E ⊃ E . As we will see later,

such instances happen when there exist paired data between

two domains, but we do not have a direct neural network

between them. To utilize such supervision, we define the in-

duced map along an edge (i, j) ∈ E as the composition map

(defined in (1)) fΘ
v̂ivj

along the short path v̂ivj from vi to vj .

Here Θ = {θij , (i, j) ∈ E} collects all the parameters. We

define each supervised loss term as lij(f
Θ
ij ), ∀(i, j) ∈ E .

The specific definition of lij will be deferred to Section 5.

Besides the supervised loss terms, the key component of

joint map network optimization utilizes a self-supervision

loss induced from the path-invariance basis B. Let dDi
(·, ·)

be a distance measure associated with domain Di. Consider

an empirical distribution Pi of Di. We define the total loss

objective for joint map network optimization as

min
Θ

∑

(i,j)∈E

lij(f
Θ
v̂ivj

)+λ
∑

(p,q)∈B

E
v∼Ppt

dDpt
(fΘ

p (v), fΘ
q (v))

(3)

where pt denotes the index of the end vertex of p. Es-

sentially, (3) combines the supervised loss terms and an

unsupervised regularization term that ensures the learned

representations are consistent when passing unlabeled in-

stances across the map network. We employ the ADAM

optimizer [27] for optimization. In addition, we start with a

small value of λ, e.g., λ = 10−2, to solve (3) for 40 epochs.

We then double the value of λ every 10 epochs. We stop the

training procedure when λ ≥ 103. The training details are

deferred to the Appendix.

5. Experimental Evaluation

This section presents an experimental evaluation of our

approach across three settings, namely, shape matching

(Section 5.1), dense image maps (Section 5.2), and 3D se-

mantic segmentation (Section 5.3).

5.1. Map Network of Shape Maps

We begin with the task of joint shape matching [31, 25,

15, 16, 10], which seeks to jointly optimize shape maps to

improve the initial maps computed between pairs of shapes

in isolation. We utilize the functional map representation

described in [33, 47, 16]. Specifically, each domain Di is

given by a linear space spanned by the leading m eigenvec-

tors of a graph Laplacian [16] (we choose m = 30 in our

experiments). The map from Di to Dj is given by a ma-

trix Xij ∈ R
m×m. Let B be a path-invariance basis for the

associated graph G. Adapting (3), we solve the following

optimization problem for joint shape matching:

∑

(i,j)∈E

‖Xij −X in

ij ‖1 + λ
∑

(p,q)∈B

‖Xp −Xq‖
2
F (4)

where ‖·‖1 and ‖·‖F are the element-wise L1-norm and the

matrix Frobenius norm, respectively. X in

ij denotes the ini-

tial functional map converted from the corresponding initial

shape map using [33].

Dataset. We perform experimental evaluation on

SHREC07–Watertight [13]. Specifically, SHREC07-

Watertight contains 400 shapes across 20 categories.

Among them, we choose 11 categories (i.e., Human,

Glasses, Airplane, Ant, Teddy, Hand, Plier, Fish, Bird,

Armadillo, Fourleg) that are suitable for inter-shape map-

ping. We also test our approach on two large-scale

datasets Aliens (200 shapes) and Vase (300 shapes) from

ShapeCOSEG [50]. For initial maps, we employ blended

intrinsic maps [26], a state-of-the-art method for shape
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Figure 3: Baseline comparison on benchmark datasets. We show

cumulative distribution functions (or CDFs) of each method with

respect to annotated feature correspondences.

matching. We test our approach under two graphs G. The

first graph is a clique graph. The second graph connects

each shape with k-nearest neighbor with respect to the

GMDS descriptor [42] (k = 10 in our experiments).

Evaluation setup. We compare our approach to five base-

line approaches, including three state-of-the-art approaches

and two variants of our approach. Three state-of-the-art ap-

proaches are 1) functional-map based low-rank matrix re-

covery [16], 2) point-map based low-rank matrix recovery

via alternating minimization [58], and 3) consistent partial

matching via sparse modeling [10]. Two variants are 4) us-

ing a set of randomly sampled cycles [54] whose size is the

same as |B|, and 5) using the path-invariance basis derived

from the fundamental cycle-basis of G (c.f. [22]) (which

may contain long cycles).

We evaluate the quality of each map through annotated

key points (Please refer to the supplementary material). Fol-

lowing [26, 15, 16], we report the cumulative distribution

function (or CDF) of geodesic errors of predicted feature

correspondences.

Analysis of results. Figure 3 shows CDFs of our ap-

proach and baseline approaches. All participating methods

exhibit considerable improvements from the initial maps,

demonstrating the benefits of joint matching. Compared

to state-of-the-art approaches, our approach is comparable

when G is a clique and exhibits certain performance gains

when G is sparse. One explanation is that low-rank ap-

proaches are based on relaxations of the cycle-consistency

constraint (c.f. [15]), and such relaxations become loose

on sparse graphs. Compared to the two variants, our ap-

proach delivers the best results on both clique graphs and

knn-graphs. This is because the two alternative strategies

generate many long paths and cycles in B, making the to-

tal objective function (3) hard to optimize. On knn-graphs,

both our approach and the baseline of using the fundamental

cycle-basis outperform the baseline of randomly sampling

path pairs, showing the importance of computing a path-

invariance basis for enforcing the consistency constraint.

5.2. Map Network of Dense Image Maps

In the second setting, we consider the task of optimizing

dense image flows across a collection of relevant images.

We again model this task using a map network F , where

each domain Di is given by an image Ii. Our goal is to com-

pute a dense image map fij : Ii → Ij (its difference to the

identity map gives a dense image flow) between each pair

of input images. To this end, we precompute initial dense

maps f in

ij , ∀(i, j) ∈ E using DSP [24], which is a state-

of-the-art approach for dense image flows. Our goal is to

obtain improved dense image maps fij , ∀(i, j) ∈ E , which

lead to dense image maps between all pairs of images in F
via map composition (See (1)). Due to scalability issues,

state-of-the-art approaches for this task [28, 23, 36, 57] are

limited to a small number of images. To address this issue,

we encode dense image maps using the neural network fθ

described in [56]. Given a fixed map network F and the

initial dense maps f in

ij , (i, j) ∈ E , we formulate a similar

optimization problem as (4) to learn θ:

min
θ

∑

(i,j)∈E

‖fθ
ij − f in

ij ‖1 + λ
∑

(p,q)∈B

‖fθ
p − fθ

q ‖
2
F (5)

where B denotes a path-invariance basis associated with F ;

ps is the index of the start vertex of p; fθ
p is the composite

network along path p.

Dataset. The image sets we use are sampled from 12 rigid

categories of the PASCAL-Part dataset [6]. To generate im-

age sets that are meaningful to align, we pick the most pop-

ular view for each category (who has the smallest variance

among 20-nearest neighbors). We then generate an image

set for that category by collecting all images whose poses

are within 30◦ of this view. We construct the map network

by connecting each image with 20-nearest neighbors with

respect to the DSP matching score [24]. Note that the re-

sulting F is a directed graph as DSP is directed. The longest

path varies between 4(Car)-6(Boat) in our experiments.

Evaluation setup. We compare our approach with Con-

gealing [28], Collection Flow [23], RASL [36], and

FlowWeb [57]. Note that both Flowweb and our ap-

proach use DSP as input. We also compare our approach

against [56] under a different setup (See supplementary ma-

terial). To run baseline approaches, we follow the protocol

of [57] to further break each dataset into smaller ones with

maximum size of 100. In addition, we consider two variants

of our approach: Ours-Dense and Ours-Undirected. Ours-

Dense uses the clique graph for F . Ours-Undirected uses

an undirected knn-graph, where each edge weight averages

the bi-directional DSP matching scores (c.f. [24]). We em-

ploy the PCK measure [51], which reports the percentage of
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Ours-Undirected 0.32 0.43 0.07 0.43 0.56 0.55 0.18 0.06 0.26 0.21 0.25 0.37 0.31

Ours 0.35 0.45 0.07 0.45 0.63 0.62 0.19 0.06 0.27 0.22 0.23 0.38 0.33

Figure 4: (Left) Keypoint matching accuracy (PCK) on 12 rigid PASCAL VOC categories (α = 0.05). Higher is better. (Right) Plots of

the mean PCK of each method with varying α

Source Target Congealing RASL CollectionFlow DSP FlowWeb Ours

Figure 5: Visual comparison between our approach and state-of-the-art approaches. This figure is best viewed in color, zoomed in. More

examples are included in the supplemental material.

keypoints whose prediction errors fall within α ·max(h,w)
(h and w are image height and width respectively).

Analysis of results. As shown in Figure 4 and Figure 5, our

approach outperforms all existing approaches across most

of the categories. Several factors contribute to such im-

provements. First, our approach can jointly optimize more

images than baseline approaches and thus benefits more

from the data-driven effect of joint matching [15, 7]. This

explains why all variants of our approach are either compa-

rable or superior to baseline approaches. Second, our ap-

proach avoids fitting a neural network directly to dissimilar

images and focuses on relatively similar images (other maps

are generated by map composition), leading to additional

performance gains. In fact, all existing approaches, which

operate on sub-groups of similar images, also implicitly

benefit from map composition. This explains why FlowWeb

exhibits competing performance against Ours-Dense. Fi-

nally, Ours-Directed is superior to Ours-Undirected. This is

because the outlier-ratio of f in

ij in Ours-Undirected is higher

than that of Ours-Directed, which selects edges purely

based on matching scores.

5.3. Map Network of 3D Representations

In the third setting, we seek to jointly optimize a net-

work of neural networks to improve the performance of in-

dividual networks. We are particularly interested in the task

of semantic segmentation of 3D scenes. Specifically, we

consider a network with seven 3D representations (See Fig-

ure 1). The first representation is the input mesh. The last

representation is the space of 3D semantic segmentations.

The second to fourth 3D representations are point clouds

with different number of points: PCI (12K), PCII (8K), and

PCIII(4K). The motivation of varying the number of points

PCI PCII PCIII VOLI VOLII ENS

100% Label (Isolated) 84.2 83.3 83.4 81.9 81.5 85

8% Label (Isolated) 79.2 78.3 78.4 78.7 77.4 81.4

8% Label + Unlabel (Joint) 82.3 82.5 82.3 81.6 79.0 83.4

30% Label (Isolated) 80.8 81.9 81.2 80.3 79.5 83.2

Table 1: Semantic surface voxel label prediction accuracy on

ScanNet test scenes (in percentages), following [37]. We also

show the ensembled prediction accuracy with five representations

in the last column.

is that the patterns learned under different number of points

show certain variations, which are beneficial to each other.

In a similar fashion, the fifth and sixth are volumetric repre-

sentations under two resolutions: VOLI(32× 32× 32) and

VOLII(24 × 24 × 24). The directed maps between differ-

ent 3D representations fall into three categories, which are

summarized below:

1. Segmentation networks. We use PointNet++ [37] and 3D

U-Net[9] for the segmentation networks under point cloud

and volumetric representations, respectively.

2. Pointcloud sub-sampling maps. We have six pointcloud

sub-sampling maps among the mesh representation (we uni-

formly sample 24K points using [32]) and three point cloud

representations. For each point sub-sampling map, we force

the down-sampled point cloud to align with the feature

points of the input point cloud [35]. Note that this down-

sampled point cloud is also optimized through a segmenta-

tion network to maximize the segmentation accuracy.

3. Generating volumetric representations. Each volumetric

representation is given by the signed-distance field (or SDF)

described in [45]. These SDFs are precomputed.

Experimental setup. We have evaluated our approach on

ScanNet semantic segmentation benchmark [12]. Our goal
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Ground Truth 8% Label 30% Label 100% Label 8% Label + 92%Unlabel

Figure 6: Qualitative comparisons of 3D semantic segmentation results on ScanNet [12]. Each row represents one testing instance, where

ground truth and top sub-row show prediction for 21 classes and bottom sub-row only shows correctly labeled points. (Green indicates

correct predictions, while red indicates false predictions.) This figure is best viewed in color, zoomed in.

is to evaluate the effectiveness of our approach when using

a small labeled dataset and a large unlabeled dataset. To this

end, we consider three baseline approaches, which train the

segmentation network under each individual representation

using 100%, 30%, and 8% of the labeled data. We then test

our approach by utilizing 8% of the labeled data, which de-

fines the data term in (3), and 92% of the unlabeled data,

which defines the regularization term of (3). We initialize

the segmentation network for point clouds using uniformly

sampled points trained on labeled data. We then fine-tune

the entire network using both labeled and unlabeled data.

Note that unlike [55], our approach leverages essentially

the same labeled data but under different 3D representa-

tions. The boost in performance comes from unlabeled data.

Code is publicly available at https://github.com/

zaiweizhang/path_invariance_map_network.

Analysis of results. Figure 6 and Table 1 present quali-

tative and quantitative comparisons between our approach

and baselines. Across all 3D representations, our approach

leads to consistent improvements, demonstrating the robust-

ness of our approach. Specifically, when using 8% labeled

data and 92% unlabeled data, our approach achieves com-

peting performance as using 30% to 100% labeled data

when trained on each individual representation. Moreover,

the accuracy on VOLI is competitive against using 100% of

labeled data, indicating that the patterns learned under the

point cloud representations are propagated to train the vol-

umetric representations. We also tested the performance of

applying popular vote [39] on the predictions of using dif-

ferent 3D representations. The relative performance gains

remain similar (See the last column in Table1). Please re-

fer to Appendix C for more experimental evaluations and

baseline comparisons.

6. Conclusions

We have studied the problem of optimizing a directed

map network while enforcing the path-invariance constraint

via path-invariance bases. We have described an algorithm

for computing a path-invariance basis with polynomial time

and space complexities. The effectiveness of this approach

is demonstrated on three groups of map networks with di-

verse applications.
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